--- _id: '8272' abstract: - lang: eng text: We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both randomness as well as angelic and demonic non-determinism. Lexicographic order allows to consider multiple objectives with a strict preference order over the satisfaction of the objectives. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. We establish determinacy of such games and present strategy and computational complexity results. For strategy complexity, we show that lexicographically optimal strategies exist that are deterministic and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in NP∩coNP , matching the current known bound for single objectives; and in general the decision problem is PSPACE -hard and can be solved in NEXPTIME∩coNEXPTIME . We present an algorithm that computes the lexicographically optimal strategies via a reduction to computation of optimal strategies in a sequence of single-objectives games. We have implemented our algorithm and report experimental results on various case studies. alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Joost P full_name: Katoen, Joost P id: 4524F760-F248-11E8-B48F-1D18A9856A87 last_name: Katoen - first_name: Maximilian full_name: Weininger, Maximilian last_name: Weininger - first_name: Tobias full_name: Winkler, Tobias last_name: Winkler citation: ama: 'Chatterjee K, Katoen JP, Weininger M, Winkler T. Stochastic games with lexicographic reachability-safety objectives. In: International Conference on Computer Aided Verification. Vol 12225. Springer Nature; 2020:398-420. doi:10.1007/978-3-030-53291-8_21' apa: Chatterjee, K., Katoen, J. P., Weininger, M., & Winkler, T. (2020). Stochastic games with lexicographic reachability-safety objectives. In International Conference on Computer Aided Verification (Vol. 12225, pp. 398–420). Springer Nature. https://doi.org/10.1007/978-3-030-53291-8_21 chicago: Chatterjee, Krishnendu, Joost P Katoen, Maximilian Weininger, and Tobias Winkler. “Stochastic Games with Lexicographic Reachability-Safety Objectives.” In International Conference on Computer Aided Verification, 12225:398–420. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-53291-8_21. ieee: K. Chatterjee, J. P. Katoen, M. Weininger, and T. Winkler, “Stochastic games with lexicographic reachability-safety objectives,” in International Conference on Computer Aided Verification, 2020, vol. 12225, pp. 398–420. ista: 'Chatterjee K, Katoen JP, Weininger M, Winkler T. 2020. Stochastic games with lexicographic reachability-safety objectives. International Conference on Computer Aided Verification. CAV: Computer Aided Verification, LNCS, vol. 12225, 398–420.' mla: Chatterjee, Krishnendu, et al. “Stochastic Games with Lexicographic Reachability-Safety Objectives.” International Conference on Computer Aided Verification, vol. 12225, Springer Nature, 2020, pp. 398–420, doi:10.1007/978-3-030-53291-8_21. short: K. Chatterjee, J.P. Katoen, M. Weininger, T. Winkler, in:, International Conference on Computer Aided Verification, Springer Nature, 2020, pp. 398–420. conference: name: 'CAV: Computer Aided Verification' date_created: 2020-08-16T22:00:58Z date_published: 2020-07-14T00:00:00Z date_updated: 2023-10-03T11:36:13Z day: '14' ddc: - '000' department: - _id: KrCh doi: 10.1007/978-3-030-53291-8_21 ec_funded: 1 external_id: arxiv: - '2005.04018' isi: - '000695272500021' file: - access_level: open_access checksum: 093d4788d7d5b2ce0ffe64fbe7820043 content_type: application/pdf creator: dernst date_created: 2020-08-17T11:32:44Z date_updated: 2020-08-17T11:32:44Z file_id: '8276' file_name: 2020_LNCS_CAV_Chatterjee.pdf file_size: 625056 relation: main_file success: 1 file_date_updated: 2020-08-17T11:32:44Z has_accepted_license: '1' intvolume: ' 12225' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '07' oa: 1 oa_version: Published Version page: 398-420 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification publication: International Conference on Computer Aided Verification publication_identifier: eissn: - '16113349' isbn: - '9783030532901' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12738' relation: later_version status: public scopus_import: '1' status: public title: Stochastic games with lexicographic reachability-safety objectives tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12225 year: '2020' ... --- _id: '7572' abstract: - lang: eng text: The polymerization–depolymerization dynamics of cytoskeletal proteins play essential roles in the self-organization of cytoskeletal structures, in eukaryotic as well as prokaryotic cells. While advances in fluorescence microscopy and in vitro reconstitution experiments have helped to study the dynamic properties of these complex systems, methods that allow to collect and analyze large quantitative datasets of the underlying polymer dynamics are still missing. Here, we present a novel image analysis workflow to study polymerization dynamics of active filaments in a nonbiased, highly automated manner. Using treadmilling filaments of the bacterial tubulin FtsZ as an example, we demonstrate that our method is able to specifically detect, track and analyze growth and shrinkage of polymers, even in dense networks of filaments. We believe that this automated method can facilitate the analysis of a large variety of dynamic cytoskeletal systems, using standard time-lapse movies obtained from experiments in vitro as well as in the living cell. Moreover, we provide scripts implementing this method as supplementary material. alternative_title: - Methods in Cell Biology article_processing_charge: No author: - first_name: Paulo R full_name: Dos Santos Caldas, Paulo R id: 38FCDB4C-F248-11E8-B48F-1D18A9856A87 last_name: Dos Santos Caldas orcid: 0000-0001-6730-4461 - first_name: Philipp full_name: Radler, Philipp id: 40136C2A-F248-11E8-B48F-1D18A9856A87 last_name: Radler orcid: '0000-0001-9198-2182 ' - first_name: Christoph M full_name: Sommer, Christoph M id: 4DF26D8C-F248-11E8-B48F-1D18A9856A87 last_name: Sommer orcid: 0000-0003-1216-9105 - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 citation: ama: 'Dos Santos Caldas PR, Radler P, Sommer CM, Loose M. Computational analysis of filament polymerization dynamics in cytoskeletal networks. In: Tran P, ed. Methods in Cell Biology. Vol 158. Elsevier; 2020:145-161. doi:10.1016/bs.mcb.2020.01.006' apa: Dos Santos Caldas, P. R., Radler, P., Sommer, C. M., & Loose, M. (2020). Computational analysis of filament polymerization dynamics in cytoskeletal networks. In P. Tran (Ed.), Methods in Cell Biology (Vol. 158, pp. 145–161). Elsevier. https://doi.org/10.1016/bs.mcb.2020.01.006 chicago: Dos Santos Caldas, Paulo R, Philipp Radler, Christoph M Sommer, and Martin Loose. “Computational Analysis of Filament Polymerization Dynamics in Cytoskeletal Networks.” In Methods in Cell Biology, edited by Phong Tran, 158:145–61. Elsevier, 2020. https://doi.org/10.1016/bs.mcb.2020.01.006. ieee: P. R. Dos Santos Caldas, P. Radler, C. M. Sommer, and M. Loose, “Computational analysis of filament polymerization dynamics in cytoskeletal networks,” in Methods in Cell Biology, vol. 158, P. Tran, Ed. Elsevier, 2020, pp. 145–161. ista: 'Dos Santos Caldas PR, Radler P, Sommer CM, Loose M. 2020.Computational analysis of filament polymerization dynamics in cytoskeletal networks. In: Methods in Cell Biology. Methods in Cell Biology, vol. 158, 145–161.' mla: Dos Santos Caldas, Paulo R., et al. “Computational Analysis of Filament Polymerization Dynamics in Cytoskeletal Networks.” Methods in Cell Biology, edited by Phong Tran, vol. 158, Elsevier, 2020, pp. 145–61, doi:10.1016/bs.mcb.2020.01.006. short: P.R. Dos Santos Caldas, P. Radler, C.M. Sommer, M. Loose, in:, P. Tran (Ed.), Methods in Cell Biology, Elsevier, 2020, pp. 145–161. date_created: 2020-03-08T23:00:47Z date_published: 2020-02-27T00:00:00Z date_updated: 2023-10-04T09:50:24Z day: '27' department: - _id: MaLo doi: 10.1016/bs.mcb.2020.01.006 ec_funded: 1 editor: - first_name: 'Phong ' full_name: 'Tran, Phong ' last_name: Tran external_id: isi: - '000611826500008' intvolume: ' 158' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/839571 month: '02' oa: 1 oa_version: Preprint page: 145-161 project: - _id: 2595697A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '679239' name: Self-Organization of the Bacterial Cell - _id: 260D98C8-B435-11E9-9278-68D0E5697425 name: Reconstitution of Bacterial Cell Division Using Purified Components publication: Methods in Cell Biology publication_identifier: issn: - 0091679X publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '8358' relation: part_of_dissertation status: public scopus_import: '1' status: public title: Computational analysis of filament polymerization dynamics in cytoskeletal networks type: book_chapter user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 158 year: '2020' ... --- _id: '7387' abstract: - lang: eng text: Most bacteria accomplish cell division with the help of a dynamic protein complex called the divisome, which spans the cell envelope in the plane of division. Assembly and activation of this machinery are coordinated by the tubulin-related GTPase FtsZ, which was found to form treadmilling filaments on supported bilayers in vitro1, as well as in live cells, in which filaments circle around the cell division site2,3. Treadmilling of FtsZ is thought to actively move proteins around the division septum, thereby distributing peptidoglycan synthesis and coordinating the inward growth of the septum to form the new poles of the daughter cells4. However, the molecular mechanisms underlying this function are largely unknown. Here, to study how FtsZ polymerization dynamics are coupled to downstream proteins, we reconstituted part of the bacterial cell division machinery using its purified components FtsZ, FtsA and truncated transmembrane proteins essential for cell division. We found that the membrane-bound cytosolic peptides of FtsN and FtsQ co-migrated with treadmilling FtsZ–FtsA filaments, but despite their directed collective behaviour, individual peptides showed random motion and transient confinement. Our work suggests that divisome proteins follow treadmilling FtsZ filaments by a diffusion-and-capture mechanism, which can give rise to a moving zone of signalling activity at the division site. acknowledgement: We acknowledge members of the Loose laboratory at IST Austria for helpful discussions—in particular, P. Caldas for help with the treadmilling analysis, M. Jimenez, A. Raso and N. Ropero for providing Alexa Fluor 488- and Alexa Fluor 647-labelled FtsA for the MST and analytical ultracentrifugation experiments. We thank C. You for providing the DODA-tris-NTA phospholipids, as well as J. Piehler and C. Richter (Department of Biology, University of Osnabruck, Germany) for the SLIMfast single-molecule tracking software and help with the confinement analysis. We thank J. Errington and H. Murray (both at Newcastle University, UK) for critical reading of the manuscript, and J. Brugués (MPI-CBG and MPI-PKS, Dresden, Germany) for help with the MATLAB programming and reading of the manuscript. This work was supported by the European Research Council through grant ERC-2015-StG-679239 to M.L. and grants HFSP LT 000824/2016-L4 and EMBO ALTF 1163-2015 to N.B., a grant from the Ministry of Economy and Competitiveness of the Spanish Government (BFU2016-75471-C2-1-P) to C.A. and G.R., and a Wellcome Trust Senior Investigator award (101824/Z/13/Z) and a grant from the BBSRC (BB/R017409/1) to W.V. article_processing_charge: No article_type: letter_note author: - first_name: Natalia S. full_name: Baranova, Natalia S. id: 38661662-F248-11E8-B48F-1D18A9856A87 last_name: Baranova orcid: 0000-0002-3086-9124 - first_name: Philipp full_name: Radler, Philipp id: 40136C2A-F248-11E8-B48F-1D18A9856A87 last_name: Radler orcid: '0000-0001-9198-2182 ' - first_name: Víctor M. full_name: Hernández-Rocamora, Víctor M. last_name: Hernández-Rocamora - first_name: Carlos full_name: Alfonso, Carlos last_name: Alfonso - first_name: Maria D full_name: Lopez Pelegrin, Maria D id: 319AA9CE-F248-11E8-B48F-1D18A9856A87 last_name: Lopez Pelegrin - first_name: Germán full_name: Rivas, Germán last_name: Rivas - first_name: Waldemar full_name: Vollmer, Waldemar last_name: Vollmer - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 citation: ama: Baranova NS, Radler P, Hernández-Rocamora VM, et al. Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins. Nature Microbiology. 2020;5:407-417. doi:10.1038/s41564-019-0657-5 apa: Baranova, N. S., Radler, P., Hernández-Rocamora, V. M., Alfonso, C., Lopez Pelegrin, M. D., Rivas, G., … Loose, M. (2020). Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins. Nature Microbiology. Springer Nature. https://doi.org/10.1038/s41564-019-0657-5 chicago: Baranova, Natalia S., Philipp Radler, Víctor M. Hernández-Rocamora, Carlos Alfonso, Maria D Lopez Pelegrin, Germán Rivas, Waldemar Vollmer, and Martin Loose. “Diffusion and Capture Permits Dynamic Coupling between Treadmilling FtsZ Filaments and Cell Division Proteins.” Nature Microbiology. Springer Nature, 2020. https://doi.org/10.1038/s41564-019-0657-5. ieee: N. S. Baranova et al., “Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins,” Nature Microbiology, vol. 5. Springer Nature, pp. 407–417, 2020. ista: Baranova NS, Radler P, Hernández-Rocamora VM, Alfonso C, Lopez Pelegrin MD, Rivas G, Vollmer W, Loose M. 2020. Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins. Nature Microbiology. 5, 407–417. mla: Baranova, Natalia S., et al. “Diffusion and Capture Permits Dynamic Coupling between Treadmilling FtsZ Filaments and Cell Division Proteins.” Nature Microbiology, vol. 5, Springer Nature, 2020, pp. 407–17, doi:10.1038/s41564-019-0657-5. short: N.S. Baranova, P. Radler, V.M. Hernández-Rocamora, C. Alfonso, M.D. Lopez Pelegrin, G. Rivas, W. Vollmer, M. Loose, Nature Microbiology 5 (2020) 407–417. date_created: 2020-01-28T16:14:41Z date_published: 2020-01-20T00:00:00Z date_updated: 2023-10-06T12:22:38Z day: '20' department: - _id: MaLo doi: 10.1038/s41564-019-0657-5 ec_funded: 1 external_id: isi: - '000508584700007' pmid: - '31959972' intvolume: ' 5' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://europepmc.org/article/PMC/7048620 month: '01' oa: 1 oa_version: Submitted Version page: 407-417 pmid: 1 project: - _id: 2595697A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '679239' name: Self-Organization of the Bacterial Cell - _id: 259B655A-B435-11E9-9278-68D0E5697425 grant_number: LT000824/2016 name: Reconstitution of bacterial cell wall sythesis - _id: 2596EAB6-B435-11E9-9278-68D0E5697425 grant_number: ALTF 2015-1163 name: Synthesis of bacterial cell wall publication: Nature Microbiology publication_identifier: issn: - 2058-5276 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/little-cell-big-cover-story/ record: - id: '14280' relation: dissertation_contains status: public scopus_import: '1' status: public title: Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2020' ... --- _id: '8163' abstract: - lang: eng text: Fejes Tóth [3] studied approximations of smooth surfaces in three-space by piecewise flat triangular meshes with a given number of vertices on the surface that are optimal with respect to Hausdorff distance. He proves that this Hausdorff distance decreases inversely proportional with the number of vertices of the approximating mesh if the surface is convex. He also claims that this Hausdorff distance is inversely proportional to the square of the number of vertices for a specific non-convex surface, namely a one-sheeted hyperboloid of revolution bounded by two congruent circles. We refute this claim, and show that the asymptotic behavior of the Hausdorff distance is linear, that is the same as for convex surfaces. acknowledgement: "The authors are greatly indebted to Dror Atariah, Günther Rote and John Sullivan for discussion and suggestions. The authors also thank Jean-Daniel Boissonnat, Ramsay Dyer, David de Laat and Rien van de Weijgaert for discussion. This work has been supported in part by the European Union’s Seventh Framework Programme for Research of the\r\nEuropean Commission, under FET-Open grant number 255827 (CGL Computational Geometry Learning) and ERC Grant Agreement number 339025 GUDHI (Algorithmic Foundations of Geometry Understanding in Higher Dimensions), the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement number 754411,and the Austrian Science Fund (FWF): Z00342 N31." article_processing_charge: No article_type: original author: - first_name: Gert full_name: Vegter, Gert last_name: Vegter - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Vegter G, Wintraecken M. Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. 2020;57(2):193-199. doi:10.1556/012.2020.57.2.1454 apa: Vegter, G., & Wintraecken, M. (2020). Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. Akadémiai Kiadó. https://doi.org/10.1556/012.2020.57.2.1454 chicago: Vegter, Gert, and Mathijs Wintraecken. “Refutation of a Claim Made by Fejes Tóth on the Accuracy of Surface Meshes.” Studia Scientiarum Mathematicarum Hungarica. Akadémiai Kiadó, 2020. https://doi.org/10.1556/012.2020.57.2.1454. ieee: G. Vegter and M. Wintraecken, “Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes,” Studia Scientiarum Mathematicarum Hungarica, vol. 57, no. 2. Akadémiai Kiadó, pp. 193–199, 2020. ista: Vegter G, Wintraecken M. 2020. Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. 57(2), 193–199. mla: Vegter, Gert, and Mathijs Wintraecken. “Refutation of a Claim Made by Fejes Tóth on the Accuracy of Surface Meshes.” Studia Scientiarum Mathematicarum Hungarica, vol. 57, no. 2, Akadémiai Kiadó, 2020, pp. 193–99, doi:10.1556/012.2020.57.2.1454. short: G. Vegter, M. Wintraecken, Studia Scientiarum Mathematicarum Hungarica 57 (2020) 193–199. date_created: 2020-07-24T07:09:18Z date_published: 2020-07-24T00:00:00Z date_updated: 2023-10-10T13:05:27Z day: '24' ddc: - '510' department: - _id: HeEd doi: 10.1556/012.2020.57.2.1454 ec_funded: 1 external_id: isi: - '000570978400005' file: - access_level: open_access content_type: application/pdf creator: mwintrae date_created: 2020-07-24T07:09:06Z date_updated: 2020-07-24T07:09:06Z file_id: '8164' file_name: 57-2-05_4214-1454Vegter-Wintraecken_OpenAccess_CC-BY-NC.pdf file_size: 1476072 relation: main_file file_date_updated: 2020-07-24T07:09:06Z has_accepted_license: '1' intvolume: ' 57' isi: 1 issue: '2' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '07' oa: 1 oa_version: Published Version page: 193-199 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize publication: Studia Scientiarum Mathematicarum Hungarica publication_identifier: eissn: - 1588-2896 issn: - 0081-6906 publication_status: published publisher: Akadémiai Kiadó quality_controlled: '1' scopus_import: '1' status: public title: Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 57 year: '2020' ... --- _id: '8671' abstract: - lang: eng text: 'We study relations between evidence theory and S-approximation spaces. Both theories have their roots in the analysis of Dempsterchr(''39'')s multivalued mappings and lower and upper probabilities, and have close relations to rough sets. We show that an S-approximation space, satisfying a monotonicity condition, can induce a natural belief structure which is a fundamental block in evidence theory. We also demonstrate that one can induce a natural belief structure on one set, given a belief structure on another set, if the two sets are related by a partial monotone S-approximation space. ' acknowledgement: We are very grateful to the anonymous reviewer for detailed comments and suggestions that significantly improved the presentation of this paper. The research was partially supported by a DOC fellowship of the Austrian Academy of Sciences. article_processing_charge: No article_type: original author: - first_name: A. full_name: Shakiba, A. last_name: Shakiba - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: M.R. full_name: Hooshmandasl, M.R. last_name: Hooshmandasl - first_name: M. full_name: Alambardar Meybodi, M. last_name: Alambardar Meybodi citation: ama: Shakiba A, Goharshady AK, Hooshmandasl MR, Alambardar Meybodi M. A note on belief structures and s-approximation spaces. Iranian Journal of Mathematical Sciences and Informatics. 2020;15(2):117-128. doi:10.29252/ijmsi.15.2.117 apa: Shakiba, A., Goharshady, A. K., Hooshmandasl, M. R., & Alambardar Meybodi, M. (2020). A note on belief structures and s-approximation spaces. Iranian Journal of Mathematical Sciences and Informatics. Iranian Academic Center for Education, Culture and Research. https://doi.org/10.29252/ijmsi.15.2.117 chicago: Shakiba, A., Amir Kafshdar Goharshady, M.R. Hooshmandasl, and M. Alambardar Meybodi. “A Note on Belief Structures and S-Approximation Spaces.” Iranian Journal of Mathematical Sciences and Informatics. Iranian Academic Center for Education, Culture and Research, 2020. https://doi.org/10.29252/ijmsi.15.2.117. ieee: A. Shakiba, A. K. Goharshady, M. R. Hooshmandasl, and M. Alambardar Meybodi, “A note on belief structures and s-approximation spaces,” Iranian Journal of Mathematical Sciences and Informatics, vol. 15, no. 2. Iranian Academic Center for Education, Culture and Research, pp. 117–128, 2020. ista: Shakiba A, Goharshady AK, Hooshmandasl MR, Alambardar Meybodi M. 2020. A note on belief structures and s-approximation spaces. Iranian Journal of Mathematical Sciences and Informatics. 15(2), 117–128. mla: Shakiba, A., et al. “A Note on Belief Structures and S-Approximation Spaces.” Iranian Journal of Mathematical Sciences and Informatics, vol. 15, no. 2, Iranian Academic Center for Education, Culture and Research, 2020, pp. 117–28, doi:10.29252/ijmsi.15.2.117. short: A. Shakiba, A.K. Goharshady, M.R. Hooshmandasl, M. Alambardar Meybodi, Iranian Journal of Mathematical Sciences and Informatics 15 (2020) 117–128. date_created: 2020-10-18T22:01:36Z date_published: 2020-10-01T00:00:00Z date_updated: 2023-10-16T09:25:00Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.29252/ijmsi.15.2.117 external_id: arxiv: - '1805.10672' file: - access_level: open_access checksum: f299661a6d51cda6d255a76be696f48d content_type: application/pdf creator: dernst date_created: 2020-10-19T11:14:20Z date_updated: 2020-10-19T11:14:20Z file_id: '8676' file_name: 2020_ijmsi_Shakiba_accepted.pdf file_size: 261688 relation: main_file success: 1 file_date_updated: 2020-10-19T11:14:20Z has_accepted_license: '1' intvolume: ' 15' issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 117-128 project: - _id: 267066CE-B435-11E9-9278-68D0E5697425 name: Quantitative Analysis of Probablistic Systems with a focus on Crypto-currencies publication: Iranian Journal of Mathematical Sciences and Informatics publication_identifier: eissn: - 2008-9473 issn: - 1735-4463 publication_status: published publisher: Iranian Academic Center for Education, Culture and Research quality_controlled: '1' scopus_import: '1' status: public title: A note on belief structures and s-approximation spaces type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2020' ... --- _id: '6359' abstract: - lang: eng text: The strong rate of convergence of the Euler-Maruyama scheme for nondegenerate SDEs with irregular drift coefficients is considered. In the case of α-Hölder drift in the recent literature the rate α/2 was proved in many related situations. By exploiting the regularising effect of the noise more efficiently, we show that the rate is in fact arbitrarily close to 1/2 for all α>0. The result extends to Dini continuous coefficients, while in d=1 also to all bounded measurable coefficients. article_number: '82' article_processing_charge: No article_type: original author: - first_name: Konstantinos full_name: Dareiotis, Konstantinos last_name: Dareiotis - first_name: Mate full_name: Gerencser, Mate id: 44ECEDF2-F248-11E8-B48F-1D18A9856A87 last_name: Gerencser citation: ama: Dareiotis K, Gerencser M. On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift. Electronic Journal of Probability. 2020;25. doi:10.1214/20-EJP479 apa: Dareiotis, K., & Gerencser, M. (2020). On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift. Electronic Journal of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/20-EJP479 chicago: Dareiotis, Konstantinos, and Mate Gerencser. “On the Regularisation of the Noise for the Euler-Maruyama Scheme with Irregular Drift.” Electronic Journal of Probability. Institute of Mathematical Statistics, 2020. https://doi.org/10.1214/20-EJP479. ieee: K. Dareiotis and M. Gerencser, “On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift,” Electronic Journal of Probability, vol. 25. Institute of Mathematical Statistics, 2020. ista: Dareiotis K, Gerencser M. 2020. On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift. Electronic Journal of Probability. 25, 82. mla: Dareiotis, Konstantinos, and Mate Gerencser. “On the Regularisation of the Noise for the Euler-Maruyama Scheme with Irregular Drift.” Electronic Journal of Probability, vol. 25, 82, Institute of Mathematical Statistics, 2020, doi:10.1214/20-EJP479. short: K. Dareiotis, M. Gerencser, Electronic Journal of Probability 25 (2020). date_created: 2019-04-30T07:40:17Z date_published: 2020-07-16T00:00:00Z date_updated: 2023-10-16T09:22:50Z day: '16' ddc: - '510' department: - _id: JaMa doi: 10.1214/20-EJP479 external_id: arxiv: - '1812.04583' isi: - '000550150700001' file: - access_level: open_access checksum: 8e7c42e72596f6889d786e8e8b89994f content_type: application/pdf creator: dernst date_created: 2020-09-21T13:15:02Z date_updated: 2020-09-21T13:15:02Z file_id: '8549' file_name: 2020_EJournProbab_Dareiotis.pdf file_size: 273042 relation: main_file success: 1 file_date_updated: 2020-09-21T13:15:02Z has_accepted_license: '1' intvolume: ' 25' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Electronic Journal of Probability publication_identifier: eissn: - 1083-6489 publication_status: published publisher: Institute of Mathematical Statistics quality_controlled: '1' scopus_import: '1' status: public title: On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2020' ... --- _id: '8390' abstract: - lang: eng text: "Deep neural networks have established a new standard for data-dependent feature extraction pipelines in the Computer Vision literature. Despite their remarkable performance in the standard supervised learning scenario, i.e. when models are trained with labeled data and tested on samples that follow a similar distribution, neural networks have been shown to struggle with more advanced generalization abilities, such as transferring knowledge across visually different domains, or generalizing to new unseen combinations of known concepts. In this thesis we argue that, in contrast to the usual black-box behavior of neural networks, leveraging more structured internal representations is a promising direction\r\nfor tackling such problems. In particular, we focus on two forms of structure. First, we tackle modularity: We show that (i) compositional architectures are a natural tool for modeling reasoning tasks, in that they efficiently capture their combinatorial nature, which is key for generalizing beyond the compositions seen during training. We investigate how to to learn such models, both formally and experimentally, for the task of abstract visual reasoning. Then, we show that (ii) in some settings, modularity allows us to efficiently break down complex tasks into smaller, easier, modules, thereby improving computational efficiency; We study this behavior in the context of generative models for colorization, as well as for small objects detection. Secondly, we investigate the inherently layered structure of representations learned by neural networks, and analyze its role in the context of transfer learning and domain adaptation across visually\r\ndissimilar domains. " acknowledged_ssus: - _id: CampIT - _id: ScienComp acknowledgement: Last but not least, I would like to acknowledge the support of the IST IT and scientific computing team for helping provide a great work environment. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Amélie full_name: Royer, Amélie id: 3811D890-F248-11E8-B48F-1D18A9856A87 last_name: Royer orcid: 0000-0002-8407-0705 citation: ama: Royer A. Leveraging structure in Computer Vision tasks for flexible Deep Learning models. 2020. doi:10.15479/AT:ISTA:8390 apa: Royer, A. (2020). Leveraging structure in Computer Vision tasks for flexible Deep Learning models. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8390 chicago: Royer, Amélie. “Leveraging Structure in Computer Vision Tasks for Flexible Deep Learning Models.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8390. ieee: A. Royer, “Leveraging structure in Computer Vision tasks for flexible Deep Learning models,” Institute of Science and Technology Austria, 2020. ista: Royer A. 2020. Leveraging structure in Computer Vision tasks for flexible Deep Learning models. Institute of Science and Technology Austria. mla: Royer, Amélie. Leveraging Structure in Computer Vision Tasks for Flexible Deep Learning Models. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8390. short: A. Royer, Leveraging Structure in Computer Vision Tasks for Flexible Deep Learning Models, Institute of Science and Technology Austria, 2020. date_created: 2020-09-14T13:42:09Z date_published: 2020-09-14T00:00:00Z date_updated: 2023-10-16T10:04:02Z day: '14' ddc: - '000' degree_awarded: PhD department: - _id: ChLa doi: 10.15479/AT:ISTA:8390 file: - access_level: open_access checksum: c914d2f88846032f3d8507734861b6ee content_type: application/pdf creator: dernst date_created: 2020-09-14T13:39:14Z date_updated: 2020-09-14T13:39:14Z file_id: '8391' file_name: 2020_Thesis_Royer.pdf file_size: 30224591 relation: main_file success: 1 - access_level: closed checksum: ae98fb35d912cff84a89035ae5794d3c content_type: application/x-zip-compressed creator: dernst date_created: 2020-09-14T13:39:17Z date_updated: 2020-09-14T13:39:17Z file_id: '8392' file_name: thesis_sources.zip file_size: 74227627 relation: main_file file_date_updated: 2020-09-14T13:39:17Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '09' oa: 1 oa_version: Published Version page: '197' publication_identifier: isbn: - 978-3-99078-007-7 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7936' relation: part_of_dissertation status: public - id: '7937' relation: part_of_dissertation status: public - id: '8193' relation: part_of_dissertation status: public - id: '8092' relation: part_of_dissertation status: public - id: '911' relation: part_of_dissertation status: public status: public supervisor: - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 title: Leveraging structure in Computer Vision tasks for flexible Deep Learning models tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8186' abstract: - lang: eng text: "Numerous methods have been proposed for probabilistic generative modelling of\r\n3D objects. However, none of these is able to produce textured objects, which\r\nrenders them of limited use for practical tasks. In this work, we present the\r\nfirst generative model of textured 3D meshes. Training such a model would\r\ntraditionally require a large dataset of textured meshes, but unfortunately,\r\nexisting datasets of meshes lack detailed textures. We instead propose a new\r\ntraining methodology that allows learning from collections of 2D images without\r\nany 3D information. To do so, we train our model to explain a distribution of\r\nimages by modelling each image as a 3D foreground object placed in front of a\r\n2D background. Thus, it learns to generate meshes that when rendered, produce\r\nimages similar to those in its training set.\r\n A well-known problem when generating meshes with deep networks is the\r\nemergence of self-intersections, which are problematic for many use-cases. As a\r\nsecond contribution we therefore introduce a new generation process for 3D\r\nmeshes that guarantees no self-intersections arise, based on the physical\r\nintuition that faces should push one another out of the way as they move.\r\n We conduct extensive experiments on our approach, reporting quantitative and\r\nqualitative results on both synthetic data and natural images. These show our\r\nmethod successfully learns to generate plausible and diverse textured 3D\r\nsamples for five challenging object classes." article_processing_charge: No author: - first_name: Paul M full_name: Henderson, Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 - first_name: Vagia full_name: Tsiminaki, Vagia last_name: Tsiminaki - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 citation: ama: 'Henderson PM, Tsiminaki V, Lampert C. Leveraging 2D data to learn textured 3D mesh generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE; 2020:7498-7507. doi:10.1109/CVPR42600.2020.00752' apa: 'Henderson, P. M., Tsiminaki, V., & Lampert, C. (2020). Leveraging 2D data to learn textured 3D mesh generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7498–7507). Virtual: IEEE. https://doi.org/10.1109/CVPR42600.2020.00752' chicago: Henderson, Paul M, Vagia Tsiminaki, and Christoph Lampert. “Leveraging 2D Data to Learn Textured 3D Mesh Generation.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7498–7507. IEEE, 2020. https://doi.org/10.1109/CVPR42600.2020.00752. ieee: P. M. Henderson, V. Tsiminaki, and C. Lampert, “Leveraging 2D data to learn textured 3D mesh generation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 2020, pp. 7498–7507. ista: 'Henderson PM, Tsiminaki V, Lampert C. 2020. Leveraging 2D data to learn textured 3D mesh generation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR: Conference on Computer Vision and Pattern Recognition, 7498–7507.' mla: Henderson, Paul M., et al. “Leveraging 2D Data to Learn Textured 3D Mesh Generation.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020, pp. 7498–507, doi:10.1109/CVPR42600.2020.00752. short: P.M. Henderson, V. Tsiminaki, C. Lampert, in:, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020, pp. 7498–7507. conference: end_date: 2020-06-19 location: Virtual name: 'CVPR: Conference on Computer Vision and Pattern Recognition' start_date: 2020-06-14 date_created: 2020-07-31T16:53:49Z date_published: 2020-07-01T00:00:00Z date_updated: 2023-10-17T07:37:11Z day: '01' ddc: - '004' department: - _id: ChLa doi: 10.1109/CVPR42600.2020.00752 external_id: arxiv: - '2004.04180' file: - access_level: open_access content_type: application/pdf creator: phenders date_created: 2020-07-31T16:57:12Z date_updated: 2020-07-31T16:57:12Z file_id: '8187' file_name: paper.pdf file_size: 10262773 relation: main_file success: 1 file_date_updated: 2020-07-31T16:57:12Z has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://openaccess.thecvf.com/content_CVPR_2020/papers/Henderson_Leveraging_2D_Data_to_Learn_Textured_3D_Mesh_Generation_CVPR_2020_paper.pdf month: '07' oa: 1 oa_version: Submitted Version page: 7498-7507 publication: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition publication_identifier: eisbn: - '9781728171685' eissn: - 2575-7075 publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Leveraging 2D data to learn textured 3D mesh generation type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7416' abstract: - lang: eng text: Earlier, we demonstrated that transcript levels of METAL TOLERANCE PROTEIN2 (MTP2) and of HEAVY METAL ATPase2 (HMA2) increase strongly in roots of Arabidopsis upon prolonged zinc (Zn) deficiency and respond to shoot physiological Zn status, and not to the local Zn status in roots. This provided evidence for shoot-to-root communication in the acclimation of plants to Zn deficiency. Zn-deficient soils limit both the yield and quality of agricultural crops and can result in clinically relevant nutritional Zn deficiency in human populations. Implementing Zn deficiency during cultivation of the model plant Arabidopsis thaliana on agar-solidified media is difficult because trace element contaminations are present in almost all commercially available agars. Here, we demonstrate root morphological acclimations to Zn deficiency on agar-solidified medium following the effective removal of contaminants. These advancements allow reproducible phenotyping toward understanding fundamental plant responses to deficiencies of Zn and other essential trace elements. article_number: '1687175' article_processing_charge: No article_type: original author: - first_name: Scott A full_name: Sinclair, Scott A id: 2D99FE6A-F248-11E8-B48F-1D18A9856A87 last_name: Sinclair orcid: 0000-0002-4566-0593 - first_name: U. full_name: Krämer, U. last_name: Krämer citation: ama: Sinclair SA, Krämer U. Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation. Plant Signaling & Behavior. 2020;15(1). doi:10.1080/15592324.2019.1687175 apa: Sinclair, S. A., & Krämer, U. (2020). Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation. Plant Signaling & Behavior. Taylor & Francis. https://doi.org/10.1080/15592324.2019.1687175 chicago: Sinclair, Scott A, and U. Krämer. “Generation of Effective Zinc-Deficient Agar-Solidified Media Allows Identification of Root Morphology Changes in Response to Zinc Limitation.” Plant Signaling & Behavior. Taylor & Francis, 2020. https://doi.org/10.1080/15592324.2019.1687175. ieee: S. A. Sinclair and U. Krämer, “Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation,” Plant Signaling & Behavior, vol. 15, no. 1. Taylor & Francis, 2020. ista: Sinclair SA, Krämer U. 2020. Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation. Plant Signaling & Behavior. 15(1), 1687175. mla: Sinclair, Scott A., and U. Krämer. “Generation of Effective Zinc-Deficient Agar-Solidified Media Allows Identification of Root Morphology Changes in Response to Zinc Limitation.” Plant Signaling & Behavior, vol. 15, no. 1, 1687175, Taylor & Francis, 2020, doi:10.1080/15592324.2019.1687175. short: S.A. Sinclair, U. Krämer, Plant Signaling & Behavior 15 (2020). date_created: 2020-01-30T10:12:04Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-10-17T09:01:48Z day: '01' department: - _id: JiFr doi: 10.1080/15592324.2019.1687175 external_id: isi: - '000494909300001' pmid: - '31696764' intvolume: ' 15' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012054 month: '01' oa: 1 oa_version: Submitted Version pmid: 1 publication: Plant Signaling & Behavior publication_identifier: issn: - 1559-2324 publication_status: published publisher: Taylor & Francis quality_controlled: '1' scopus_import: '1' status: public title: Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2020' ... --- _id: '9196' abstract: - lang: eng text: In order to provide a local description of a regular function in a small neighbourhood of a point x, it is sufficient by Taylor’s theorem to know the value of the function as well as all of its derivatives up to the required order at the point x itself. In other words, one could say that a regular function is locally modelled by the set of polynomials. The theory of regularity structures due to Hairer generalizes this observation and provides an abstract setup, which in the application to singular SPDE extends the set of polynomials by functionals constructed from, e.g., white noise. In this context, the notion of Taylor polynomials is lifted to the notion of so-called modelled distributions. The celebrated reconstruction theorem, which in turn was inspired by Gubinelli’s \textit {sewing lemma}, is of paramount importance for the theory. It enables one to reconstruct a modelled distribution as a true distribution on Rd which is locally approximated by this extended set of models or “monomials”. In the original work of Hairer, the error is measured by means of Hölder norms. This was then generalized to the whole scale of Besov spaces by Hairer and Labbé. It is the aim of this work to adapt the analytic part of the theory of regularity structures to the scale of Triebel–Lizorkin spaces. article_processing_charge: No article_type: original author: - first_name: Sebastian full_name: Hensel, Sebastian id: 4D23B7DA-F248-11E8-B48F-1D18A9856A87 last_name: Hensel orcid: 0000-0001-7252-8072 - first_name: Tommaso full_name: Rosati, Tommaso last_name: Rosati citation: ama: Hensel S, Rosati T. Modelled distributions of Triebel–Lizorkin type. Studia Mathematica. 2020;252(3):251-297. doi:10.4064/sm180411-11-2 apa: Hensel, S., & Rosati, T. (2020). Modelled distributions of Triebel–Lizorkin type. Studia Mathematica. Instytut Matematyczny. https://doi.org/10.4064/sm180411-11-2 chicago: Hensel, Sebastian, and Tommaso Rosati. “Modelled Distributions of Triebel–Lizorkin Type.” Studia Mathematica. Instytut Matematyczny, 2020. https://doi.org/10.4064/sm180411-11-2. ieee: S. Hensel and T. Rosati, “Modelled distributions of Triebel–Lizorkin type,” Studia Mathematica, vol. 252, no. 3. Instytut Matematyczny, pp. 251–297, 2020. ista: Hensel S, Rosati T. 2020. Modelled distributions of Triebel–Lizorkin type. Studia Mathematica. 252(3), 251–297. mla: Hensel, Sebastian, and Tommaso Rosati. “Modelled Distributions of Triebel–Lizorkin Type.” Studia Mathematica, vol. 252, no. 3, Instytut Matematyczny, 2020, pp. 251–97, doi:10.4064/sm180411-11-2. short: S. Hensel, T. Rosati, Studia Mathematica 252 (2020) 251–297. date_created: 2021-02-25T08:55:03Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-10-17T09:15:53Z day: '01' department: - _id: JuFi - _id: GradSch doi: 10.4064/sm180411-11-2 external_id: arxiv: - '1709.05202' isi: - '000558100500002' intvolume: ' 252' isi: 1 issue: '3' keyword: - General Mathematics language: - iso: eng month: '03' oa_version: Preprint page: 251-297 publication: Studia Mathematica publication_identifier: eissn: - 1730-6337 issn: - 0039-3223 publication_status: published publisher: Instytut Matematyczny quality_controlled: '1' scopus_import: '1' status: public title: Modelled distributions of Triebel–Lizorkin type type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 252 year: '2020' ...