--- _id: '1564' article_number: '145' author: - first_name: Matthieu full_name: Gilson, Matthieu last_name: Gilson - first_name: Cristina full_name: Savin, Cristina id: 3933349E-F248-11E8-B48F-1D18A9856A87 last_name: Savin - first_name: Friedemann full_name: Zenke, Friedemann last_name: Zenke citation: ama: 'Gilson M, Savin C, Zenke F. Editorial: Emergent neural computation from the interaction of different forms of plasticity. Frontiers in Computational Neuroscience. 2015;9(11). doi:10.3389/fncom.2015.00145' apa: 'Gilson, M., Savin, C., & Zenke, F. (2015). Editorial: Emergent neural computation from the interaction of different forms of plasticity. Frontiers in Computational Neuroscience. Frontiers Research Foundation. https://doi.org/10.3389/fncom.2015.00145' chicago: 'Gilson, Matthieu, Cristina Savin, and Friedemann Zenke. “Editorial: Emergent Neural Computation from the Interaction of Different Forms of Plasticity.” Frontiers in Computational Neuroscience. Frontiers Research Foundation, 2015. https://doi.org/10.3389/fncom.2015.00145.' ieee: 'M. Gilson, C. Savin, and F. Zenke, “Editorial: Emergent neural computation from the interaction of different forms of plasticity,” Frontiers in Computational Neuroscience, vol. 9, no. 11. Frontiers Research Foundation, 2015.' ista: 'Gilson M, Savin C, Zenke F. 2015. Editorial: Emergent neural computation from the interaction of different forms of plasticity. Frontiers in Computational Neuroscience. 9(11), 145.' mla: 'Gilson, Matthieu, et al. “Editorial: Emergent Neural Computation from the Interaction of Different Forms of Plasticity.” Frontiers in Computational Neuroscience, vol. 9, no. 11, 145, Frontiers Research Foundation, 2015, doi:10.3389/fncom.2015.00145.' short: M. Gilson, C. Savin, F. Zenke, Frontiers in Computational Neuroscience 9 (2015). date_created: 2018-12-11T11:52:45Z date_published: 2015-11-30T00:00:00Z date_updated: 2021-01-12T06:51:37Z day: '30' ddc: - '570' department: - _id: GaTk doi: 10.3389/fncom.2015.00145 ec_funded: 1 file: - access_level: open_access checksum: cea73b6d3ef1579f32da10b82f4de4fd content_type: application/pdf creator: system date_created: 2018-12-12T10:12:09Z date_updated: 2020-07-14T12:45:02Z file_id: '4927' file_name: IST-2016-479-v1+1_fncom-09-00145.pdf file_size: 187038 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 9' issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Frontiers in Computational Neuroscience publication_status: published publisher: Frontiers Research Foundation publist_id: '5607' pubrep_id: '479' quality_controlled: '1' scopus_import: 1 status: public title: 'Editorial: Emergent neural computation from the interaction of different forms of plasticity' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2015' ... --- _id: '1568' abstract: - lang: eng text: Aiming at the automatic diagnosis of tumors from narrow band imaging (NBI) magnifying endoscopy (ME) images of the stomach, we combine methods from image processing, computational topology, and machine learning to classify patterns into normal, tubular, vessel. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions. acknowledgement: This research is supported by the project No. 477 of P.G. Demidov Yaroslavl State University within State Assignment for Research. author: - first_name: Olga full_name: Dunaeva, Olga last_name: Dunaeva - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Lukyanov, Anton last_name: Lukyanov - first_name: Michael full_name: Machin, Michael last_name: Machin - first_name: Daria full_name: Malkova, Daria last_name: Malkova citation: ama: 'Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D. The classification of endoscopy images with persistent homology. In: Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE; 2015:7034731. doi:10.1109/SYNASC.2014.81' apa: 'Dunaeva, O., Edelsbrunner, H., Lukyanov, A., Machin, M., & Malkova, D. (2015). The classification of endoscopy images with persistent homology. In Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (p. 7034731). Timisoara, Romania: IEEE. https://doi.org/10.1109/SYNASC.2014.81' chicago: Dunaeva, Olga, Herbert Edelsbrunner, Anton Lukyanov, Michael Machin, and Daria Malkova. “The Classification of Endoscopy Images with Persistent Homology.” In Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 7034731. IEEE, 2015. https://doi.org/10.1109/SYNASC.2014.81. ieee: O. Dunaeva, H. Edelsbrunner, A. Lukyanov, M. Machin, and D. Malkova, “The classification of endoscopy images with persistent homology,” in Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 2015, p. 7034731. ista: 'Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D. 2015. The classification of endoscopy images with persistent homology. Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. SYNASC: Symbolic and Numeric Algorithms for Scientific Computing, 7034731.' mla: Dunaeva, Olga, et al. “The Classification of Endoscopy Images with Persistent Homology.” Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, IEEE, 2015, p. 7034731, doi:10.1109/SYNASC.2014.81. short: O. Dunaeva, H. Edelsbrunner, A. Lukyanov, M. Machin, D. Malkova, in:, Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, IEEE, 2015, p. 7034731. conference: end_date: 2014-09-25 location: Timisoara, Romania name: 'SYNASC: Symbolic and Numeric Algorithms for Scientific Computing' start_date: 2014-09-22 date_created: 2018-12-11T11:52:46Z date_published: 2015-02-05T00:00:00Z date_updated: 2023-02-21T16:57:29Z day: '05' department: - _id: HeEd doi: 10.1109/SYNASC.2014.81 language: - iso: eng month: '02' oa_version: None page: '7034731' publication: Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing publication_status: published publisher: IEEE publist_id: '5603' quality_controlled: '1' related_material: record: - id: '1289' relation: later_version status: public scopus_import: 1 status: public title: The classification of endoscopy images with persistent homology type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2015' ... --- _id: '1567' abstract: - lang: eng text: My personal journey to the fascinating world of geometric forms started more than 30 years ago with the invention of alpha shapes in the plane. It took about 10 years before we generalized the concept to higher dimensions, we produced working software with a graphics interface for the three-dimensional case. At the same time, we added homology to the computations. Needless to say that this foreshadowed the inception of persistent homology, because it suggested the study of filtrations to capture the scale of a shape or data set. Importantly, this method has fast algorithms. The arguably most useful result on persistent homology is the stability of its diagrams under perturbations. alternative_title: - LNCS article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: 'Edelsbrunner H. Shape, homology, persistence, and stability. In: 23rd International Symposium. Vol 9411. Springer Nature; 2015.' apa: 'Edelsbrunner, H. (2015). Shape, homology, persistence, and stability. In 23rd International Symposium (Vol. 9411). Los Angeles, CA, United States: Springer Nature.' chicago: Edelsbrunner, Herbert. “Shape, Homology, Persistence, and Stability.” In 23rd International Symposium, Vol. 9411. Springer Nature, 2015. ieee: H. Edelsbrunner, “Shape, homology, persistence, and stability,” in 23rd International Symposium, Los Angeles, CA, United States, 2015, vol. 9411. ista: 'Edelsbrunner H. 2015. Shape, homology, persistence, and stability. 23rd International Symposium. GD: Graph Drawing and Network Visualization, LNCS, vol. 9411.' mla: Edelsbrunner, Herbert. “Shape, Homology, Persistence, and Stability.” 23rd International Symposium, vol. 9411, Springer Nature, 2015. short: H. Edelsbrunner, in:, 23rd International Symposium, Springer Nature, 2015. conference: end_date: 2015-09-26 location: Los Angeles, CA, United States name: 'GD: Graph Drawing and Network Visualization' start_date: 2015-09-24 date_created: 2018-12-11T11:52:46Z date_published: 2015-01-01T00:00:00Z date_updated: 2022-01-28T08:25:00Z day: '01' department: - _id: HeEd intvolume: ' 9411' language: - iso: eng month: '01' oa_version: None publication: 23rd International Symposium publication_status: published publisher: Springer Nature publist_id: '5604' quality_controlled: '1' scopus_import: '1' status: public title: Shape, homology, persistence, and stability type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9411 year: '2015' ... --- _id: '1563' abstract: - lang: eng text: For a given self-map $f$ of $M$, a closed smooth connected and simply-connected manifold of dimension $m\geq 4$, we provide an algorithm for estimating the values of the topological invariant $D^m_r[f]$, which equals the minimal number of $r$-periodic points in the smooth homotopy class of $f$. Our results are based on the combinatorial scheme for computing $D^m_r[f]$ introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63-84]. An open-source implementation of the algorithm programmed in C++ is publicly available at {\tt http://www.pawelpilarczyk.com/combtop/}. author: - first_name: Grzegorz full_name: Graff, Grzegorz last_name: Graff - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk citation: ama: Graff G, Pilarczyk P. An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds. Topological Methods in Nonlinear Analysis. 2015;45(1):273-286. doi:10.12775/TMNA.2015.014 apa: Graff, G., & Pilarczyk, P. (2015). An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds. Topological Methods in Nonlinear Analysis. Juliusz Schauder Center for Nonlinear Studies. https://doi.org/10.12775/TMNA.2015.014 chicago: Graff, Grzegorz, and Pawel Pilarczyk. “An Algorithmic Approach to Estimating the Minimal Number of Periodic Points for Smooth Self-Maps of Simply-Connected Manifolds.” Topological Methods in Nonlinear Analysis. Juliusz Schauder Center for Nonlinear Studies, 2015. https://doi.org/10.12775/TMNA.2015.014. ieee: G. Graff and P. Pilarczyk, “An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds,” Topological Methods in Nonlinear Analysis, vol. 45, no. 1. Juliusz Schauder Center for Nonlinear Studies, pp. 273–286, 2015. ista: Graff G, Pilarczyk P. 2015. An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds. Topological Methods in Nonlinear Analysis. 45(1), 273–286. mla: Graff, Grzegorz, and Pawel Pilarczyk. “An Algorithmic Approach to Estimating the Minimal Number of Periodic Points for Smooth Self-Maps of Simply-Connected Manifolds.” Topological Methods in Nonlinear Analysis, vol. 45, no. 1, Juliusz Schauder Center for Nonlinear Studies, 2015, pp. 273–86, doi:10.12775/TMNA.2015.014. short: G. Graff, P. Pilarczyk, Topological Methods in Nonlinear Analysis 45 (2015) 273–286. date_created: 2018-12-11T11:52:44Z date_published: 2015-03-01T00:00:00Z date_updated: 2021-01-12T06:51:37Z day: '01' department: - _id: HeEd doi: 10.12775/TMNA.2015.014 intvolume: ' 45' issue: '1' language: - iso: eng month: '03' oa_version: None page: 273 - 286 publication: Topological Methods in Nonlinear Analysis publication_status: published publisher: Juliusz Schauder Center for Nonlinear Studies publist_id: '5608' quality_controlled: '1' scopus_import: 1 status: public title: An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 45 year: '2015' ... --- _id: '1574' abstract: - lang: eng text: Multiple plant developmental processes, such as lateral root development, depend on auxin distribution patterns that are in part generated by the PIN-formed family of auxin-efflux transporters. Here we propose that AUXIN RESPONSE FACTOR7 (ARF7) and the ARF7-regulated FOUR LIPS/MYB124 (FLP) transcription factors jointly form a coherent feed-forward motif that mediates the auxin-responsive PIN3 transcription in planta to steer the early steps of lateral root formation. This regulatory mechanism might endow the PIN3 circuitry with a temporal 'memory' of auxin stimuli, potentially maintaining and enhancing the robustness of the auxin flux directionality during lateral root development. The cooperative action between canonical auxin signalling and other transcription factors might constitute a general mechanism by which transcriptional auxin-sensitivity can be regulated at a tissue-specific level. acknowledgement: 'of the European Research Council (project ERC-2011-StG-20101109-PSDP) (to J.F.), a FEBS long-term fellowship (to P.M.) ' article_number: '8821' author: - first_name: Qian full_name: Chen, Qian last_name: Chen - first_name: Yang full_name: Liu, Yang last_name: Liu - first_name: Steven full_name: Maere, Steven last_name: Maere - first_name: Eunkyoung full_name: Lee, Eunkyoung last_name: Lee - first_name: Gert full_name: Van Isterdael, Gert last_name: Van Isterdael - first_name: Zidian full_name: Xie, Zidian last_name: Xie - first_name: Wei full_name: Xuan, Wei last_name: Xuan - first_name: Jessica full_name: Lucas, Jessica last_name: Lucas - first_name: Valya full_name: Vassileva, Valya last_name: Vassileva - first_name: Saeko full_name: Kitakura, Saeko last_name: Kitakura - first_name: Peter full_name: Marhavy, Peter id: 3F45B078-F248-11E8-B48F-1D18A9856A87 last_name: Marhavy orcid: 0000-0001-5227-5741 - first_name: Krzysztof T full_name: Wabnik, Krzysztof T id: 4DE369A4-F248-11E8-B48F-1D18A9856A87 last_name: Wabnik orcid: 0000-0001-7263-0560 - first_name: Niko full_name: Geldner, Niko last_name: Geldner - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Jie full_name: Le, Jie last_name: Le - first_name: Hidehiro full_name: Fukaki, Hidehiro last_name: Fukaki - first_name: Erich full_name: Grotewold, Erich last_name: Grotewold - first_name: Chuanyou full_name: Li, Chuanyou last_name: Li - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Fred full_name: Sack, Fred last_name: Sack - first_name: Tom full_name: Beeckman, Tom last_name: Beeckman - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste citation: ama: Chen Q, Liu Y, Maere S, et al. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications. 2015;6. doi:10.1038/ncomms9821 apa: Chen, Q., Liu, Y., Maere, S., Lee, E., Van Isterdael, G., Xie, Z., … Vanneste, S. (2015). A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms9821 chicago: Chen, Qian, Yang Liu, Steven Maere, Eunkyoung Lee, Gert Van Isterdael, Zidian Xie, Wei Xuan, et al. “A Coherent Transcriptional Feed-Forward Motif Model for Mediating Auxin-Sensitive PIN3 Expression during Lateral Root Development.” Nature Communications. Nature Publishing Group, 2015. https://doi.org/10.1038/ncomms9821. ieee: Q. Chen et al., “A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development,” Nature Communications, vol. 6. Nature Publishing Group, 2015. ista: Chen Q, Liu Y, Maere S, Lee E, Van Isterdael G, Xie Z, Xuan W, Lucas J, Vassileva V, Kitakura S, Marhavý P, Wabnik KT, Geldner N, Benková E, Le J, Fukaki H, Grotewold E, Li C, Friml J, Sack F, Beeckman T, Vanneste S. 2015. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications. 6, 8821. mla: Chen, Qian, et al. “A Coherent Transcriptional Feed-Forward Motif Model for Mediating Auxin-Sensitive PIN3 Expression during Lateral Root Development.” Nature Communications, vol. 6, 8821, Nature Publishing Group, 2015, doi:10.1038/ncomms9821. short: Q. Chen, Y. Liu, S. Maere, E. Lee, G. Van Isterdael, Z. Xie, W. Xuan, J. Lucas, V. Vassileva, S. Kitakura, P. Marhavý, K.T. Wabnik, N. Geldner, E. Benková, J. Le, H. Fukaki, E. Grotewold, C. Li, J. Friml, F. Sack, T. Beeckman, S. Vanneste, Nature Communications 6 (2015). date_created: 2018-12-11T11:52:48Z date_published: 2015-11-18T00:00:00Z date_updated: 2021-01-12T06:51:42Z day: '18' ddc: - '580' department: - _id: EvBe - _id: JiFr doi: 10.1038/ncomms9821 file: - access_level: open_access checksum: 8ff5c108899b548806e1cb7a302fe76d content_type: application/pdf creator: system date_created: 2018-12-12T10:14:32Z date_updated: 2020-07-14T12:45:02Z file_id: '5085' file_name: IST-2016-477-v1+1_ncomms9821.pdf file_size: 1701815 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5597' pubrep_id: '477' quality_controlled: '1' scopus_import: 1 status: public title: A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2015' ... --- _id: '1575' abstract: - lang: eng text: The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space. acknowledgement: M.C. and M.L.H. were supported by fellowships from the Fondation pour la Recherche Médicale and the Association pour la Recherche contre le Cancer, respectively. This work was funded by grants from the City of Paris and the European Research Council to A.-M.L.-D. (Strapacemi 243103), the Association Nationale pour la Recherche (ANR-09-PIRI-0027-PCVI) and the InnaBiosanté foundation (Micemico) to A.-M.L.-D., M.P. and R.V., and the DCBIOL Labex from the French Government (ANR-10-IDEX-0001-02-PSL* and ANR-11-LABX-0043). The super-resolution SIM microscope was funded through an ERC Advanced Investigator Grant (250367) to Edith Heard (CNRS UMR3215/Inserm U934, Institut Curie). article_number: '7526' author: - first_name: Mélanie full_name: Chabaud, Mélanie last_name: Chabaud - first_name: Mélina full_name: Heuzé, Mélina last_name: Heuzé - first_name: Marine full_name: Bretou, Marine last_name: Bretou - first_name: Pablo full_name: Vargas, Pablo last_name: Vargas - first_name: Paolo full_name: Maiuri, Paolo last_name: Maiuri - first_name: Paola full_name: Solanes, Paola last_name: Solanes - first_name: Mathieu full_name: Maurin, Mathieu last_name: Maurin - first_name: Emmanuel full_name: Terriac, Emmanuel last_name: Terriac - first_name: Maël full_name: Le Berre, Maël last_name: Le Berre - first_name: Danielle full_name: Lankar, Danielle last_name: Lankar - first_name: Tristan full_name: Piolot, Tristan last_name: Piolot - first_name: Robert full_name: Adelstein, Robert last_name: Adelstein - first_name: Yingfan full_name: Zhang, Yingfan last_name: Zhang - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Jordan full_name: Jacobelli, Jordan last_name: Jacobelli - first_name: Olivier full_name: Bénichou, Olivier last_name: Bénichou - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez - first_name: Matthieu full_name: Piel, Matthieu last_name: Piel - first_name: Ana full_name: Lennon Duménil, Ana last_name: Lennon Duménil citation: ama: Chabaud M, Heuzé M, Bretou M, et al. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells. Nature Communications. 2015;6. doi:10.1038/ncomms8526 apa: Chabaud, M., Heuzé, M., Bretou, M., Vargas, P., Maiuri, P., Solanes, P., … Lennon Duménil, A. (2015). Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms8526 chicago: Chabaud, Mélanie, Mélina Heuzé, Marine Bretou, Pablo Vargas, Paolo Maiuri, Paola Solanes, Mathieu Maurin, et al. “Cell Migration and Antigen Capture Are Antagonistic Processes Coupled by Myosin II in Dendritic Cells.” Nature Communications. Nature Publishing Group, 2015. https://doi.org/10.1038/ncomms8526. ieee: M. Chabaud et al., “Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells,” Nature Communications, vol. 6. Nature Publishing Group, 2015. ista: Chabaud M, Heuzé M, Bretou M, Vargas P, Maiuri P, Solanes P, Maurin M, Terriac E, Le Berre M, Lankar D, Piolot T, Adelstein R, Zhang Y, Sixt MK, Jacobelli J, Bénichou O, Voituriez R, Piel M, Lennon Duménil A. 2015. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells. Nature Communications. 6, 7526. mla: Chabaud, Mélanie, et al. “Cell Migration and Antigen Capture Are Antagonistic Processes Coupled by Myosin II in Dendritic Cells.” Nature Communications, vol. 6, 7526, Nature Publishing Group, 2015, doi:10.1038/ncomms8526. short: M. Chabaud, M. Heuzé, M. Bretou, P. Vargas, P. Maiuri, P. Solanes, M. Maurin, E. Terriac, M. Le Berre, D. Lankar, T. Piolot, R. Adelstein, Y. Zhang, M.K. Sixt, J. Jacobelli, O. Bénichou, R. Voituriez, M. Piel, A. Lennon Duménil, Nature Communications 6 (2015). date_created: 2018-12-11T11:52:48Z date_published: 2015-06-25T00:00:00Z date_updated: 2021-01-12T06:51:42Z day: '25' ddc: - '570' department: - _id: MiSi doi: 10.1038/ncomms8526 file: - access_level: open_access checksum: bae12e86be2adb28253f890b8bba8315 content_type: application/pdf creator: system date_created: 2018-12-12T10:11:58Z date_updated: 2020-07-14T12:45:02Z file_id: '4915' file_name: IST-2016-476-v1+1_ncomms8526.pdf file_size: 4530215 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5596' pubrep_id: '476' quality_controlled: '1' scopus_import: 1 status: public title: Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2015' ... --- _id: '1569' abstract: - lang: eng text: Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering the polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF- defective mutants gnom-like 1 ( gnl1-1) and gnom ( van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. Our data confirm a role for GNOM in endoplasmic reticulum (ER) - Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development. acknowledgement: 'This work was supported by Vetenskapsrådet and Vinnova (Verket för Innovationssystemet) (S.M.D., T.V., M.Ł., and S.R.), Knut och Alice Wallenbergs Stiftelse (S.M.D., A.R., and C.V.), Kempestiftelserna (A.H. and Q.M.), Carl Tryggers Stiftelse för Vetenskaplig Forskning (Q.M.), European Research Council Grant ERC-2011-StG-20101109-PSDP (to J.F.), US Department of Energy Grant DE-FG02-02ER15295 (to N.V.R.), and National Science Foundation Grant MCB-0817916 (to N.V.R. and G.R.H.). ' author: - first_name: Siamsa full_name: Doyle, Siamsa last_name: Doyle - first_name: Ash full_name: Haegera, Ash last_name: Haegera - first_name: Thomas full_name: Vain, Thomas last_name: Vain - first_name: Adeline full_name: Rigala, Adeline last_name: Rigala - first_name: Corrado full_name: Viotti, Corrado last_name: Viotti - first_name: Małgorzata full_name: Łangowskaa, Małgorzata last_name: Łangowskaa - first_name: Qian full_name: Maa, Qian last_name: Maa - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Natasha full_name: Raikhel, Natasha last_name: Raikhel - first_name: Glenn full_name: Hickse, Glenn last_name: Hickse - first_name: Stéphanie full_name: Robert, Stéphanie last_name: Robert citation: ama: Doyle S, Haegera A, Vain T, et al. An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana. PNAS. 2015;112(7):E806-E815. doi:10.1073/pnas.1424856112 apa: Doyle, S., Haegera, A., Vain, T., Rigala, A., Viotti, C., Łangowskaa, M., … Robert, S. (2015). An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1424856112 chicago: Doyle, Siamsa, Ash Haegera, Thomas Vain, Adeline Rigala, Corrado Viotti, Małgorzata Łangowskaa, Qian Maa, et al. “An Early Secretory Pathway Mediated by Gnom-like 1 and Gnom Is Essential for Basal Polarity Establishment in Arabidopsis Thaliana.” PNAS. National Academy of Sciences, 2015. https://doi.org/10.1073/pnas.1424856112. ieee: S. Doyle et al., “An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana,” PNAS, vol. 112, no. 7. National Academy of Sciences, pp. E806–E815, 2015. ista: Doyle S, Haegera A, Vain T, Rigala A, Viotti C, Łangowskaa M, Maa Q, Friml J, Raikhel N, Hickse G, Robert S. 2015. An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana. PNAS. 112(7), E806–E815. mla: Doyle, Siamsa, et al. “An Early Secretory Pathway Mediated by Gnom-like 1 and Gnom Is Essential for Basal Polarity Establishment in Arabidopsis Thaliana.” PNAS, vol. 112, no. 7, National Academy of Sciences, 2015, pp. E806–15, doi:10.1073/pnas.1424856112. short: S. Doyle, A. Haegera, T. Vain, A. Rigala, C. Viotti, M. Łangowskaa, Q. Maa, J. Friml, N. Raikhel, G. Hickse, S. Robert, PNAS 112 (2015) E806–E815. date_created: 2018-12-11T11:52:46Z date_published: 2015-02-17T00:00:00Z date_updated: 2021-01-12T06:51:39Z day: '17' department: - _id: JiFr doi: 10.1073/pnas.1424856112 ec_funded: 1 intvolume: ' 112' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343110/ month: '02' oa: 1 oa_version: Published Version page: E806 - E815 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '5602' quality_controlled: '1' scopus_import: 1 status: public title: An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 112 year: '2015' ... --- _id: '1570' abstract: - lang: eng text: Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive rhythmic behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no systemspecific modifications of the DEP rule. They rather arise from the underlying mechanism of spontaneous symmetry breaking,which is due to the tight brain body environment coupling. The new synaptic rule is biologically plausible and would be an interesting target for neurobiological investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution. author: - first_name: Ralf full_name: Der, Ralf last_name: Der - first_name: Georg S full_name: Martius, Georg S id: 3A276B68-F248-11E8-B48F-1D18A9856A87 last_name: Martius citation: ama: Der R, Martius GS. Novel plasticity rule can explain the development of sensorimotor intelligence. PNAS. 2015;112(45):E6224-E6232. doi:10.1073/pnas.1508400112 apa: Der, R., & Martius, G. S. (2015). Novel plasticity rule can explain the development of sensorimotor intelligence. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1508400112 chicago: Der, Ralf, and Georg S Martius. “Novel Plasticity Rule Can Explain the Development of Sensorimotor Intelligence.” PNAS. National Academy of Sciences, 2015. https://doi.org/10.1073/pnas.1508400112. ieee: R. Der and G. S. Martius, “Novel plasticity rule can explain the development of sensorimotor intelligence,” PNAS, vol. 112, no. 45. National Academy of Sciences, pp. E6224–E6232, 2015. ista: Der R, Martius GS. 2015. Novel plasticity rule can explain the development of sensorimotor intelligence. PNAS. 112(45), E6224–E6232. mla: Der, Ralf, and Georg S. Martius. “Novel Plasticity Rule Can Explain the Development of Sensorimotor Intelligence.” PNAS, vol. 112, no. 45, National Academy of Sciences, 2015, pp. E6224–32, doi:10.1073/pnas.1508400112. short: R. Der, G.S. Martius, PNAS 112 (2015) E6224–E6232. date_created: 2018-12-11T11:52:47Z date_published: 2015-11-10T00:00:00Z date_updated: 2021-01-12T06:51:40Z day: '10' department: - _id: ChLa - _id: GaTk doi: 10.1073/pnas.1508400112 ec_funded: 1 external_id: pmid: - '26504200' intvolume: ' 112' issue: '45' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653169/ month: '11' oa: 1 oa_version: Submitted Version page: E6224 - E6232 pmid: 1 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '5601' quality_controlled: '1' scopus_import: 1 status: public title: Novel plasticity rule can explain the development of sensorimotor intelligence type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 112 year: '2015' ... --- _id: '1571' abstract: - lang: eng text: Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve when essential mutations are only accessible through positive selection if they are fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here, we studied genetic constraints in fixed and fluctuating environments using the Escherichia coli lac operon as a model system for genotype-environment interactions. We found that, in different fixed environments, all trajectories that were reconstructed by applying point mutations within the transcription factor-operator interface became trapped at suboptima, where no additional improvements were possible. Paradoxically, repeated switching between these same environments allows unconstrained adaptation by continuous improvements. This evolutionary mode is explained by pervasive cross-environmental tradeoffs that reposition the peaks in such a way that trapped genotypes can repeatedly climb ascending slopes and hence, escape adaptive stasis. Using a Markov approach, we developed a mathematical framework to quantify the landscape-crossing rates and show that this ratchet-like adaptive mechanism is robust in a wide spectrum of fluctuating environments. Overall, this study shows that genetic constraints can be overcome by environmental change and that crossenvironmental tradeoffs do not necessarily impede but also, can facilitate adaptive evolution. Because tradeoffs and environmental variability are ubiquitous in nature, we speculate this evolutionary mode to be of general relevance. acknowledgement: This work is part of the research program of the Foundation for Fundamental Research on Matter, which is part of the Netherlands Organization for Scientific Research (NWO). M.G.J.d.V. was (partially) funded by NWO Earth and Life Sciences (ALW), project 863.14.015. We thank D. M. Weinreich, J. A. G. M. de Visser, T. Paixão, J. Polechová, T. Friedlander, and A. E. Mayo for reading and commenting on earlier versions of the manuscript and B. Houchmandzadeh, O. Rivoire, and M. Hemery for discussions and suggestions on the Markov computation. Furthermore, we thank F. J. Poelwijk for sharing plasmid pCascade5 and pRD007 and Y. Yokobayashi for sharing plasmid pINV-110. We also thank the anonymous reviewers for remarks on the initial version of the manuscript. author: - first_name: Marjon full_name: De Vos, Marjon id: 3111FFAC-F248-11E8-B48F-1D18A9856A87 last_name: De Vos - first_name: Alexandre full_name: Dawid, Alexandre last_name: Dawid - first_name: Vanda full_name: Šunderlíková, Vanda last_name: Šunderlíková - first_name: Sander full_name: Tans, Sander last_name: Tans citation: ama: de Vos M, Dawid A, Šunderlíková V, Tans S. Breaking evolutionary constraint with a tradeoff ratchet. PNAS. 2015;112(48):14906-14911. doi:10.1073/pnas.1510282112 apa: de Vos, M., Dawid, A., Šunderlíková, V., & Tans, S. (2015). Breaking evolutionary constraint with a tradeoff ratchet. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1510282112 chicago: Vos, Marjon de, Alexandre Dawid, Vanda Šunderlíková, and Sander Tans. “Breaking Evolutionary Constraint with a Tradeoff Ratchet.” PNAS. National Academy of Sciences, 2015. https://doi.org/10.1073/pnas.1510282112. ieee: M. de Vos, A. Dawid, V. Šunderlíková, and S. Tans, “Breaking evolutionary constraint with a tradeoff ratchet,” PNAS, vol. 112, no. 48. National Academy of Sciences, pp. 14906–14911, 2015. ista: de Vos M, Dawid A, Šunderlíková V, Tans S. 2015. Breaking evolutionary constraint with a tradeoff ratchet. PNAS. 112(48), 14906–14911. mla: de Vos, Marjon, et al. “Breaking Evolutionary Constraint with a Tradeoff Ratchet.” PNAS, vol. 112, no. 48, National Academy of Sciences, 2015, pp. 14906–11, doi:10.1073/pnas.1510282112. short: M. de Vos, A. Dawid, V. Šunderlíková, S. Tans, PNAS 112 (2015) 14906–14911. date_created: 2018-12-11T11:52:47Z date_published: 2015-12-01T00:00:00Z date_updated: 2021-01-12T06:51:40Z day: '01' department: - _id: ToBo doi: 10.1073/pnas.1510282112 intvolume: ' 112' issue: '48' language: - iso: eng month: '12' oa_version: None page: 14906 - 14911 publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '5600' quality_controlled: '1' scopus_import: 1 status: public title: Breaking evolutionary constraint with a tradeoff ratchet type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 112 year: '2015' ... --- _id: '1572' abstract: - lang: eng text: "We consider the quantum ferromagnetic Heisenberg model in three dimensions, for all spins S ≥ 1/2. We rigorously prove the validity of the spin-wave approximation for the excitation spectrum, at the level of the first non-trivial contribution to the free energy at low temperatures. Our proof comes with explicit, constructive upper and lower bounds on the error term. It uses in an essential way the bosonic formulation of the model in terms of the Holstein-Primakoff representation. In this language, the model describes interacting bosons with a hard-core on-site repulsion and a nearest-neighbor attraction. This attractive interaction makes the lower bound on the free energy particularly tricky: the key idea there is to prove a differential inequality for the two-particle density, which is thereby shown to be smaller than the probability density of a suitably weighted two-particle random process on the lattice.\r\n" author: - first_name: Michele full_name: Correggi, Michele last_name: Correggi - first_name: Alessandro full_name: Giuliani, Alessandro last_name: Giuliani - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Correggi M, Giuliani A, Seiringer R. Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet. Communications in Mathematical Physics. 2015;339(1):279-307. doi:10.1007/s00220-015-2402-0 apa: Correggi, M., Giuliani, A., & Seiringer, R. (2015). Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-015-2402-0 chicago: Correggi, Michele, Alessandro Giuliani, and Robert Seiringer. “Validity of the Spin-Wave Approximation for the Free Energy of the Heisenberg Ferromagnet.” Communications in Mathematical Physics. Springer, 2015. https://doi.org/10.1007/s00220-015-2402-0. ieee: M. Correggi, A. Giuliani, and R. Seiringer, “Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet,” Communications in Mathematical Physics, vol. 339, no. 1. Springer, pp. 279–307, 2015. ista: Correggi M, Giuliani A, Seiringer R. 2015. Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet. Communications in Mathematical Physics. 339(1), 279–307. mla: Correggi, Michele, et al. “Validity of the Spin-Wave Approximation for the Free Energy of the Heisenberg Ferromagnet.” Communications in Mathematical Physics, vol. 339, no. 1, Springer, 2015, pp. 279–307, doi:10.1007/s00220-015-2402-0. short: M. Correggi, A. Giuliani, R. Seiringer, Communications in Mathematical Physics 339 (2015) 279–307. date_created: 2018-12-11T11:52:47Z date_published: 2015-06-23T00:00:00Z date_updated: 2021-01-12T06:51:41Z day: '23' department: - _id: RoSe doi: 10.1007/s00220-015-2402-0 intvolume: ' 339' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1312.7873 month: '06' oa: 1 oa_version: Preprint page: 279 - 307 publication: Communications in Mathematical Physics publication_status: published publisher: Springer publist_id: '5599' quality_controlled: '1' scopus_import: 1 status: public title: Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 339 year: '2015' ...