--- _id: '8409' abstract: - lang: eng text: The bacterial cell wall is composed of the peptidoglycan (PG), a large polymer that maintains the integrity of the bacterial cell. Due to its multi-gigadalton size, heterogeneity, and dynamics, atomic-resolution studies are inherently complex. Solid-state NMR is an important technique to gain insight into its structure, dynamics and interactions. Here, we explore the possibilities to study the PG with ultra-fast (100 kHz) magic-angle spinning NMR. We demonstrate that highly resolved spectra can be obtained, and show strategies to obtain site-specific resonance assignments and distance information. We also explore the use of proton-proton correlation experiments, thus opening the way for NMR studies of intact cell walls without the need for isotope labeling. article_processing_charge: No article_type: original author: - first_name: Catherine full_name: Bougault, Catherine last_name: Bougault - first_name: Isabel full_name: Ayala, Isabel last_name: Ayala - first_name: Waldemar full_name: Vollmer, Waldemar last_name: Vollmer - first_name: Jean-Pierre full_name: Simorre, Jean-Pierre last_name: Simorre - first_name: Paul full_name: Schanda, Paul id: 7B541462-FAF6-11E9-A490-E8DFE5697425 last_name: Schanda orcid: 0000-0002-9350-7606 citation: ama: Bougault C, Ayala I, Vollmer W, Simorre J-P, Schanda P. Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency. Journal of Structural Biology. 2019;206(1):66-72. doi:10.1016/j.jsb.2018.07.009 apa: Bougault, C., Ayala, I., Vollmer, W., Simorre, J.-P., & Schanda, P. (2019). Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency. Journal of Structural Biology. Elsevier. https://doi.org/10.1016/j.jsb.2018.07.009 chicago: Bougault, Catherine, Isabel Ayala, Waldemar Vollmer, Jean-Pierre Simorre, and Paul Schanda. “Studying Intact Bacterial Peptidoglycan by Proton-Detected NMR Spectroscopy at 100 kHz MAS Frequency.” Journal of Structural Biology. Elsevier, 2019. https://doi.org/10.1016/j.jsb.2018.07.009. ieee: C. Bougault, I. Ayala, W. Vollmer, J.-P. Simorre, and P. Schanda, “Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency,” Journal of Structural Biology, vol. 206, no. 1. Elsevier, pp. 66–72, 2019. ista: Bougault C, Ayala I, Vollmer W, Simorre J-P, Schanda P. 2019. Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency. Journal of Structural Biology. 206(1), 66–72. mla: Bougault, Catherine, et al. “Studying Intact Bacterial Peptidoglycan by Proton-Detected NMR Spectroscopy at 100 kHz MAS Frequency.” Journal of Structural Biology, vol. 206, no. 1, Elsevier, 2019, pp. 66–72, doi:10.1016/j.jsb.2018.07.009. short: C. Bougault, I. Ayala, W. Vollmer, J.-P. Simorre, P. Schanda, Journal of Structural Biology 206 (2019) 66–72. date_created: 2020-09-17T10:29:10Z date_published: 2019-04-01T00:00:00Z date_updated: 2021-01-12T08:19:05Z day: '01' doi: 10.1016/j.jsb.2018.07.009 extern: '1' external_id: pmid: - '30031884' intvolume: ' 206' issue: '1' keyword: - Structural Biology language: - iso: eng month: '04' oa_version: Submitted Version page: 66-72 pmid: 1 publication: Journal of Structural Biology publication_identifier: issn: - 1047-8477 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 206 year: '2019' ... --- _id: '8407' article_processing_charge: No article_type: original author: - first_name: Paul full_name: Schanda, Paul id: 7B541462-FAF6-11E9-A490-E8DFE5697425 last_name: Schanda orcid: 0000-0002-9350-7606 citation: ama: Schanda P. Relaxing with liquids and solids – A perspective on biomolecular dynamics. Journal of Magnetic Resonance. 2019;306:180-186. doi:10.1016/j.jmr.2019.07.025 apa: Schanda, P. (2019). Relaxing with liquids and solids – A perspective on biomolecular dynamics. Journal of Magnetic Resonance. Elsevier. https://doi.org/10.1016/j.jmr.2019.07.025 chicago: Schanda, Paul. “Relaxing with Liquids and Solids – A Perspective on Biomolecular Dynamics.” Journal of Magnetic Resonance. Elsevier, 2019. https://doi.org/10.1016/j.jmr.2019.07.025. ieee: P. Schanda, “Relaxing with liquids and solids – A perspective on biomolecular dynamics,” Journal of Magnetic Resonance, vol. 306. Elsevier, pp. 180–186, 2019. ista: Schanda P. 2019. Relaxing with liquids and solids – A perspective on biomolecular dynamics. Journal of Magnetic Resonance. 306, 180–186. mla: Schanda, Paul. “Relaxing with Liquids and Solids – A Perspective on Biomolecular Dynamics.” Journal of Magnetic Resonance, vol. 306, Elsevier, 2019, pp. 180–86, doi:10.1016/j.jmr.2019.07.025. short: P. Schanda, Journal of Magnetic Resonance 306 (2019) 180–186. date_created: 2020-09-17T10:28:47Z date_published: 2019-09-01T00:00:00Z date_updated: 2021-01-12T08:19:04Z day: '01' doi: 10.1016/j.jmr.2019.07.025 extern: '1' external_id: pmid: - '31350165' intvolume: ' 306' keyword: - Nuclear and High Energy Physics - Biophysics - Biochemistry - Condensed Matter Physics language: - iso: eng month: '09' oa_version: Submitted Version page: 180-186 pmid: 1 publication: Journal of Magnetic Resonance publication_identifier: issn: - 1090-7807 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Relaxing with liquids and solids – A perspective on biomolecular dynamics type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 306 year: '2019' ... --- _id: '8410' article_processing_charge: No article_type: letter_note author: - first_name: Paul full_name: Schanda, Paul id: 7B541462-FAF6-11E9-A490-E8DFE5697425 last_name: Schanda orcid: 0000-0002-9350-7606 - first_name: Eduard Y. full_name: Chekmenev, Eduard Y. last_name: Chekmenev citation: ama: Schanda P, Chekmenev EY. NMR for Biological Systems. ChemPhysChem. 2019;20(2):177-177. doi:10.1002/cphc.201801100 apa: Schanda, P., & Chekmenev, E. Y. (2019). NMR for Biological Systems. ChemPhysChem. Wiley. https://doi.org/10.1002/cphc.201801100 chicago: Schanda, Paul, and Eduard Y. Chekmenev. “NMR for Biological Systems.” ChemPhysChem. Wiley, 2019. https://doi.org/10.1002/cphc.201801100. ieee: P. Schanda and E. Y. Chekmenev, “NMR for Biological Systems,” ChemPhysChem, vol. 20, no. 2. Wiley, pp. 177–177, 2019. ista: Schanda P, Chekmenev EY. 2019. NMR for Biological Systems. ChemPhysChem. 20(2), 177–177. mla: Schanda, Paul, and Eduard Y. Chekmenev. “NMR for Biological Systems.” ChemPhysChem, vol. 20, no. 2, Wiley, 2019, pp. 177–177, doi:10.1002/cphc.201801100. short: P. Schanda, E.Y. Chekmenev, ChemPhysChem 20 (2019) 177–177. date_created: 2020-09-17T10:29:26Z date_published: 2019-01-21T00:00:00Z date_updated: 2021-01-12T08:19:05Z day: '21' doi: 10.1002/cphc.201801100 extern: '1' external_id: pmid: - '30556633' intvolume: ' 20' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1002/cphc.201801100 month: '01' oa: 1 oa_version: Published Version page: 177-177 pmid: 1 publication: ChemPhysChem publication_identifier: issn: - 1439-4235 publication_status: published publisher: Wiley quality_controlled: '1' status: public title: NMR for Biological Systems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2019' ... --- _id: '8570' abstract: - lang: eng text: 'This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with linear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In its third edition, seven tools have been applied to solve six different benchmark problems in the category for linear continuous dynamics (in alphabetical order): CORA, CORA/SX, HyDRA, Hylaa, JuliaReach, SpaceEx, and XSpeed. This report is a snapshot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results provide one of the most complete assessments of tools for the safety verification of continuous and hybrid systems with linear continuous dynamics up to this date.' article_processing_charge: No author: - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff - first_name: Stanley full_name: Bak, Stanley last_name: Bak - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Niklas full_name: Kochdumper, Niklas last_name: Kochdumper - first_name: Rajarshi full_name: Ray, Rajarshi last_name: Ray - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Stefan full_name: Schupp, Stefan last_name: Schupp citation: ama: 'Althoff M, Bak S, Forets M, et al. ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics. In: EPiC Series in Computing. Vol 61. EasyChair; 2019:14-40. doi:10.29007/bj1w' apa: 'Althoff, M., Bak, S., Forets, M., Frehse, G., Kochdumper, N., Ray, R., … Schupp, S. (2019). ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics. In EPiC Series in Computing (Vol. 61, pp. 14–40). Montreal, Canada: EasyChair. https://doi.org/10.29007/bj1w' chicago: 'Althoff, Matthias, Stanley Bak, Marcelo Forets, Goran Frehse, Niklas Kochdumper, Rajarshi Ray, Christian Schilling, and Stefan Schupp. “ARCH-COMP19 Category Report: Continuous and Hybrid Systems with Linear Continuous Dynamics.” In EPiC Series in Computing, 61:14–40. EasyChair, 2019. https://doi.org/10.29007/bj1w.' ieee: 'M. Althoff et al., “ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics,” in EPiC Series in Computing, Montreal, Canada, 2019, vol. 61, pp. 14–40.' ista: 'Althoff M, Bak S, Forets M, Frehse G, Kochdumper N, Ray R, Schilling C, Schupp S. 2019. ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics. EPiC Series in Computing. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems vol. 61, 14–40.' mla: 'Althoff, Matthias, et al. “ARCH-COMP19 Category Report: Continuous and Hybrid Systems with Linear Continuous Dynamics.” EPiC Series in Computing, vol. 61, EasyChair, 2019, pp. 14–40, doi:10.29007/bj1w.' short: M. Althoff, S. Bak, M. Forets, G. Frehse, N. Kochdumper, R. Ray, C. Schilling, S. Schupp, in:, EPiC Series in Computing, EasyChair, 2019, pp. 14–40. conference: end_date: 2019-04-15 location: Montreal, Canada name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2019-04-15 date_created: 2020-09-26T14:23:54Z date_published: 2019-05-25T00:00:00Z date_updated: 2021-01-12T08:20:05Z day: '25' department: - _id: ToHe doi: 10.29007/bj1w intvolume: ' 61' language: - iso: eng main_file_link: - open_access: '1' url: https://easychair.org/publications/open/1gbP month: '05' oa: 1 oa_version: Published Version page: 14-40 publication: EPiC Series in Computing publication_identifier: eissn: - '23987340' publication_status: published publisher: EasyChair quality_controlled: '1' status: public title: 'ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 61 year: '2019' ... --- _id: '9016' abstract: - lang: eng text: Inhibiting the histone H3–ASF1 (anti‐silencing function 1) protein–protein interaction (PPI) represents a potential approach for treating numerous cancers. As an α‐helix‐mediated PPI, constraining the key histone H3 helix (residues 118–135) is a strategy through which chemical probes might be elaborated to test this hypothesis. In this work, variant H3118–135 peptides bearing pentenylglycine residues at the i and i+4 positions were constrained by olefin metathesis. Biophysical analyses revealed that promotion of a bioactive helical conformation depends on the position at which the constraint is introduced, but that the potency of binding towards ASF1 is unaffected by the constraint and instead that enthalpy–entropy compensation occurs. article_processing_charge: No article_type: original author: - first_name: May M full_name: Bakail, May M id: FB3C3F8E-522F-11EA-B186-22963DDC885E last_name: Bakail orcid: 0000-0002-9592-1587 - first_name: Silvia full_name: Rodriguez‐Marin, Silvia last_name: Rodriguez‐Marin - first_name: Zsófia full_name: Hegedüs, Zsófia last_name: Hegedüs - first_name: Marie E. full_name: Perrin, Marie E. last_name: Perrin - first_name: Françoise full_name: Ochsenbein, Françoise last_name: Ochsenbein - first_name: Andrew J. full_name: Wilson, Andrew J. last_name: Wilson citation: ama: Bakail MM, Rodriguez‐Marin S, Hegedüs Z, Perrin ME, Ochsenbein F, Wilson AJ. Recognition of ASF1 by using hydrocarbon‐constrained peptides. ChemBioChem. 2019;20(7):891-895. doi:10.1002/cbic.201800633 apa: Bakail, M. M., Rodriguez‐Marin, S., Hegedüs, Z., Perrin, M. E., Ochsenbein, F., & Wilson, A. J. (2019). Recognition of ASF1 by using hydrocarbon‐constrained peptides. ChemBioChem. Wiley. https://doi.org/10.1002/cbic.201800633 chicago: Bakail, May M, Silvia Rodriguez‐Marin, Zsófia Hegedüs, Marie E. Perrin, Françoise Ochsenbein, and Andrew J. Wilson. “Recognition of ASF1 by Using Hydrocarbon‐constrained Peptides.” ChemBioChem. Wiley, 2019. https://doi.org/10.1002/cbic.201800633. ieee: M. M. Bakail, S. Rodriguez‐Marin, Z. Hegedüs, M. E. Perrin, F. Ochsenbein, and A. J. Wilson, “Recognition of ASF1 by using hydrocarbon‐constrained peptides,” ChemBioChem, vol. 20, no. 7. Wiley, pp. 891–895, 2019. ista: Bakail MM, Rodriguez‐Marin S, Hegedüs Z, Perrin ME, Ochsenbein F, Wilson AJ. 2019. Recognition of ASF1 by using hydrocarbon‐constrained peptides. ChemBioChem. 20(7), 891–895. mla: Bakail, May M., et al. “Recognition of ASF1 by Using Hydrocarbon‐constrained Peptides.” ChemBioChem, vol. 20, no. 7, Wiley, 2019, pp. 891–95, doi:10.1002/cbic.201800633. short: M.M. Bakail, S. Rodriguez‐Marin, Z. Hegedüs, M.E. Perrin, F. Ochsenbein, A.J. Wilson, ChemBioChem 20 (2019) 891–895. date_created: 2021-01-19T10:59:14Z date_published: 2019-04-01T00:00:00Z date_updated: 2023-02-23T13:46:48Z day: '01' doi: 10.1002/cbic.201800633 extern: '1' intvolume: ' 20' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.1002/cbic.201800633' month: '04' oa: 1 oa_version: Published Version page: 891-895 publication: ChemBioChem publication_identifier: issn: - 1439-4227 - 1439-7633 publication_status: published publisher: Wiley quality_controlled: '1' status: public title: Recognition of ASF1 by using hydrocarbon‐constrained peptides type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2019' ... --- _id: '9060' abstract: - lang: eng text: Molecular motors are essential to the living, generating fluctuations that boost transport and assist assembly. Active colloids, that consume energy to move, hold similar potential for man-made materials controlled by forces generated from within. Yet, their use as a powerhouse in materials science lacks. Here we show a massive acceleration of the annealing of a monolayer of passive beads by moderate addition of self-propelled microparticles. We rationalize our observations with a model of collisions that drive active fluctuations and activate the annealing. The experiment is quantitatively compared with Brownian dynamic simulations that further unveil a dynamical transition in the mechanism of annealing. Active dopants travel uniformly in the system or co-localize at the grain boundaries as a result of the persistence of their motion. Our findings uncover the potential of internal activity to control materials and lay the groundwork for the rise of materials science beyond equilibrium. article_number: '3380' article_processing_charge: No article_type: original author: - first_name: Sophie full_name: Ramananarivo, Sophie last_name: Ramananarivo - first_name: Etienne full_name: Ducrot, Etienne last_name: Ducrot - first_name: Jérémie A full_name: Palacci, Jérémie A id: 8fb92548-2b22-11eb-b7c1-a3f0d08d7c7d last_name: Palacci orcid: 0000-0002-7253-9465 citation: ama: Ramananarivo S, Ducrot E, Palacci JA. Activity-controlled annealing of colloidal monolayers. Nature Communications. 2019;10(1). doi:10.1038/s41467-019-11362-y apa: Ramananarivo, S., Ducrot, E., & Palacci, J. A. (2019). Activity-controlled annealing of colloidal monolayers. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-019-11362-y chicago: Ramananarivo, Sophie, Etienne Ducrot, and Jérémie A Palacci. “Activity-Controlled Annealing of Colloidal Monolayers.” Nature Communications. Springer Nature, 2019. https://doi.org/10.1038/s41467-019-11362-y. ieee: S. Ramananarivo, E. Ducrot, and J. A. Palacci, “Activity-controlled annealing of colloidal monolayers,” Nature Communications, vol. 10, no. 1. Springer Nature, 2019. ista: Ramananarivo S, Ducrot E, Palacci JA. 2019. Activity-controlled annealing of colloidal monolayers. Nature Communications. 10(1), 3380. mla: Ramananarivo, Sophie, et al. “Activity-Controlled Annealing of Colloidal Monolayers.” Nature Communications, vol. 10, no. 1, 3380, Springer Nature, 2019, doi:10.1038/s41467-019-11362-y. short: S. Ramananarivo, E. Ducrot, J.A. Palacci, Nature Communications 10 (2019). date_created: 2021-02-02T13:43:36Z date_published: 2019-07-29T00:00:00Z date_updated: 2023-02-23T13:47:59Z day: '29' ddc: - '530' doi: 10.1038/s41467-019-11362-y extern: '1' external_id: arxiv: - '1909.07382' pmid: - '31358762' file: - access_level: open_access checksum: 70c6e5d6fbea0932b0669505ab6633ec content_type: application/pdf creator: cziletti date_created: 2021-02-02T13:47:21Z date_updated: 2021-02-02T13:47:21Z file_id: '9061' file_name: 2019_NatureComm_Ramananarivo.pdf file_size: 2820337 relation: main_file success: 1 file_date_updated: 2021-02-02T13:47:21Z has_accepted_license: '1' intvolume: ' 10' issue: '1' keyword: - General Biochemistry - Genetics and Molecular Biology - General Physics and Astronomy - General Chemistry language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Activity-controlled annealing of colloidal monolayers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 10 year: '2019' ... --- _id: '9460' abstract: - lang: eng text: Epigenetic reprogramming is required for proper regulation of gene expression in eukaryotic organisms. In Arabidopsis, active DNA demethylation is crucial for seed viability, pollen function, and successful reproduction. The DEMETER (DME) DNA glycosylase initiates localized DNA demethylation in vegetative and central cells, so-called companion cells that are adjacent to sperm and egg gametes, respectively. In rice, the central cell genome displays local DNA hypomethylation, suggesting that active DNA demethylation also occurs in rice; however, the enzyme responsible for this process is unknown. One candidate is the rice REPRESSOR OF SILENCING 1a (ROS1a) gene, which is related to DME and is essential for rice seed viability and pollen function. Here, we report genome-wide analyses of DNA methylation in wild-type and ros1a mutant sperm and vegetative cells. We find that the rice vegetative cell genome is locally hypomethylated compared with sperm by a process that requires ROS1a activity. We show that many ROS1a target sequences in the vegetative cell are hypomethylated in the rice central cell, suggesting that ROS1a also demethylates the central cell genome. Similar to Arabidopsis, we show that sperm non-CG methylation is indirectly promoted by DNA demethylation in the vegetative cell. These results reveal that DNA glycosylase-mediated DNA demethylation processes are conserved in Arabidopsis and rice, plant species that diverged 150 million years ago. Finally, although global non-CG methylation levels of sperm and egg differ, the maternal and paternal embryo genomes show similar non-CG methylation levels, suggesting that rice gamete genomes undergo dynamic DNA methylation reprogramming after cell fusion. article_processing_charge: No article_type: original author: - first_name: M. Yvonne full_name: Kim, M. Yvonne last_name: Kim - first_name: Akemi full_name: Ono, Akemi last_name: Ono - first_name: Stefan full_name: Scholten, Stefan last_name: Scholten - first_name: Tetsu full_name: Kinoshita, Tetsu last_name: Kinoshita - first_name: Daniel full_name: Zilberman, Daniel id: 6973db13-dd5f-11ea-814e-b3e5455e9ed1 last_name: Zilberman orcid: 0000-0002-0123-8649 - first_name: Takashi full_name: Okamoto, Takashi last_name: Okamoto - first_name: Robert L. full_name: Fischer, Robert L. last_name: Fischer citation: ama: Kim MY, Ono A, Scholten S, et al. DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm. Proceedings of the National Academy of Sciences. 2019;116(19):9652-9657. doi:10.1073/pnas.1821435116 apa: Kim, M. Y., Ono, A., Scholten, S., Kinoshita, T., Zilberman, D., Okamoto, T., & Fischer, R. L. (2019). DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm. Proceedings of the National Academy of Sciences. National Academy of Sciences. https://doi.org/10.1073/pnas.1821435116 chicago: Kim, M. Yvonne, Akemi Ono, Stefan Scholten, Tetsu Kinoshita, Daniel Zilberman, Takashi Okamoto, and Robert L. Fischer. “DNA Demethylation by ROS1a in Rice Vegetative Cells Promotes Methylation in Sperm.” Proceedings of the National Academy of Sciences. National Academy of Sciences, 2019. https://doi.org/10.1073/pnas.1821435116. ieee: M. Y. Kim et al., “DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm,” Proceedings of the National Academy of Sciences, vol. 116, no. 19. National Academy of Sciences, pp. 9652–9657, 2019. ista: Kim MY, Ono A, Scholten S, Kinoshita T, Zilberman D, Okamoto T, Fischer RL. 2019. DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm. Proceedings of the National Academy of Sciences. 116(19), 9652–9657. mla: Kim, M. Yvonne, et al. “DNA Demethylation by ROS1a in Rice Vegetative Cells Promotes Methylation in Sperm.” Proceedings of the National Academy of Sciences, vol. 116, no. 19, National Academy of Sciences, 2019, pp. 9652–57, doi:10.1073/pnas.1821435116. short: M.Y. Kim, A. Ono, S. Scholten, T. Kinoshita, D. Zilberman, T. Okamoto, R.L. Fischer, Proceedings of the National Academy of Sciences 116 (2019) 9652–9657. date_created: 2021-06-04T12:38:20Z date_published: 2019-05-07T00:00:00Z date_updated: 2021-12-14T07:52:30Z day: '07' ddc: - '580' department: - _id: DaZi doi: 10.1073/pnas.1821435116 extern: '1' external_id: pmid: - '31000601' file: - access_level: open_access checksum: 5b0ae3779b8b21b5223bd2d3cceede3a content_type: application/pdf creator: asandaue date_created: 2021-06-04T12:50:47Z date_updated: 2021-06-04T12:50:47Z file_id: '9461' file_name: 2019_PNAS_Kim.pdf file_size: 1142540 relation: main_file success: 1 file_date_updated: 2021-06-04T12:50:47Z has_accepted_license: '1' intvolume: ' 116' issue: '19' keyword: - Multidisciplinary language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '05' oa: 1 oa_version: Published Version page: 9652-9657 pmid: 1 publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 116 year: '2019' ... --- _id: '9689' abstract: - lang: eng text: A central goal of computational physics and chemistry is to predict material properties by using first-principles methods based on the fundamental laws of quantum mechanics. However, the high computational costs of these methods typically prevent rigorous predictions of macroscopic quantities at finite temperatures, such as heat capacity, density, and chemical potential. Here, we enable such predictions by marrying advanced free-energy methods with data-driven machine-learning interatomic potentials. We show that, for the ubiquitous and technologically essential system of water, a first-principles thermodynamic description not only leads to excellent agreement with experiments, but also reveals the crucial role of nuclear quantum fluctuations in modulating the thermodynamic stabilities of different phases of water. article_processing_charge: No article_type: original author: - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 - first_name: Edgar A. full_name: Engel, Edgar A. last_name: Engel - first_name: Jörg full_name: Behler, Jörg last_name: Behler - first_name: Christoph full_name: Dellago, Christoph last_name: Dellago - first_name: Michele full_name: Ceriotti, Michele last_name: Ceriotti citation: ama: Cheng B, Engel EA, Behler J, Dellago C, Ceriotti M. Ab initio thermodynamics of liquid and solid water. Proceedings of the National Academy of Sciences. 2019;116(4):1110-1115. doi:10.1073/pnas.1815117116 apa: Cheng, B., Engel, E. A., Behler, J., Dellago, C., & Ceriotti, M. (2019). Ab initio thermodynamics of liquid and solid water. Proceedings of the National Academy of Sciences. National Academy of Sciences. https://doi.org/10.1073/pnas.1815117116 chicago: Cheng, Bingqing, Edgar A. Engel, Jörg Behler, Christoph Dellago, and Michele Ceriotti. “Ab Initio Thermodynamics of Liquid and Solid Water.” Proceedings of the National Academy of Sciences. National Academy of Sciences, 2019. https://doi.org/10.1073/pnas.1815117116. ieee: B. Cheng, E. A. Engel, J. Behler, C. Dellago, and M. Ceriotti, “Ab initio thermodynamics of liquid and solid water,” Proceedings of the National Academy of Sciences, vol. 116, no. 4. National Academy of Sciences, pp. 1110–1115, 2019. ista: Cheng B, Engel EA, Behler J, Dellago C, Ceriotti M. 2019. Ab initio thermodynamics of liquid and solid water. Proceedings of the National Academy of Sciences. 116(4), 1110–1115. mla: Cheng, Bingqing, et al. “Ab Initio Thermodynamics of Liquid and Solid Water.” Proceedings of the National Academy of Sciences, vol. 116, no. 4, National Academy of Sciences, 2019, pp. 1110–15, doi:10.1073/pnas.1815117116. short: B. Cheng, E.A. Engel, J. Behler, C. Dellago, M. Ceriotti, Proceedings of the National Academy of Sciences 116 (2019) 1110–1115. date_created: 2021-07-19T10:17:09Z date_published: 2019-01-22T00:00:00Z date_updated: 2023-02-23T14:05:08Z day: '22' doi: 10.1073/pnas.1815117116 extern: '1' external_id: arxiv: - '1811.08630' pmid: - '30610171' intvolume: ' 116' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1073/pnas.1815117116 month: '01' oa: 1 oa_version: Published Version page: 1110-1115 pmid: 1 publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Ab initio thermodynamics of liquid and solid water type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 116 year: '2019' ... --- _id: '6819' abstract: - lang: eng text: Glyphosate (N-phosphonomethyl glycine) and its commercial herbicide formulations have been shown to exert toxicity via various mechanisms. It has been asserted that glyphosate substitutes for glycine in polypeptide chains leading to protein misfolding and toxicity. However, as no direct evidence exists for glycine to glyphosate substitution in proteins, including in mammalian organisms, we tested this claim by conducting a proteomics analysis of MDA-MB-231 human breast cancer cells grown in the presence of 100 mg/L glyphosate for 6 days. Protein extracts from three treated and three untreated cell cultures were analysed as one TMT-6plex labelled sample, to highlight a specific pattern (+/+/+/−/−/−) of reporter intensities for peptides bearing true glyphosate treatment induced-post translational modifications as well as allowing an investigation of the total proteome. article_number: '494' article_processing_charge: No author: - first_name: Michael N. full_name: Antoniou, Michael N. last_name: Antoniou - first_name: Armel full_name: Nicolas, Armel id: 2A103192-F248-11E8-B48F-1D18A9856A87 last_name: Nicolas - first_name: Robin full_name: Mesnage, Robin last_name: Mesnage - first_name: Martina full_name: Biserni, Martina last_name: Biserni - first_name: Francesco V. full_name: Rao, Francesco V. last_name: Rao - first_name: Cristina Vazquez full_name: Martin, Cristina Vazquez last_name: Martin citation: ama: Antoniou MN, Nicolas A, Mesnage R, Biserni M, Rao FV, Martin CV. Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells. BMC Research Notes. 2019;12. doi:10.1186/s13104-019-4534-3 apa: Antoniou, M. N., Nicolas, A., Mesnage, R., Biserni, M., Rao, F. V., & Martin, C. V. (2019). Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells. BMC Research Notes. BioMed Central. https://doi.org/10.1186/s13104-019-4534-3 chicago: Antoniou, Michael N., Armel Nicolas, Robin Mesnage, Martina Biserni, Francesco V. Rao, and Cristina Vazquez Martin. “Glyphosate Does Not Substitute for Glycine in Proteins of Actively Dividing Mammalian Cells.” BMC Research Notes. BioMed Central, 2019. https://doi.org/10.1186/s13104-019-4534-3. ieee: M. N. Antoniou, A. Nicolas, R. Mesnage, M. Biserni, F. V. Rao, and C. V. Martin, “Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells,” BMC Research Notes, vol. 12. BioMed Central, 2019. ista: Antoniou MN, Nicolas A, Mesnage R, Biserni M, Rao FV, Martin CV. 2019. Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells. BMC Research Notes. 12, 494. mla: Antoniou, Michael N., et al. “Glyphosate Does Not Substitute for Glycine in Proteins of Actively Dividing Mammalian Cells.” BMC Research Notes, vol. 12, 494, BioMed Central, 2019, doi:10.1186/s13104-019-4534-3. short: M.N. Antoniou, A. Nicolas, R. Mesnage, M. Biserni, F.V. Rao, C.V. Martin, BMC Research Notes 12 (2019). date_created: 2019-08-18T22:00:39Z date_published: 2019-08-08T00:00:00Z date_updated: 2023-02-23T14:08:14Z day: '08' ddc: - '570' department: - _id: LifeSc doi: 10.1186/s13104-019-4534-3 external_id: pmid: - '31395095' file: - access_level: open_access checksum: 4a2bb7994b7f2c432bf44f5127ea3102 content_type: application/pdf creator: dernst date_created: 2019-08-23T11:10:35Z date_updated: 2020-07-14T12:47:40Z file_id: '6829' file_name: 2019_BMC_Antoniou.pdf file_size: 1177482 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 12' language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 publication: BMC Research Notes publication_identifier: eissn: - 1756-0500 publication_status: published publisher: BioMed Central quality_controlled: '1' related_material: record: - id: '9784' relation: research_data status: public scopus_import: 1 status: public title: Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 12 year: '2019' ... --- _id: '9784' abstract: - lang: eng text: 'Additional file 1: Table S1. Kinetics of MDA-MB-231 cell growth in either the presence or absence of 100Â mg/L glyphosate. Cell counts are given at day-1 of seeding flasks and following 6-days of continuous culture. Note: no differences in cell numbers were observed between negative control and glyphosate treated cultures.' article_processing_charge: No author: - first_name: Michael N. full_name: Antoniou, Michael N. last_name: Antoniou - first_name: Armel full_name: Nicolas, Armel id: 2A103192-F248-11E8-B48F-1D18A9856A87 last_name: Nicolas - first_name: Robin full_name: Mesnage, Robin last_name: Mesnage - first_name: Martina full_name: Biserni, Martina last_name: Biserni - first_name: Francesco V. full_name: Rao, Francesco V. last_name: Rao - first_name: Cristina Vazquez full_name: Martin, Cristina Vazquez last_name: Martin citation: ama: Antoniou MN, Nicolas A, Mesnage R, Biserni M, Rao FV, Martin CV. MOESM1 of Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells. 2019. doi:10.6084/m9.figshare.9411761.v1 apa: Antoniou, M. N., Nicolas, A., Mesnage, R., Biserni, M., Rao, F. V., & Martin, C. V. (2019). MOESM1 of Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells. Springer Nature. https://doi.org/10.6084/m9.figshare.9411761.v1 chicago: Antoniou, Michael N., Armel Nicolas, Robin Mesnage, Martina Biserni, Francesco V. Rao, and Cristina Vazquez Martin. “MOESM1 of Glyphosate Does Not Substitute for Glycine in Proteins of Actively Dividing Mammalian Cells.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9411761.v1. ieee: M. N. Antoniou, A. Nicolas, R. Mesnage, M. Biserni, F. V. Rao, and C. V. Martin, “MOESM1 of Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells.” Springer Nature, 2019. ista: Antoniou MN, Nicolas A, Mesnage R, Biserni M, Rao FV, Martin CV. 2019. MOESM1 of Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells, Springer Nature, 10.6084/m9.figshare.9411761.v1. mla: Antoniou, Michael N., et al. MOESM1 of Glyphosate Does Not Substitute for Glycine in Proteins of Actively Dividing Mammalian Cells. Springer Nature, 2019, doi:10.6084/m9.figshare.9411761.v1. short: M.N. Antoniou, A. Nicolas, R. Mesnage, M. Biserni, F.V. Rao, C.V. Martin, (2019). date_created: 2021-08-06T08:14:05Z date_published: 2019-08-09T00:00:00Z date_updated: 2023-02-23T12:52:29Z day: '09' department: - _id: LifeSc doi: 10.6084/m9.figshare.9411761.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9411761.v1 month: '08' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6819' relation: used_in_publication status: public status: public title: MOESM1 of Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ...