--- _id: '6986' abstract: - lang: eng text: 'Li-Nadler proposed a conjecture about traces of Hecke categories, which implies the semistable part of the Betti geometric Langlands conjecture of Ben-Zvi-Nadler in genus 1. We prove a Weyl group analogue of this conjecture. Our theorem holds in the natural generality of reflection groups in Euclidean or hyperbolic space. As a corollary, we give an expression of the centralizer of a finite order element in a reflection group using homotopy theory. ' article_processing_charge: No article_type: original author: - first_name: Penghui full_name: Li, Penghui id: 42A24CCC-F248-11E8-B48F-1D18A9856A87 last_name: Li citation: ama: Li P. A colimit of traces of reflection groups. Proceedings of the American Mathematical Society. 2019;147(11):4597-4604. doi:10.1090/proc/14586 apa: Li, P. (2019). A colimit of traces of reflection groups. Proceedings of the American Mathematical Society. AMS. https://doi.org/10.1090/proc/14586 chicago: Li, Penghui. “A Colimit of Traces of Reflection Groups.” Proceedings of the American Mathematical Society. AMS, 2019. https://doi.org/10.1090/proc/14586. ieee: P. Li, “A colimit of traces of reflection groups,” Proceedings of the American Mathematical Society, vol. 147, no. 11. AMS, pp. 4597–4604, 2019. ista: Li P. 2019. A colimit of traces of reflection groups. Proceedings of the American Mathematical Society. 147(11), 4597–4604. mla: Li, Penghui. “A Colimit of Traces of Reflection Groups.” Proceedings of the American Mathematical Society, vol. 147, no. 11, AMS, 2019, pp. 4597–604, doi:10.1090/proc/14586. short: P. Li, Proceedings of the American Mathematical Society 147 (2019) 4597–4604. date_created: 2019-11-04T16:10:50Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-09-05T12:22:21Z day: '01' department: - _id: TaHa doi: 10.1090/proc/14586 ec_funded: 1 external_id: arxiv: - '1810.07039' isi: - '000488621700004' intvolume: ' 147' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1810.07039 month: '11' oa: 1 oa_version: Preprint page: 4597-4604 project: - _id: 25E549F4-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '320593' name: Arithmetic and physics of Higgs moduli spaces publication: Proceedings of the American Mathematical Society publication_identifier: eissn: - 1088-6826 issn: - 0002-9939 publication_status: published publisher: AMS quality_controlled: '1' scopus_import: '1' status: public title: A colimit of traces of reflection groups type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 147 year: '2019' ... --- _id: '6454' abstract: - lang: eng text: 'Adult neural stem cells and multiciliated ependymalcells are glial cells essential for neurological func-tions. Together, they make up the adult neurogenicniche. Using both high-throughput clonal analysisand single-cell resolution of progenitor division pat-terns and fate, we show that these two componentsof the neurogenic niche are lineally related: adult neu-ral stem cells are sister cells to ependymal cells,whereas most ependymal cells arise from the termi-nal symmetric divisions of the lineage. Unexpectedly,we found that the antagonist regulators of DNA repli-cation, GemC1 and Geminin, can tune the proportionof neural stem cells and ependymal cells. Our find-ings reveal the controlled dynamic of the neurogenicniche ontogeny and identify the Geminin familymembers as key regulators of the initial pool of adultneural stem cells.' article_processing_charge: No author: - first_name: G full_name: Ortiz-Álvarez, G last_name: Ortiz-Álvarez - first_name: M full_name: Daclin, M last_name: Daclin - first_name: A full_name: Shihavuddin, A last_name: Shihavuddin - first_name: P full_name: Lansade, P last_name: Lansade - first_name: A full_name: Fortoul, A last_name: Fortoul - first_name: M full_name: Faucourt, M last_name: Faucourt - first_name: S full_name: Clavreul, S last_name: Clavreul - first_name: ME full_name: Lalioti, ME last_name: Lalioti - first_name: S full_name: Taraviras, S last_name: Taraviras - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: J full_name: Livet, J last_name: Livet - first_name: A full_name: Meunier, A last_name: Meunier - first_name: A full_name: Genovesio, A last_name: Genovesio - first_name: N full_name: Spassky, N last_name: Spassky citation: ama: Ortiz-Álvarez G, Daclin M, Shihavuddin A, et al. Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members. Neuron. 2019;102(1):159-172.e7. doi:10.1016/j.neuron.2019.01.051 apa: Ortiz-Álvarez, G., Daclin, M., Shihavuddin, A., Lansade, P., Fortoul, A., Faucourt, M., … Spassky, N. (2019). Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2019.01.051 chicago: Ortiz-Álvarez, G, M Daclin, A Shihavuddin, P Lansade, A Fortoul, M Faucourt, S Clavreul, et al. “Adult Neural Stem Cells and Multiciliated Ependymal Cells Share a Common Lineage Regulated by the Geminin Family Members.” Neuron. Elsevier, 2019. https://doi.org/10.1016/j.neuron.2019.01.051. ieee: G. Ortiz-Álvarez et al., “Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members,” Neuron, vol. 102, no. 1. Elsevier, p. 159–172.e7, 2019. ista: Ortiz-Álvarez G, Daclin M, Shihavuddin A, Lansade P, Fortoul A, Faucourt M, Clavreul S, Lalioti M, Taraviras S, Hippenmeyer S, Livet J, Meunier A, Genovesio A, Spassky N. 2019. Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members. Neuron. 102(1), 159–172.e7. mla: Ortiz-Álvarez, G., et al. “Adult Neural Stem Cells and Multiciliated Ependymal Cells Share a Common Lineage Regulated by the Geminin Family Members.” Neuron, vol. 102, no. 1, Elsevier, 2019, p. 159–172.e7, doi:10.1016/j.neuron.2019.01.051. short: G. Ortiz-Álvarez, M. Daclin, A. Shihavuddin, P. Lansade, A. Fortoul, M. Faucourt, S. Clavreul, M. Lalioti, S. Taraviras, S. Hippenmeyer, J. Livet, A. Meunier, A. Genovesio, N. Spassky, Neuron 102 (2019) 159–172.e7. date_created: 2019-05-14T13:06:30Z date_published: 2019-04-03T00:00:00Z date_updated: 2023-09-05T13:02:21Z day: '03' ddc: - '570' department: - _id: SiHi doi: 10.1016/j.neuron.2019.01.051 ec_funded: 1 external_id: isi: - '000463337900018' pmid: - '30824354' file: - access_level: open_access checksum: 1fb6e195c583eb0c5cabf26f69ff6675 content_type: application/pdf creator: dernst date_created: 2019-05-15T09:28:41Z date_updated: 2020-07-14T12:47:30Z file_id: '6457' file_name: 2019_Neuron_Ortiz.pdf file_size: 7288572 relation: main_file file_date_updated: 2020-07-14T12:47:30Z has_accepted_license: '1' intvolume: ' 102' isi: 1 issue: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '04' oa: 1 oa_version: Published Version page: 159-172.e7 pmid: 1 project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Neuron publication_identifier: eissn: - 1097-4199 issn: - 0896-6273 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 102 year: '2019' ... --- _id: '6979' article_processing_charge: No article_type: original author: - first_name: Aglaja full_name: Kopf, Aglaja id: 31DAC7B6-F248-11E8-B48F-1D18A9856A87 last_name: Kopf orcid: 0000-0002-2187-6656 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: 'Kopf A, Sixt MK. Gut homeostasis: Active migration of intestinal epithelial cells in tissue renewal. Current Biology. 2019;29(20):R1091-R1093. doi:10.1016/j.cub.2019.08.068' apa: 'Kopf, A., & Sixt, M. K. (2019). Gut homeostasis: Active migration of intestinal epithelial cells in tissue renewal. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2019.08.068' chicago: 'Kopf, Aglaja, and Michael K Sixt. “Gut Homeostasis: Active Migration of Intestinal Epithelial Cells in Tissue Renewal.” Current Biology. Cell Press, 2019. https://doi.org/10.1016/j.cub.2019.08.068.' ieee: 'A. Kopf and M. K. Sixt, “Gut homeostasis: Active migration of intestinal epithelial cells in tissue renewal,” Current Biology, vol. 29, no. 20. Cell Press, pp. R1091–R1093, 2019.' ista: 'Kopf A, Sixt MK. 2019. Gut homeostasis: Active migration of intestinal epithelial cells in tissue renewal. Current Biology. 29(20), R1091–R1093.' mla: 'Kopf, Aglaja, and Michael K. Sixt. “Gut Homeostasis: Active Migration of Intestinal Epithelial Cells in Tissue Renewal.” Current Biology, vol. 29, no. 20, Cell Press, 2019, pp. R1091–93, doi:10.1016/j.cub.2019.08.068.' short: A. Kopf, M.K. Sixt, Current Biology 29 (2019) R1091–R1093. date_created: 2019-11-04T15:18:29Z date_published: 2019-10-21T00:00:00Z date_updated: 2023-09-05T12:43:43Z day: '21' department: - _id: MiSi doi: 10.1016/j.cub.2019.08.068 external_id: isi: - '000491286200016' pmid: - '31639357' intvolume: ' 29' isi: 1 issue: '20' language: - iso: eng month: '10' oa_version: None page: R1091-R1093 pmid: 1 publication: Current Biology publication_identifier: eissn: - 1879-0445 issn: - 0960-9822 publication_status: published publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: 'Gut homeostasis: Active migration of intestinal epithelial cells in tissue renewal' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 29 year: '2019' ... --- _id: '6980' abstract: - lang: eng text: Tissue morphogenesis in multicellular organisms is brought about by spatiotemporal coordination of mechanical and chemical signals. Extensive work on how mechanical forces together with the well‐established morphogen signalling pathways can actively shape living tissues has revealed evolutionary conserved mechanochemical features of embryonic development. More recently, attention has been drawn to the description of tissue material properties and how they can influence certain morphogenetic processes. Interestingly, besides the role of tissue material properties in determining how much tissues deform in response to force application, there is increasing theoretical and experimental evidence, suggesting that tissue material properties can abruptly and drastically change in development. These changes resemble phase transitions, pointing at the intriguing possibility that important morphogenetic processes in development, such as symmetry breaking and self‐organization, might be mediated by tissue phase transitions. In this review, we summarize recent findings on the regulation and role of tissue material properties in the context of the developing embryo. We posit that abrupt changes of tissue rheological properties may have important implications in maintaining the balance between robustness and adaptability during embryonic development. article_number: e102497 article_processing_charge: Yes (via OA deal) article_type: review author: - first_name: Nicoletta full_name: Petridou, Nicoletta id: 2A003F6C-F248-11E8-B48F-1D18A9856A87 last_name: Petridou orcid: 0000-0002-8451-1195 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Petridou N, Heisenberg C-PJ. Tissue rheology in embryonic organization. The EMBO Journal. 2019;38(20). doi:10.15252/embj.2019102497 apa: Petridou, N., & Heisenberg, C.-P. J. (2019). Tissue rheology in embryonic organization. The EMBO Journal. EMBO. https://doi.org/10.15252/embj.2019102497 chicago: Petridou, Nicoletta, and Carl-Philipp J Heisenberg. “Tissue Rheology in Embryonic Organization.” The EMBO Journal. EMBO, 2019. https://doi.org/10.15252/embj.2019102497. ieee: N. Petridou and C.-P. J. Heisenberg, “Tissue rheology in embryonic organization,” The EMBO Journal, vol. 38, no. 20. EMBO, 2019. ista: Petridou N, Heisenberg C-PJ. 2019. Tissue rheology in embryonic organization. The EMBO Journal. 38(20), e102497. mla: Petridou, Nicoletta, and Carl-Philipp J. Heisenberg. “Tissue Rheology in Embryonic Organization.” The EMBO Journal, vol. 38, no. 20, e102497, EMBO, 2019, doi:10.15252/embj.2019102497. short: N. Petridou, C.-P.J. Heisenberg, The EMBO Journal 38 (2019). date_created: 2019-11-04T15:24:29Z date_published: 2019-10-15T00:00:00Z date_updated: 2023-09-05T13:04:13Z day: '15' ddc: - '570' department: - _id: CaHe doi: 10.15252/embj.2019102497 ec_funded: 1 external_id: isi: - '000485561900001' pmid: - '31512749' file: - access_level: open_access checksum: 76f7f4e79ab6d850c30017a69726fd85 content_type: application/pdf creator: dernst date_created: 2019-11-04T15:30:08Z date_updated: 2020-07-14T12:47:46Z file_id: '6981' file_name: 2019_Embo_Petridou.pdf file_size: 847356 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 38' isi: 1 issue: '20' language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 2693FD8C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: V00736 name: Tissue material properties in embryonic development publication: The EMBO Journal publication_identifier: eissn: - 1460-2075 issn: - 0261-4189 publication_status: published publisher: EMBO quality_controlled: '1' scopus_import: '1' status: public title: Tissue rheology in embryonic organization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 38 year: '2019' ... --- _id: '6554' abstract: - lang: eng text: Due to the importance of zero-shot learning, i.e. classifying images where there is a lack of labeled training data, the number of proposed approaches has recently increased steadily. We argue that it is time to take a step back and to analyze the status quo of the area. The purpose of this paper is three-fold. First, given the fact that there is no agreed upon zero-shot learning benchmark, we first define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets used for this task. This is an important contribution as published results are often not comparable and sometimes even flawed due to, e.g. pre-training on zero-shot test classes. Moreover, we propose a new zero-shot learning dataset, the Animals with Attributes 2 (AWA2) dataset which we make publicly available both in terms of image features and the images themselves. Second, we compare and analyze a significant number of the state-of-the-art methods in depth, both in the classic zero-shot setting but also in the more realistic generalized zero-shot setting. Finally, we discuss in detail the limitations of the current status of the area which can be taken as a basis for advancing it. article_processing_charge: No article_type: original author: - first_name: Yongqin full_name: Xian, Yongqin last_name: Xian - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0002-4561-241X - first_name: Bernt full_name: Schiele, Bernt last_name: Schiele - first_name: Zeynep full_name: Akata, Zeynep last_name: Akata citation: ama: Xian Y, Lampert C, Schiele B, Akata Z. Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019;41(9):2251-2265. doi:10.1109/tpami.2018.2857768 apa: Xian, Y., Lampert, C., Schiele, B., & Akata, Z. (2019). Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tpami.2018.2857768 chicago: Xian, Yongqin, Christoph Lampert, Bernt Schiele, and Zeynep Akata. “Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Institute of Electrical and Electronics Engineers (IEEE), 2019. https://doi.org/10.1109/tpami.2018.2857768. ieee: Y. Xian, C. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 9. Institute of Electrical and Electronics Engineers (IEEE), pp. 2251–2265, 2019. ista: Xian Y, Lampert C, Schiele B, Akata Z. 2019. Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence. 41(9), 2251–2265. mla: Xian, Yongqin, et al. “Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 9, Institute of Electrical and Electronics Engineers (IEEE), 2019, pp. 2251–65, doi:10.1109/tpami.2018.2857768. short: Y. Xian, C. Lampert, B. Schiele, Z. Akata, IEEE Transactions on Pattern Analysis and Machine Intelligence 41 (2019) 2251–2265. date_created: 2019-06-11T14:05:59Z date_published: 2019-09-01T00:00:00Z date_updated: 2023-09-05T13:18:09Z day: '01' department: - _id: ChLa doi: 10.1109/tpami.2018.2857768 external_id: arxiv: - '1707.00600' isi: - '000480343900015' intvolume: ' 41' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1707.00600 month: '09' oa: 1 oa_version: Preprint page: 2251 - 2265 publication: IEEE Transactions on Pattern Analysis and Machine Intelligence publication_identifier: eissn: - 1939-3539 issn: - 0162-8828 publication_status: published publisher: Institute of Electrical and Electronics Engineers (IEEE) quality_controlled: '1' scopus_import: '1' status: public title: Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 41 year: '2019' ... --- _id: '6259' abstract: - lang: eng text: The plant hormone auxin has crucial roles in almost all aspects of plant growth and development. Concentrations of auxin vary across different tissues, mediating distinct developmental outcomes and contributing to the functional diversity of auxin. However, the mechanisms that underlie these activities are poorly understood. Here we identify an auxin signalling mechanism, which acts in parallel to the canonical auxin pathway based on the transport inhibitor response1 (TIR1) and other auxin receptor F-box (AFB) family proteins (TIR1/AFB receptors)1,2, that translates levels of cellular auxin to mediate differential growth during apical-hook development. This signalling mechanism operates at the concave side of the apical hook, and involves auxin-mediated C-terminal cleavage of transmembrane kinase 1 (TMK1). The cytosolic and nucleus-translocated C terminus of TMK1 specifically interacts with and phosphorylates two non-canonical transcriptional repressors of the auxin or indole-3-acetic acid (Aux/IAA) family (IAA32 and IAA34), thereby regulating ARF transcription factors. In contrast to the degradation of Aux/IAA transcriptional repressors in the canonical pathway, the newly identified mechanism stabilizes the non-canonical IAA32 and IAA34 transcriptional repressors to regulate gene expression and ultimately inhibit growth. The auxin–TMK1 signalling pathway originates at the cell surface, is triggered by high levels of auxin and shares a partially overlapping set of transcription factors with the TIR1/AFB signalling pathway. This allows distinct interpretations of different concentrations of cellular auxin, and thus enables this versatile signalling molecule to mediate complex developmental outcomes. article_processing_charge: No article_type: original author: - first_name: Min full_name: Cao, Min last_name: Cao - first_name: Rong full_name: Chen, Rong last_name: Chen - first_name: Pan full_name: Li, Pan last_name: Li - first_name: Yongqiang full_name: Yu, Yongqiang last_name: Yu - first_name: Rui full_name: Zheng, Rui last_name: Zheng - first_name: Danfeng full_name: Ge, Danfeng last_name: Ge - first_name: Wei full_name: Zheng, Wei last_name: Zheng - first_name: Xuhui full_name: Wang, Xuhui last_name: Wang - first_name: Yangtao full_name: Gu, Yangtao last_name: Gu - first_name: Zuzana full_name: Gelová, Zuzana id: 0AE74790-0E0B-11E9-ABC7-1ACFE5697425 last_name: Gelová orcid: 0000-0003-4783-1752 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Heng full_name: Zhang, Heng last_name: Zhang - first_name: Renyi full_name: Liu, Renyi last_name: Liu - first_name: Jun full_name: He, Jun last_name: He - first_name: Tongda full_name: Xu, Tongda last_name: Xu citation: ama: Cao M, Chen R, Li P, et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature. 2019;568:240-243. doi:10.1038/s41586-019-1069-7 apa: Cao, M., Chen, R., Li, P., Yu, Y., Zheng, R., Ge, D., … Xu, T. (2019). TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature. Springer Nature. https://doi.org/10.1038/s41586-019-1069-7 chicago: Cao, Min, Rong Chen, Pan Li, Yongqiang Yu, Rui Zheng, Danfeng Ge, Wei Zheng, et al. “TMK1-Mediated Auxin Signalling Regulates Differential Growth of the Apical Hook.” Nature. Springer Nature, 2019. https://doi.org/10.1038/s41586-019-1069-7. ieee: M. Cao et al., “TMK1-mediated auxin signalling regulates differential growth of the apical hook,” Nature, vol. 568. Springer Nature, pp. 240–243, 2019. ista: Cao M, Chen R, Li P, Yu Y, Zheng R, Ge D, Zheng W, Wang X, Gu Y, Gelová Z, Friml J, Zhang H, Liu R, He J, Xu T. 2019. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature. 568, 240–243. mla: Cao, Min, et al. “TMK1-Mediated Auxin Signalling Regulates Differential Growth of the Apical Hook.” Nature, vol. 568, Springer Nature, 2019, pp. 240–43, doi:10.1038/s41586-019-1069-7. short: M. Cao, R. Chen, P. Li, Y. Yu, R. Zheng, D. Ge, W. Zheng, X. Wang, Y. Gu, Z. Gelová, J. Friml, H. Zhang, R. Liu, J. He, T. Xu, Nature 568 (2019) 240–243. date_created: 2019-04-09T08:37:05Z date_published: 2019-04-11T00:00:00Z date_updated: 2023-09-05T14:58:41Z day: '11' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41586-019-1069-7 ec_funded: 1 external_id: isi: - '000464412700050' pmid: - '30944466' file: - access_level: open_access checksum: 6b84ab602a34382cf0340a37a1378c75 content_type: application/pdf creator: dernst date_created: 2020-11-13T07:37:41Z date_updated: 2020-11-13T07:37:41Z file_id: '8751' file_name: 2019_Nature _Cao_accepted.pdf file_size: 4321328 relation: main_file success: 1 file_date_updated: 2020-11-13T07:37:41Z has_accepted_license: '1' intvolume: ' 568' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version page: 240-243 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/newly-discovered-mechanism-of-plant-hormone-auxin-acts-the-opposite-way/ scopus_import: '1' status: public title: TMK1-mediated auxin signalling regulates differential growth of the apical hook type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 568 year: '2019' ... --- _id: '6987' abstract: - lang: eng text: Cells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a systems-level approach is required that integrates cell biological, genetic, developmental, and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern among the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous, whereby the vegetal half divides before the animal half, thus creating 24-, 32-, 44-, and then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. We propose that dynamic cell shape changes propagate throughout the embryo via cell-cell contacts to create the ascidian-specific invariant cleavage pattern. alternative_title: - RESULTS article_processing_charge: No author: - first_name: Alex full_name: McDougall, Alex last_name: McDougall - first_name: Janet full_name: Chenevert, Janet last_name: Chenevert - first_name: Benoit G full_name: Godard, Benoit G id: 33280250-F248-11E8-B48F-1D18A9856A87 last_name: Godard - first_name: Remi full_name: Dumollard, Remi last_name: Dumollard citation: ama: 'McDougall A, Chenevert J, Godard BG, Dumollard R. Emergence of embryo shape during cleavage divisions. In: Tworzydlo W, Bilinski SM, eds. Evo-Devo: Non-Model Species in Cell and Developmental Biology. Vol 68. Springer Nature; 2019:127-154. doi:10.1007/978-3-030-23459-1_6' apa: 'McDougall, A., Chenevert, J., Godard, B. G., & Dumollard, R. (2019). Emergence of embryo shape during cleavage divisions. In W. Tworzydlo & S. M. Bilinski (Eds.), Evo-Devo: Non-model species in cell and developmental biology (Vol. 68, pp. 127–154). Springer Nature. https://doi.org/10.1007/978-3-030-23459-1_6' chicago: 'McDougall, Alex, Janet Chenevert, Benoit G Godard, and Remi Dumollard. “Emergence of Embryo Shape during Cleavage Divisions.” In Evo-Devo: Non-Model Species in Cell and Developmental Biology, edited by Waclaw Tworzydlo and Szczepan M. Bilinski, 68:127–54. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-23459-1_6.' ieee: 'A. McDougall, J. Chenevert, B. G. Godard, and R. Dumollard, “Emergence of embryo shape during cleavage divisions,” in Evo-Devo: Non-model species in cell and developmental biology, vol. 68, W. Tworzydlo and S. M. Bilinski, Eds. Springer Nature, 2019, pp. 127–154.' ista: 'McDougall A, Chenevert J, Godard BG, Dumollard R. 2019.Emergence of embryo shape during cleavage divisions. In: Evo-Devo: Non-model species in cell and developmental biology. RESULTS, vol. 68, 127–154.' mla: 'McDougall, Alex, et al. “Emergence of Embryo Shape during Cleavage Divisions.” Evo-Devo: Non-Model Species in Cell and Developmental Biology, edited by Waclaw Tworzydlo and Szczepan M. Bilinski, vol. 68, Springer Nature, 2019, pp. 127–54, doi:10.1007/978-3-030-23459-1_6.' short: 'A. McDougall, J. Chenevert, B.G. Godard, R. Dumollard, in:, W. Tworzydlo, S.M. Bilinski (Eds.), Evo-Devo: Non-Model Species in Cell and Developmental Biology, Springer Nature, 2019, pp. 127–154.' date_created: 2019-11-04T16:20:19Z date_published: 2019-10-10T00:00:00Z date_updated: 2023-09-05T15:01:12Z day: '10' ddc: - '570' department: - _id: CaHe doi: 10.1007/978-3-030-23459-1_6 editor: - first_name: Waclaw full_name: Tworzydlo, Waclaw last_name: Tworzydlo - first_name: Szczepan M. full_name: Bilinski, Szczepan M. last_name: Bilinski external_id: pmid: - '31598855' file: - access_level: open_access checksum: 7f43e1e3706d15061475c5c57efc2786 content_type: application/pdf creator: dernst date_created: 2020-05-14T10:09:30Z date_updated: 2020-07-14T12:47:46Z file_id: '7829' file_name: 2019_RESULTS_McDougall.pdf file_size: 19317348 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 68' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 127-154 pmid: 1 publication: 'Evo-Devo: Non-model species in cell and developmental biology' publication_identifier: eissn: - 1861-0412 isbn: - '9783030234584' - '9783030234591' issn: - 0080-1844 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Emergence of embryo shape during cleavage divisions type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 68 year: '2019' ... --- _id: '6762' abstract: - lang: eng text: "We present and study novel optimal control problems motivated by the search for photovoltaic materials with high power-conversion efficiency. The material must perform the first step: convert light (photons) into electronic excitations. We formulate various desirable properties of the excitations as mathematical control goals at the Kohn-Sham-DFT level\r\nof theory, with the control being given by the nuclear charge distribution. We prove that nuclear distributions exist which give rise to optimal HOMO-LUMO excitations, and present illustrative numerical simulations for 1D finite nanocrystals. We observe pronounced goal-dependent features such as large electron-hole separation, and a hierarchy of length scales: internal HOMO and LUMO wavelengths < atomic spacings < (irregular) fluctuations of the doping profiles < system size." article_processing_charge: No author: - first_name: Gero full_name: Friesecke, Gero last_name: Friesecke - first_name: Michael full_name: Kniely, Michael id: 2CA2C08C-F248-11E8-B48F-1D18A9856A87 last_name: Kniely orcid: 0000-0001-5645-4333 citation: ama: Friesecke G, Kniely M. New optimal control problems in density functional theory motivated by photovoltaics. Multiscale Modeling and Simulation. 2019;17(3):926-947. doi:10.1137/18M1207272 apa: Friesecke, G., & Kniely, M. (2019). New optimal control problems in density functional theory motivated by photovoltaics. Multiscale Modeling and Simulation. SIAM. https://doi.org/10.1137/18M1207272 chicago: Friesecke, Gero, and Michael Kniely. “New Optimal Control Problems in Density Functional Theory Motivated by Photovoltaics.” Multiscale Modeling and Simulation. SIAM, 2019. https://doi.org/10.1137/18M1207272. ieee: G. Friesecke and M. Kniely, “New optimal control problems in density functional theory motivated by photovoltaics,” Multiscale Modeling and Simulation, vol. 17, no. 3. SIAM, pp. 926–947, 2019. ista: Friesecke G, Kniely M. 2019. New optimal control problems in density functional theory motivated by photovoltaics. Multiscale Modeling and Simulation. 17(3), 926–947. mla: Friesecke, Gero, and Michael Kniely. “New Optimal Control Problems in Density Functional Theory Motivated by Photovoltaics.” Multiscale Modeling and Simulation, vol. 17, no. 3, SIAM, 2019, pp. 926–47, doi:10.1137/18M1207272. short: G. Friesecke, M. Kniely, Multiscale Modeling and Simulation 17 (2019) 926–947. date_created: 2019-08-04T21:59:21Z date_published: 2019-07-16T00:00:00Z date_updated: 2023-09-05T15:05:45Z day: '16' department: - _id: JuFi doi: 10.1137/18M1207272 external_id: arxiv: - '1808.04200' isi: - '000487931800002' intvolume: ' 17' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1808.04200 month: '07' oa: 1 oa_version: Preprint page: 926-947 publication: Multiscale Modeling and Simulation publication_identifier: eissn: - '15403467' issn: - '15403459' publication_status: published publisher: SIAM quality_controlled: '1' scopus_import: '1' status: public title: New optimal control problems in density functional theory motivated by photovoltaics type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 17 year: '2019' ... --- _id: '10874' abstract: - lang: eng text: In this article we prove an analogue of a theorem of Lachaud, Ritzenthaler, and Zykin, which allows us to connect invariants of binary octics to Siegel modular forms of genus 3. We use this connection to show that certain modular functions, when restricted to the hyperelliptic locus, assume values whose denominators are products of powers of primes of bad reduction for the associated hyperelliptic curves. We illustrate our theorem with explicit computations. This work is motivated by the study of the values of these modular functions at CM points of the Siegel upper half-space, which, if their denominators are known, can be used to effectively compute models of (hyperelliptic, in our case) curves with CM. acknowledgement: "The authors would like to thank the Lorentz Center in Leiden for hosting the Women in Numbers Europe 2 workshop and providing a productive and enjoyable environment for our initial work on this project. We are grateful to the organizers of WIN-E2, Irene Bouw, Rachel Newton and Ekin Ozman, for making this conference and this collaboration possible. We\r\nthank Irene Bouw and Christophe Ritzenhaler for helpful discussions. Ionica acknowledges support from the Thomas Jefferson Fund of the Embassy of France in the United States and the FACE Foundation. Most of Kılıçer’s work was carried out during her stay in Universiteit Leiden and Carl von Ossietzky Universität Oldenburg. Massierer was supported by the Australian Research Council (DP150101689). Vincent is supported by the National Science Foundation under Grant No. DMS-1802323 and by the Thomas Jefferson Fund of the Embassy of France in the United States and the FACE Foundation. " article_number: '9' article_processing_charge: No article_type: original author: - first_name: Sorina full_name: Ionica, Sorina last_name: Ionica - first_name: Pınar full_name: Kılıçer, Pınar last_name: Kılıçer - first_name: Kristin full_name: Lauter, Kristin last_name: Lauter - first_name: Elisa full_name: Lorenzo García, Elisa last_name: Lorenzo García - first_name: Maria-Adelina full_name: Manzateanu, Maria-Adelina id: be8d652e-a908-11ec-82a4-e2867729459c last_name: Manzateanu - first_name: Maike full_name: Massierer, Maike last_name: Massierer - first_name: Christelle full_name: Vincent, Christelle last_name: Vincent citation: ama: Ionica S, Kılıçer P, Lauter K, et al. Modular invariants for genus 3 hyperelliptic curves. Research in Number Theory. 2019;5. doi:10.1007/s40993-018-0146-6 apa: Ionica, S., Kılıçer, P., Lauter, K., Lorenzo García, E., Manzateanu, M.-A., Massierer, M., & Vincent, C. (2019). Modular invariants for genus 3 hyperelliptic curves. Research in Number Theory. Springer Nature. https://doi.org/10.1007/s40993-018-0146-6 chicago: Ionica, Sorina, Pınar Kılıçer, Kristin Lauter, Elisa Lorenzo García, Maria-Adelina Manzateanu, Maike Massierer, and Christelle Vincent. “Modular Invariants for Genus 3 Hyperelliptic Curves.” Research in Number Theory. Springer Nature, 2019. https://doi.org/10.1007/s40993-018-0146-6. ieee: S. Ionica et al., “Modular invariants for genus 3 hyperelliptic curves,” Research in Number Theory, vol. 5. Springer Nature, 2019. ista: Ionica S, Kılıçer P, Lauter K, Lorenzo García E, Manzateanu M-A, Massierer M, Vincent C. 2019. Modular invariants for genus 3 hyperelliptic curves. Research in Number Theory. 5, 9. mla: Ionica, Sorina, et al. “Modular Invariants for Genus 3 Hyperelliptic Curves.” Research in Number Theory, vol. 5, 9, Springer Nature, 2019, doi:10.1007/s40993-018-0146-6. short: S. Ionica, P. Kılıçer, K. Lauter, E. Lorenzo García, M.-A. Manzateanu, M. Massierer, C. Vincent, Research in Number Theory 5 (2019). date_created: 2022-03-18T12:09:48Z date_published: 2019-01-02T00:00:00Z date_updated: 2023-09-05T15:39:31Z day: '02' department: - _id: TiBr doi: 10.1007/s40993-018-0146-6 external_id: arxiv: - '1807.08986' intvolume: ' 5' keyword: - Algebra and Number Theory language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1807.08986 month: '01' oa: 1 oa_version: Preprint publication: Research in Number Theory publication_identifier: eissn: - 2363-9555 issn: - 2522-0160 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Modular invariants for genus 3 hyperelliptic curves type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 5 year: '2019' ... --- _id: '7100' abstract: - lang: eng text: We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting froman interacting N-particle system of bosons. We consider the interaction potential to be given either by Wβ(x)=N−1+2βW(Nβx), for any β>0, or to be given by VN(x)=e2NV(eNx), for some spherical symmetric, nonnegative and compactly supported W,V∈L∞(R2,R). In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential VN we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics. acknowledgement: OA fund by IST Austria article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Maximilian full_name: Jeblick, Maximilian last_name: Jeblick - first_name: Nikolai K full_name: Leopold, Nikolai K id: 4BC40BEC-F248-11E8-B48F-1D18A9856A87 last_name: Leopold orcid: 0000-0002-0495-6822 - first_name: Peter full_name: Pickl, Peter last_name: Pickl citation: ama: Jeblick M, Leopold NK, Pickl P. Derivation of the time dependent Gross–Pitaevskii equation in two dimensions. Communications in Mathematical Physics. 2019;372(1):1-69. doi:10.1007/s00220-019-03599-x apa: Jeblick, M., Leopold, N. K., & Pickl, P. (2019). Derivation of the time dependent Gross–Pitaevskii equation in two dimensions. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-019-03599-x chicago: Jeblick, Maximilian, Nikolai K Leopold, and Peter Pickl. “Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions.” Communications in Mathematical Physics. Springer Nature, 2019. https://doi.org/10.1007/s00220-019-03599-x. ieee: M. Jeblick, N. K. Leopold, and P. Pickl, “Derivation of the time dependent Gross–Pitaevskii equation in two dimensions,” Communications in Mathematical Physics, vol. 372, no. 1. Springer Nature, pp. 1–69, 2019. ista: Jeblick M, Leopold NK, Pickl P. 2019. Derivation of the time dependent Gross–Pitaevskii equation in two dimensions. Communications in Mathematical Physics. 372(1), 1–69. mla: Jeblick, Maximilian, et al. “Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions.” Communications in Mathematical Physics, vol. 372, no. 1, Springer Nature, 2019, pp. 1–69, doi:10.1007/s00220-019-03599-x. short: M. Jeblick, N.K. Leopold, P. Pickl, Communications in Mathematical Physics 372 (2019) 1–69. date_created: 2019-11-25T08:08:02Z date_published: 2019-11-08T00:00:00Z date_updated: 2023-09-06T10:47:43Z day: '08' ddc: - '510' department: - _id: RoSe doi: 10.1007/s00220-019-03599-x ec_funded: 1 external_id: isi: - '000495193700002' file: - access_level: open_access checksum: cd283b475dd739e04655315abd46f528 content_type: application/pdf creator: dernst date_created: 2019-11-25T08:11:11Z date_updated: 2020-07-14T12:47:49Z file_id: '7101' file_name: 2019_CommMathPhys_Jeblick.pdf file_size: 884469 relation: main_file file_date_updated: 2020-07-14T12:47:49Z has_accepted_license: '1' intvolume: ' 372' isi: 1 issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1-69 project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Communications in Mathematical Physics publication_identifier: eissn: - 1432-0916 issn: - 0010-3616 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Derivation of the time dependent Gross–Pitaevskii equation in two dimensions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 372 year: '2019' ...