---
_id: '5429'
abstract:
- lang: eng
text: "We consider Markov decision processes (MDPs) with multiple limit-average
(or mean-payoff) objectives. \r\nThere have been two different views: (i) the
expectation semantics, where the goal is to optimize the expected mean-payoff
objective, and (ii) the satisfaction semantics, where the goal is to maximize
the probability of runs such that the mean-payoff value stays above a given vector.
\ \r\nWe consider the problem where the goal is to optimize the expectation under
the constraint that the satisfaction semantics is ensured, and thus consider a
generalization that unifies the existing semantics.\r\nOur problem captures the
notion of optimization with respect to strategies that are risk-averse (i.e.,
ensures certain probabilistic guarantee).\r\nOur main results are algorithms for
the decision problem which are always polynomial in the size of the MDP. We also
show that an approximation of the Pareto-curve can be computed in time polynomial
in the size of the MDP, and the approximation factor, but exponential in the number
of dimensions.\r\nFinally, we present a complete characterization of the strategy
complexity (in terms of memory bounds and randomization) required to solve our
problem."
alternative_title:
- IST Austria Technical Report
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Zuzana
full_name: Komarkova, Zuzana
last_name: Komarkova
- first_name: Jan
full_name: Kretinsky, Jan
id: 44CEF464-F248-11E8-B48F-1D18A9856A87
last_name: Kretinsky
orcid: 0000-0002-8122-2881
citation:
ama: Chatterjee K, Komarkova Z, Kretinsky J. *Unifying Two Views on Multiple Mean-Payoff
Objectives in Markov Decision Processes*. IST Austria; 2015. doi:10.15479/AT:IST-2015-318-v1-1
apa: Chatterjee, K., Komarkova, Z., & Kretinsky, J. (2015). *Unifying two
views on multiple mean-payoff objectives in Markov decision processes*. IST
Austria. https://doi.org/10.15479/AT:IST-2015-318-v1-1
chicago: Chatterjee, Krishnendu, Zuzana Komarkova, and Jan Kretinsky. *Unifying
Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes*.
IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-318-v1-1.
ieee: K. Chatterjee, Z. Komarkova, and J. Kretinsky, *Unifying two views on multiple
mean-payoff objectives in Markov decision processes*. IST Austria, 2015.
ista: Chatterjee K, Komarkova Z, Kretinsky J. 2015. Unifying two views on multiple
mean-payoff objectives in Markov decision processes, IST Austria, 41p.
mla: Chatterjee, Krishnendu, et al. *Unifying Two Views on Multiple Mean-Payoff
Objectives in Markov Decision Processes*. IST Austria, 2015, doi:10.15479/AT:IST-2015-318-v1-1.
short: K. Chatterjee, Z. Komarkova, J. Kretinsky, Unifying Two Views on Multiple
Mean-Payoff Objectives in Markov Decision Processes, IST Austria, 2015.
date_created: 2018-12-12T11:39:17Z
date_published: 2015-01-12T00:00:00Z
date_updated: 2021-01-12T08:02:15Z
day: '12'
ddc:
- '004'
department:
- _id: KrCh
doi: 10.15479/AT:IST-2015-318-v1-1
file:
- access_level: open_access
checksum: e4869a584567c506349abda9c8ec7db3
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:54:11Z
date_updated: 2020-07-14T12:46:52Z
file_id: '5533'
file_name: IST-2015-318-v1+1_main.pdf
file_size: 689863
relation: main_file
file_date_updated: 2020-07-14T12:46:52Z
has_accepted_license: '1'
language:
- iso: eng
month: '01'
oa: 1
oa_version: Published Version
page: '41'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '318'
related_material:
record:
- id: '466'
relation: later_version
status: public
- id: '1657'
relation: later_version
status: public
- id: '5435'
relation: later_version
status: public
status: public
title: Unifying two views on multiple mean-payoff objectives in Markov decision processes
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '5435'
abstract:
- lang: eng
text: "We consider Markov decision processes (MDPs) with multiple limit-average
(or mean-payoff) objectives. \r\nThere have been two different views: (i) the
expectation semantics, where the goal is to optimize the expected mean-payoff
objective, and (ii) the satisfaction semantics, where the goal is to maximize
the probability of runs such that the mean-payoff value stays above a given vector.
\ \r\nWe consider the problem where the goal is to optimize the expectation under
the constraint that the satisfaction semantics is ensured, and thus consider a
generalization that unifies the existing semantics. Our problem captures the notion
of optimization with respect to strategies that are risk-averse (i.e., ensures
certain probabilistic guarantee).\r\nOur main results are algorithms for the decision
problem which are always polynomial in the size of the MDP.\r\nWe also show that
an approximation of the Pareto-curve can be computed in time polynomial in the
size of the MDP, and the approximation factor, but exponential in the number of
dimensions. Finally, we present a complete characterization of the strategy complexity
(in terms of memory bounds and randomization) required to solve our problem."
alternative_title:
- IST Austria Technical Report
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Zuzana
full_name: Komarkova, Zuzana
last_name: Komarkova
- first_name: Jan
full_name: Kretinsky, Jan
id: 44CEF464-F248-11E8-B48F-1D18A9856A87
last_name: Kretinsky
orcid: 0000-0002-8122-2881
citation:
ama: Chatterjee K, Komarkova Z, Kretinsky J. *Unifying Two Views on Multiple Mean-Payoff
Objectives in Markov Decision Processes*. IST Austria; 2015. doi:10.15479/AT:IST-2015-318-v2-1
apa: Chatterjee, K., Komarkova, Z., & Kretinsky, J. (2015). *Unifying two
views on multiple mean-payoff objectives in Markov decision processes*. IST
Austria. https://doi.org/10.15479/AT:IST-2015-318-v2-1
chicago: Chatterjee, Krishnendu, Zuzana Komarkova, and Jan Kretinsky. *Unifying
Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes*.
IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-318-v2-1.
ieee: K. Chatterjee, Z. Komarkova, and J. Kretinsky, *Unifying two views on multiple
mean-payoff objectives in Markov decision processes*. IST Austria, 2015.
ista: Chatterjee K, Komarkova Z, Kretinsky J. 2015. Unifying two views on multiple
mean-payoff objectives in Markov decision processes, IST Austria, 51p.
mla: Chatterjee, Krishnendu, et al. *Unifying Two Views on Multiple Mean-Payoff
Objectives in Markov Decision Processes*. IST Austria, 2015, doi:10.15479/AT:IST-2015-318-v2-1.
short: K. Chatterjee, Z. Komarkova, J. Kretinsky, Unifying Two Views on Multiple
Mean-Payoff Objectives in Markov Decision Processes, IST Austria, 2015.
date_created: 2018-12-12T11:39:19Z
date_published: 2015-02-23T00:00:00Z
date_updated: 2021-01-12T08:02:15Z
day: '23'
ddc:
- '004'
department:
- _id: KrCh
doi: 10.15479/AT:IST-2015-318-v2-1
file:
- access_level: open_access
checksum: 75284adec80baabdfe71ff9ebbc27445
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:54:03Z
date_updated: 2020-07-14T12:46:53Z
file_id: '5525'
file_name: IST-2015-318-v2+1_main.pdf
file_size: 717630
relation: main_file
file_date_updated: 2020-07-14T12:46:53Z
has_accepted_license: '1'
language:
- iso: eng
month: '02'
oa: 1
oa_version: Published Version
page: '51'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '327'
related_material:
record:
- id: '5429'
relation: earlier_version
status: public
- id: '466'
relation: later_version
status: public
- id: '1657'
relation: later_version
status: public
status: public
title: Unifying two views on multiple mean-payoff objectives in Markov decision processes
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '1659'
abstract:
- lang: eng
text: 'The target discounted-sum problem is the following: Given a rational discount
factor 0 < λ < 1 and three rational values a, b, and t, does there exist
a finite or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0
w(i)λi equals t? The problem turns out to relate to many fields of mathematics
and computer science, and its decidability question is surprisingly hard to solve.
We solve the finite version of the problem, and show the hardness of the infinite
version, linking it to various areas and open problems in mathematics and computer
science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations
of the Cantor set. We provide some partial results to the infinite version, among
which are solutions to its restriction to eventually-periodic sequences and to
the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving
some open problems on discounted-sum automata, among which are the exact-value
problem for nondeterministic automata over finite words and the universality and
inclusion problems for functional automata.'
acknowledgement: 'A technical report of the article is available at: https://research-explorer.app.ist.ac.at/record/5439'
article_processing_charge: No
author:
- first_name: Udi
full_name: Boker, Udi
id: 31E297B6-F248-11E8-B48F-1D18A9856A87
last_name: Boker
- first_name: Thomas A
full_name: Henzinger, Thomas A
id: 40876CD8-F248-11E8-B48F-1D18A9856A87
last_name: Henzinger
orcid: 0000−0002−2985−7724
- first_name: Jan
full_name: Otop, Jan
id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87
last_name: Otop
citation:
ama: 'Boker U, Henzinger TA, Otop J. The target discounted-sum problem. In: *LICS*.
Logic in Computer Science. IEEE; 2015:750-761. doi:10.1109/LICS.2015.74'
apa: 'Boker, U., Henzinger, T. A., & Otop, J. (2015). The target discounted-sum
problem. In *LICS* (pp. 750–761). Kyoto, Japan: IEEE. https://doi.org/10.1109/LICS.2015.74'
chicago: Boker, Udi, Thomas A Henzinger, and Jan Otop. “The Target Discounted-Sum
Problem.” In *LICS*, 750–61. Logic in Computer Science. IEEE, 2015. https://doi.org/10.1109/LICS.2015.74.
ieee: U. Boker, T. A. Henzinger, and J. Otop, “The target discounted-sum problem,”
in *LICS*, Kyoto, Japan, 2015, pp. 750–761.
ista: 'Boker U, Henzinger TA, Otop J. 2015. The target discounted-sum problem. LICS.
LICS: Logic in Computer ScienceLogic in Computer Science, 750–761.'
mla: Boker, Udi, et al. “The Target Discounted-Sum Problem.” *LICS*, IEEE,
2015, pp. 750–61, doi:10.1109/LICS.2015.74.
short: U. Boker, T.A. Henzinger, J. Otop, in:, LICS, IEEE, 2015, pp. 750–761.
conference:
end_date: 2015-07-10
location: Kyoto, Japan
name: 'LICS: Logic in Computer Science'
start_date: 2015-007-06
date_created: 2018-12-11T11:53:19Z
date_published: 2015-07-01T00:00:00Z
date_updated: 2021-01-12T08:02:18Z
day: '01'
ddc:
- '000'
department:
- _id: ToHe
doi: 10.1109/LICS.2015.74
ec_funded: 1
file:
- access_level: open_access
checksum: 6abebca9c1a620e9e103a8f9222befac
content_type: application/pdf
creator: dernst
date_created: 2020-05-15T08:53:29Z
date_updated: 2020-07-14T12:45:10Z
file_id: '7852'
file_name: 2015_LICS_Boker.pdf
file_size: 340215
relation: main_file
file_date_updated: 2020-07-14T12:45:10Z
has_accepted_license: '1'
language:
- iso: eng
month: '07'
oa: 1
oa_version: Submitted Version
page: 750 - 761
project:
- _id: 25EE3708-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '267989'
name: Quantitative Reactive Modeling
- _id: 25832EC2-B435-11E9-9278-68D0E5697425
call_identifier: FWF
grant_number: S 11407_N23
name: Rigorous Systems Engineering
- _id: 25F42A32-B435-11E9-9278-68D0E5697425
call_identifier: FWF
grant_number: Z211
name: The Wittgenstein Prize
publication: LICS
publication_identifier:
eisbn:
- '978-1-4799-8875-4 '
issn:
- '1043-6871 '
publication_status: published
publisher: IEEE
publist_id: '5491'
quality_controlled: '1'
related_material:
record:
- id: '5439'
relation: earlier_version
status: public
scopus_import: 1
series_title: Logic in Computer Science
status: public
title: The target discounted-sum problem
type: conference
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '1610'
abstract:
- lang: eng
text: The edit distance between two words w1, w2 is the minimal number of word operations
(letter insertions, deletions, and substitutions) necessary to transform w1 to
w2. The edit distance generalizes to languages L1,L2, where the edit distance
is the minimal number k such that for every word from L1 there exists a word in
L2 with edit distance at most k. We study the edit distance computation problem
between pushdown automata and their subclasses. The problem of computing edit
distance to pushdown automata is undecidable, and in practice, the interesting
question is to compute the edit distance from a pushdown automaton (the implementation,
a standard model for programs with recursion) to a regular language (the specification).
In this work, we present a complete picture of decidability and complexity for
deciding whether, for a given threshold k, the edit distance from a pushdown automaton
to a finite automaton is at most k.
alternative_title:
- LNCS
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Thomas A
full_name: Henzinger, Thomas A
id: 40876CD8-F248-11E8-B48F-1D18A9856A87
last_name: Henzinger
orcid: 0000−0002−2985−7724
- first_name: Rasmus
full_name: Ibsen-Jensen, Rasmus
id: 3B699956-F248-11E8-B48F-1D18A9856A87
last_name: Ibsen-Jensen
orcid: 0000-0003-4783-0389
- first_name: Jan
full_name: Otop, Jan
id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87
last_name: Otop
citation:
ama: Chatterjee K, Henzinger TA, Ibsen-Jensen R, Otop J. Edit distance for pushdown
automata. 2015;9135(Part II):121-133. doi:10.1007/978-3-662-47666-6_10
apa: 'Chatterjee, K., Henzinger, T. A., Ibsen-Jensen, R., & Otop, J. (2015).
Edit distance for pushdown automata. Presented at the ICALP: Automata, Languages
and Programming, Kyoto, Japan: Springer. https://doi.org/10.1007/978-3-662-47666-6_10'
chicago: Chatterjee, Krishnendu, Thomas A Henzinger, Rasmus Ibsen-Jensen, and Jan
Otop. “Edit Distance for Pushdown Automata.” Lecture Notes in Computer Science.
Springer, 2015. https://doi.org/10.1007/978-3-662-47666-6_10.
ieee: K. Chatterjee, T. A. Henzinger, R. Ibsen-Jensen, and J. Otop, “Edit distance
for pushdown automata,” vol. 9135, no. Part II. Springer, pp. 121–133, 2015.
ista: Chatterjee K, Henzinger TA, Ibsen-Jensen R, Otop J. 2015. Edit distance for
pushdown automata. 9135(Part II), 121–133.
mla: Chatterjee, Krishnendu, et al. *Edit Distance for Pushdown Automata*.
Vol. 9135, no. Part II, Springer, 2015, pp. 121–33, doi:10.1007/978-3-662-47666-6_10.
short: K. Chatterjee, T.A. Henzinger, R. Ibsen-Jensen, J. Otop, 9135 (2015) 121–133.
conference:
end_date: 2015-07-10
location: Kyoto, Japan
name: 'ICALP: Automata, Languages and Programming'
start_date: 2015-07-06
date_created: 2018-12-11T11:53:01Z
date_published: 2015-07-01T00:00:00Z
date_updated: 2021-01-12T08:02:18Z
day: '01'
department:
- _id: KrCh
- _id: ToHe
doi: 10.1007/978-3-662-47666-6_10
ec_funded: 1
intvolume: ' 9135'
issue: Part II
language:
- iso: eng
month: '07'
oa_version: None
page: 121 - 133
project:
- _id: 25EE3708-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '267989'
name: Quantitative Reactive Modeling
- _id: 25F42A32-B435-11E9-9278-68D0E5697425
call_identifier: FWF
grant_number: Z211
name: The Wittgenstein Prize
- _id: 2584A770-B435-11E9-9278-68D0E5697425
call_identifier: FWF
grant_number: P 23499-N23
name: Modern Graph Algorithmic Techniques in Formal Verification
- _id: 25863FF4-B435-11E9-9278-68D0E5697425
call_identifier: FWF
grant_number: S11407
name: Game Theory
- _id: 2581B60A-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '279307'
name: 'Quantitative Graph Games: Theory and Applications'
- _id: 2587B514-B435-11E9-9278-68D0E5697425
name: Microsoft Research Faculty Fellowship
- _id: 25832EC2-B435-11E9-9278-68D0E5697425
call_identifier: FWF
grant_number: S 11407_N23
name: Rigorous Systems Engineering
publication_status: published
publisher: Springer
publist_id: '5556'
pubrep_id: '321'
quality_controlled: '1'
related_material:
record:
- id: '465'
relation: later_version
status: public
- id: '5438'
relation: earlier_version
status: public
scopus_import: 1
series_title: Lecture Notes in Computer Science
status: public
title: Edit distance for pushdown automata
type: conference
user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87
volume: 9135
year: '2015'
...
---
_id: '5430'
abstract:
- lang: eng
text: We consider the core algorithmic problems related to verification of systems
with respect to three classical quantitative properties, namely, the mean- payoff
property, the ratio property, and the minimum initial credit for energy property.
The algorithmic problem given a graph and a quantitative property asks to compute
the optimal value (the infimum value over all traces) from every node of the graph.
We consider graphs with constant treewidth, and it is well-known that the control-flow
graphs of most programs have constant treewidth. Let n denote the number of nodes
of a graph, m the number of edges (for constant treewidth graphs m = O ( n ) )
and W the largest absolute value of the weights. Our main theoretical results
are as follows. First, for constant treewidth graphs we present an algorithm that
approximates the mean-payoff value within a mul- tiplicative factor of ∊ in time
O ( n · log( n/∊ )) and linear space, as compared to the classical algorithms
that require quadratic time. Second, for the ratio property we present an algorithm
that for constant treewidth graphs works in time O ( n · log( | a · b · n | ))
= O ( n · log( n · W )) , when the output is a b , as compared to the previously
best known algorithm with running time O ( n 2 · log( n · W )) . Third, for the
minimum initial credit problem we show that (i) for general graphs the problem
can be solved in O ( n 2 · m ) time and the associated decision problem can be
solved in O ( n · m ) time, improving the previous known O ( n 3 · m · log( n
· W )) and O ( n 2 · m ) bounds, respectively; and (ii) for constant treewidth
graphs we present an algorithm that requires O ( n · log n ) time, improving the
previous known O ( n 4 · log( n · W )) bound. We have implemented some of our
algorithms and show that they present a significant speedup on standard benchmarks.
alternative_title:
- IST Austria Technical Report
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Rasmus
full_name: Ibsen-Jensen, Rasmus
id: 3B699956-F248-11E8-B48F-1D18A9856A87
last_name: Ibsen-Jensen
orcid: 0000-0003-4783-0389
- first_name: Andreas
full_name: Pavlogiannis, Andreas
id: 49704004-F248-11E8-B48F-1D18A9856A87
last_name: Pavlogiannis
orcid: 0000-0002-8943-0722
citation:
ama: Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. *Faster Algorithms for Quantitative
Verification in Constant Treewidth Graphs*. IST Austria; 2015. doi:10.15479/AT:IST-2015-319-v1-1
apa: Chatterjee, K., Ibsen-Jensen, R., & Pavlogiannis, A. (2015). *Faster
algorithms for quantitative verification in constant treewidth graphs*. IST
Austria. https://doi.org/10.15479/AT:IST-2015-319-v1-1
chicago: Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis.
*Faster Algorithms for Quantitative Verification in Constant Treewidth Graphs*.
IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-319-v1-1.
ieee: K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis, *Faster algorithms
for quantitative verification in constant treewidth graphs*. IST Austria, 2015.
ista: Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. 2015. Faster algorithms for
quantitative verification in constant treewidth graphs, IST Austria, 31p.
mla: Chatterjee, Krishnendu, et al. *Faster Algorithms for Quantitative Verification
in Constant Treewidth Graphs*. IST Austria, 2015, doi:10.15479/AT:IST-2015-319-v1-1.
short: K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, Faster Algorithms for Quantitative
Verification in Constant Treewidth Graphs, IST Austria, 2015.
date_created: 2018-12-12T11:39:17Z
date_published: 2015-02-10T00:00:00Z
date_updated: 2021-01-12T08:02:17Z
day: '10'
ddc:
- '000'
department:
- _id: KrCh
doi: 10.15479/AT:IST-2015-319-v1-1
file:
- access_level: open_access
checksum: 62c6ea01e342553dcafb88a070fb1ad5
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:53:21Z
date_updated: 2020-07-14T12:46:52Z
file_id: '5482'
file_name: IST-2015-319-v1+1_long.pdf
file_size: 1089651
relation: main_file
file_date_updated: 2020-07-14T12:46:52Z
has_accepted_license: '1'
language:
- iso: eng
month: '02'
oa: 1
oa_version: Published Version
page: '31'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '319'
related_material:
record:
- id: '1607'
relation: later_version
status: public
- id: '5437'
relation: later_version
status: public
status: public
title: Faster algorithms for quantitative verification in constant treewidth graphs
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '5437'
abstract:
- lang: eng
text: "We consider the core algorithmic problems related to verification of systems
with respect to three classical quantitative properties, namely, the mean-payoff
property, the ratio property, and the minimum initial credit for energy property.
\r\nThe algorithmic problem given a graph and a quantitative property asks to
compute the optimal value (the infimum value over all traces) from every node
of the graph. We consider graphs with constant treewidth, and it is well-known
that the control-flow graphs of most programs have constant treewidth. Let $n$
denote the number of nodes of a graph, $m$ the number of edges (for constant treewidth
graphs $m=O(n)$) and $W$ the largest absolute value of the weights.\r\nOur main
theoretical results are as follows.\r\nFirst, for constant treewidth graphs we
present an algorithm that approximates the mean-payoff value within a multiplicative
factor of $\\epsilon$ in time $O(n \\cdot \\log (n/\\epsilon))$ and linear space,
as compared to the classical algorithms that require quadratic time. Second, for
the ratio property we present an algorithm that for constant treewidth graphs
works in time $O(n \\cdot \\log (|a\\cdot b|))=O(n\\cdot\\log (n\\cdot W))$, when
the output is $\\frac{a}{b}$, as compared to the previously best known algorithm
with running time $O(n^2 \\cdot \\log (n\\cdot W))$. Third, for the minimum initial
credit problem we show that (i)~for general graphs the problem can be solved in
$O(n^2\\cdot m)$ time and the associated decision problem can be solved in $O(n\\cdot
m)$ time, improving the previous known $O(n^3\\cdot m\\cdot \\log (n\\cdot W))$
and $O(n^2 \\cdot m)$ bounds, respectively; and (ii)~for constant treewidth graphs
we present an algorithm that requires $O(n\\cdot \\log n)$ time, improving the
previous known $O(n^4 \\cdot \\log (n \\cdot W))$ bound.\r\nWe have implemented
some of our algorithms and show that they present a significant speedup on standard
benchmarks. "
alternative_title:
- IST Austria Technical Report
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Rasmus
full_name: Ibsen-Jensen, Rasmus
id: 3B699956-F248-11E8-B48F-1D18A9856A87
last_name: Ibsen-Jensen
orcid: 0000-0003-4783-0389
- first_name: Andreas
full_name: Pavlogiannis, Andreas
id: 49704004-F248-11E8-B48F-1D18A9856A87
last_name: Pavlogiannis
orcid: 0000-0002-8943-0722
citation:
ama: Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. *Faster Algorithms for Quantitative
Verification in Constant Treewidth Graphs*. IST Austria; 2015. doi:10.15479/AT:IST-2015-330-v2-1
apa: Chatterjee, K., Ibsen-Jensen, R., & Pavlogiannis, A. (2015). *Faster
algorithms for quantitative verification in constant treewidth graphs*. IST
Austria. https://doi.org/10.15479/AT:IST-2015-330-v2-1
chicago: Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis.
*Faster Algorithms for Quantitative Verification in Constant Treewidth Graphs*.
IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-330-v2-1.
ieee: K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis, *Faster algorithms
for quantitative verification in constant treewidth graphs*. IST Austria, 2015.
ista: Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. 2015. Faster algorithms for
quantitative verification in constant treewidth graphs, IST Austria, 27p.
mla: Chatterjee, Krishnendu, et al. *Faster Algorithms for Quantitative Verification
in Constant Treewidth Graphs*. IST Austria, 2015, doi:10.15479/AT:IST-2015-330-v2-1.
short: K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, Faster Algorithms for Quantitative
Verification in Constant Treewidth Graphs, IST Austria, 2015.
date_created: 2018-12-12T11:39:19Z
date_published: 2015-04-27T00:00:00Z
date_updated: 2021-01-12T08:02:17Z
day: '27'
ddc:
- '000'
department:
- _id: KrCh
doi: 10.15479/AT:IST-2015-330-v2-1
file:
- access_level: open_access
checksum: f5917c20f84018b362d385c000a2e123
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:53:12Z
date_updated: 2020-07-14T12:46:54Z
file_id: '5473'
file_name: IST-2015-330-v2+1_main.pdf
file_size: 1072137
relation: main_file
file_date_updated: 2020-07-14T12:46:54Z
has_accepted_license: '1'
language:
- iso: eng
month: '04'
oa: 1
oa_version: Published Version
page: '27'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '333'
related_material:
record:
- id: '5430'
relation: earlier_version
status: public
- id: '1607'
relation: later_version
status: public
status: public
title: Faster algorithms for quantitative verification in constant treewidth graphs
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '5438'
abstract:
- lang: eng
text: "The edit distance between two words w1, w2 is the minimal number of word
operations (letter insertions, deletions, and substitutions) necessary to transform
w1 to w2. The edit distance generalizes to languages L1, L2, where the edit distance
is the minimal number k such that for every word from L1 there exists a word in
L2 with edit distance at most k. We study the edit distance computation problem
between pushdown automata and their subclasses.\r\nThe problem of computing edit
distance to a pushdown automaton is undecidable, and in practice, the interesting
question is to compute the edit distance from a pushdown automaton (the implementation,
a standard model for programs with recursion) to a regular language (the specification).
In this work, we present a complete picture of decidability and complexity for
deciding whether, for a given threshold k, the edit distance from a pushdown automaton
to a finite automaton is at most k. "
alternative_title:
- IST Austria Technical Report
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Thomas A
full_name: Henzinger, Thomas A
id: 40876CD8-F248-11E8-B48F-1D18A9856A87
last_name: Henzinger
orcid: 0000−0002−2985−7724
- first_name: Rasmus
full_name: Ibsen-Jensen, Rasmus
id: 3B699956-F248-11E8-B48F-1D18A9856A87
last_name: Ibsen-Jensen
orcid: 0000-0003-4783-0389
- first_name: Jan
full_name: Otop, Jan
id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87
last_name: Otop
citation:
ama: Chatterjee K, Henzinger TA, Ibsen-Jensen R, Otop J. *Edit Distance for Pushdown
Automata*. IST Austria; 2015. doi:10.15479/AT:IST-2015-334-v1-1
apa: Chatterjee, K., Henzinger, T. A., Ibsen-Jensen, R., & Otop, J. (2015).
*Edit distance for pushdown automata*. IST Austria. https://doi.org/10.15479/AT:IST-2015-334-v1-1
chicago: Chatterjee, Krishnendu, Thomas A Henzinger, Rasmus Ibsen-Jensen, and Jan
Otop. *Edit Distance for Pushdown Automata*. IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-334-v1-1.
ieee: K. Chatterjee, T. A. Henzinger, R. Ibsen-Jensen, and J. Otop, *Edit distance
for pushdown automata*. IST Austria, 2015.
ista: Chatterjee K, Henzinger TA, Ibsen-Jensen R, Otop J. 2015. Edit distance for
pushdown automata, IST Austria, 15p.
mla: Chatterjee, Krishnendu, et al. *Edit Distance for Pushdown Automata*.
IST Austria, 2015, doi:10.15479/AT:IST-2015-334-v1-1.
short: K. Chatterjee, T.A. Henzinger, R. Ibsen-Jensen, J. Otop, Edit Distance for
Pushdown Automata, IST Austria, 2015.
date_created: 2018-12-12T11:39:20Z
date_published: 2015-05-05T00:00:00Z
date_updated: 2021-01-12T08:02:18Z
day: '05'
ddc:
- '004'
department:
- _id: KrCh
doi: 10.15479/AT:IST-2015-334-v1-1
file:
- access_level: open_access
checksum: 8a5f2d77560e552af87eb1982437a43b
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:53:56Z
date_updated: 2020-07-14T12:46:55Z
file_id: '5518'
file_name: IST-2015-334-v1+1_report.pdf
file_size: 422573
relation: main_file
file_date_updated: 2020-07-14T12:46:55Z
has_accepted_license: '1'
language:
- iso: eng
month: '05'
oa: 1
oa_version: Published Version
page: '15'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '334'
related_material:
record:
- id: '465'
relation: later_version
status: public
- id: '1610'
relation: later_version
status: public
status: public
title: Edit distance for pushdown automata
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '5439'
abstract:
- lang: eng
text: 'The target discounted-sum problem is the following: Given a rational discount
factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite
or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0 w(i)λi equals
t? The problem turns out to relate to many fields of mathematics and computer
science, and its decidability question is surprisingly hard to solve. We solve
the finite version of the problem, and show the hardness of the infinite version,
linking it to various areas and open problems in mathematics and computer science:
β-expansions, discounted-sum automata, piecewise affine maps, and generalizations
of the Cantor set. We provide some partial results to the infinite version, among
which are solutions to its restriction to eventually-periodic sequences and to
the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving
some open problems on discounted-sum automata, among which are the exact-value
problem for nondeterministic automata over finite words and the universality and
inclusion problems for functional automata. '
alternative_title:
- IST Austria Technical Report
author:
- first_name: Udi
full_name: Boker, Udi
id: 31E297B6-F248-11E8-B48F-1D18A9856A87
last_name: Boker
- first_name: Thomas A
full_name: Henzinger, Thomas A
id: 40876CD8-F248-11E8-B48F-1D18A9856A87
last_name: Henzinger
orcid: 0000−0002−2985−7724
- first_name: Jan
full_name: Otop, Jan
id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87
last_name: Otop
citation:
ama: Boker U, Henzinger TA, Otop J. *The Target Discounted-Sum Problem*. IST
Austria; 2015. doi:10.15479/AT:IST-2015-335-v1-1
apa: Boker, U., Henzinger, T. A., & Otop, J. (2015). *The target discounted-sum
problem*. IST Austria. https://doi.org/10.15479/AT:IST-2015-335-v1-1
chicago: Boker, Udi, Thomas A Henzinger, and Jan Otop. *The Target Discounted-Sum
Problem*. IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-335-v1-1.
ieee: U. Boker, T. A. Henzinger, and J. Otop, *The target discounted-sum problem*.
IST Austria, 2015.
ista: Boker U, Henzinger TA, Otop J. 2015. The target discounted-sum problem, IST
Austria, 20p.
mla: Boker, Udi, et al. *The Target Discounted-Sum Problem*. IST Austria, 2015,
doi:10.15479/AT:IST-2015-335-v1-1.
short: U. Boker, T.A. Henzinger, J. Otop, The Target Discounted-Sum Problem, IST
Austria, 2015.
date_created: 2018-12-12T11:39:20Z
date_published: 2015-05-18T00:00:00Z
date_updated: 2021-01-12T08:02:19Z
day: '18'
ddc:
- '004'
- '512'
- '513'
department:
- _id: ToHe
doi: 10.15479/AT:IST-2015-335-v1-1
file:
- access_level: open_access
checksum: 40405907aa012acece1bc26cf0be554d
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:53:55Z
date_updated: 2020-07-14T12:46:55Z
file_id: '5517'
file_name: IST-2015-335-v1+1_report.pdf
file_size: 589619
relation: main_file
file_date_updated: 2020-07-14T12:46:55Z
has_accepted_license: '1'
language:
- iso: eng
month: '05'
oa: 1
oa_version: Published Version
page: '20'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '335'
related_material:
record:
- id: '1659'
relation: later_version
status: public
status: public
title: The target discounted-sum problem
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '5432'
abstract:
- lang: eng
text: "Evolution occurs in populations of reproducing individuals. The structure
of the population affects the outcome of the evolutionary process. Evolutionary
graph theory is a powerful approach to study this phenomenon. There are two graphs.
The interaction graph specifies who interacts with whom in the context of evolution.The
replacement graph specifies who competes with whom for reproduction. \r\nThe vertices
of the two graphs are the same, and each vertex corresponds to an individual of
the population. A key quantity is the fixation probability of a new mutant. It
is defined as the probability that a newly introduced mutant (on a single vertex)
generates a lineage of offspring which eventually takes over the entire population
of resident individuals. The basic computational questions are as follows: (i)
the qualitative question asks whether the fixation probability is positive; and
(ii) the quantitative approximation question asks for an approximation of the
fixation probability. \r\nOur main results are:\r\n(1) We show that the qualitative
question is NP-complete and the quantitative approximation question is #P-hard
in the special case when the interaction and the replacement graphs coincide and
even with the restriction that the resident individuals do not reproduce (which
corresponds to an invading population taking over an empty structure).\r\n(2)
We show that in general the qualitative question is PSPACE-complete and the quantitative
approximation question is PSPACE-hard and can be solved in exponential time.\r\n"
alternative_title:
- IST Austria Technical Report
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Rasmus
full_name: Ibsen-Jensen, Rasmus
id: 3B699956-F248-11E8-B48F-1D18A9856A87
last_name: Ibsen-Jensen
orcid: 0000-0003-4783-0389
- first_name: Martin
full_name: Nowak, Martin
last_name: Nowak
citation:
ama: Chatterjee K, Ibsen-Jensen R, Nowak M. *The Complexity of Evolutionary Games
on Graphs*. IST Austria; 2015. doi:10.15479/AT:IST-2015-323-v1-1
apa: Chatterjee, K., Ibsen-Jensen, R., & Nowak, M. (2015). *The complexity
of evolutionary games on graphs*. IST Austria. https://doi.org/10.15479/AT:IST-2015-323-v1-1
chicago: Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, and Martin Nowak. *The Complexity
of Evolutionary Games on Graphs*. IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-323-v1-1.
ieee: K. Chatterjee, R. Ibsen-Jensen, and M. Nowak, *The complexity of evolutionary
games on graphs*. IST Austria, 2015.
ista: Chatterjee K, Ibsen-Jensen R, Nowak M. 2015. The complexity of evolutionary
games on graphs, IST Austria, 29p.
mla: Chatterjee, Krishnendu, et al. *The Complexity of Evolutionary Games on Graphs*.
IST Austria, 2015, doi:10.15479/AT:IST-2015-323-v1-1.
short: K. Chatterjee, R. Ibsen-Jensen, M. Nowak, The Complexity of Evolutionary
Games on Graphs, IST Austria, 2015.
date_created: 2018-12-12T11:39:18Z
date_published: 2015-02-19T00:00:00Z
date_updated: 2021-01-12T08:02:20Z
day: '19'
ddc:
- '005'
- '576'
department:
- _id: KrCh
doi: 10.15479/AT:IST-2015-323-v1-1
file:
- access_level: open_access
checksum: 546c1b291d545e7b24aaaf4199dac671
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:53:57Z
date_updated: 2020-07-14T12:46:53Z
file_id: '5519'
file_name: IST-2015-323-v1+1_main.pdf
file_size: 576347
relation: main_file
file_date_updated: 2020-07-14T12:46:53Z
has_accepted_license: '1'
language:
- iso: eng
month: '02'
oa: 1
oa_version: Published Version
page: '29'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '323'
related_material:
record:
- id: '5421'
relation: earlier_version
status: public
- id: '5440'
relation: later_version
status: public
status: public
title: The complexity of evolutionary games on graphs
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '5440'
abstract:
- lang: eng
text: 'Evolution occurs in populations of reproducing individuals. The structure
of the population affects the outcome of the evolutionary process. Evolutionary
graph theory is a powerful approach to study this phenomenon. There are two graphs.
The interaction graph specifies who interacts with whom for payoff in the context
of evolution. The replacement graph specifies who competes with whom for reproduction.
The vertices of the two graphs are the same, and each vertex corresponds to an
individual of the population. The fitness (or the reproductive rate) is a non-negative
number, and depends on the payoff. A key quantity is the fixation probability
of a new mutant. It is defined as the probability that a newly introduced mutant
(on a single vertex) generates a lineage of offspring which eventually takes over
the entire population of resident individuals. The basic computational questions
are as follows: (i) the qualitative question asks whether the fixation probability
is positive; and (ii) the quantitative approximation question asks for an approximation
of the fixation probability. Our main results are as follows: First, we consider
a special case of the general problem, where the residents do not reproduce. We
show that the qualitative question is NP-complete, and the quantitative approximation
question is #P-complete, and the hardness results hold even in the special case
where the interaction and the replacement graphs coincide. Second, we show that
in general both the qualitative and the quantitative approximation questions are
PSPACE-complete. The PSPACE-hardness result for quantitative approximation holds
even when the fitness is always positive.'
alternative_title:
- IST Austria Technical Report
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Rasmus
full_name: Ibsen-Jensen, Rasmus
id: 3B699956-F248-11E8-B48F-1D18A9856A87
last_name: Ibsen-Jensen
orcid: 0000-0003-4783-0389
- first_name: Martin
full_name: Nowak, Martin
last_name: Nowak
citation:
ama: Chatterjee K, Ibsen-Jensen R, Nowak M. *The Complexity of Evolutionary Games
on Graphs*. IST Austria; 2015. doi:10.15479/AT:IST-2015-323-v2-2
apa: Chatterjee, K., Ibsen-Jensen, R., & Nowak, M. (2015). *The complexity
of evolutionary games on graphs*. IST Austria. https://doi.org/10.15479/AT:IST-2015-323-v2-2
chicago: Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, and Martin Nowak. *The Complexity
of Evolutionary Games on Graphs*. IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-323-v2-2.
ieee: K. Chatterjee, R. Ibsen-Jensen, and M. Nowak, *The complexity of evolutionary
games on graphs*. IST Austria, 2015.
ista: Chatterjee K, Ibsen-Jensen R, Nowak M. 2015. The complexity of evolutionary
games on graphs, IST Austria, 18p.
mla: Chatterjee, Krishnendu, et al. *The Complexity of Evolutionary Games on Graphs*.
IST Austria, 2015, doi:10.15479/AT:IST-2015-323-v2-2.
short: K. Chatterjee, R. Ibsen-Jensen, M. Nowak, The Complexity of Evolutionary
Games on Graphs, IST Austria, 2015.
date_created: 2018-12-12T11:39:21Z
date_published: 2015-06-16T00:00:00Z
date_updated: 2021-01-12T08:02:20Z
day: '16'
ddc:
- '005'
- '576'
department:
- _id: KrCh
doi: 10.15479/AT:IST-2015-323-v2-2
file:
- access_level: open_access
checksum: 66aace7d367032af97c15e35c9be9636
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:53:23Z
date_updated: 2020-07-14T12:46:56Z
file_id: '5484'
file_name: IST-2015-323-v2+2_main.pdf
file_size: 466161
relation: main_file
file_date_updated: 2020-07-14T12:46:56Z
has_accepted_license: '1'
language:
- iso: eng
month: '06'
oa: 1
oa_version: Published Version
page: '18'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '338'
related_material:
record:
- id: '5421'
relation: earlier_version
status: public
- id: '5432'
relation: earlier_version
status: public
status: public
title: The complexity of evolutionary games on graphs
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...