--- _id: '9104' abstract: - lang: eng text: We consider the free additive convolution of two probability measures μ and ν on the real line and show that μ ⊞ v is supported on a single interval if μ and ν each has single interval support. Moreover, the density of μ ⊞ ν is proven to vanish as a square root near the edges of its support if both μ and ν have power law behavior with exponents between −1 and 1 near their edges. In particular, these results show the ubiquity of the conditions in our recent work on optimal local law at the spectral edges for addition of random matrices [5]. acknowledgement: "Supported in part by Hong Kong RGC Grant ECS 26301517.\r\nSupported in part by ERC Advanced Grant RANMAT No. 338804.\r\nSupported in part by the Knut and Alice Wallenberg Foundation and the Swedish Research Council Grant VR-2017-05195." article_processing_charge: No article_type: original author: - first_name: Zhigang full_name: Bao, Zhigang id: 442E6A6C-F248-11E8-B48F-1D18A9856A87 last_name: Bao orcid: 0000-0003-3036-1475 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Kevin full_name: Schnelli, Kevin id: 434AD0AE-F248-11E8-B48F-1D18A9856A87 last_name: Schnelli orcid: 0000-0003-0954-3231 citation: ama: Bao Z, Erdös L, Schnelli K. On the support of the free additive convolution. Journal d’Analyse Mathematique. 2020;142:323-348. doi:10.1007/s11854-020-0135-2 apa: Bao, Z., Erdös, L., & Schnelli, K. (2020). On the support of the free additive convolution. Journal d’Analyse Mathematique. Springer Nature. https://doi.org/10.1007/s11854-020-0135-2 chicago: Bao, Zhigang, László Erdös, and Kevin Schnelli. “On the Support of the Free Additive Convolution.” Journal d’Analyse Mathematique. Springer Nature, 2020. https://doi.org/10.1007/s11854-020-0135-2. ieee: Z. Bao, L. Erdös, and K. Schnelli, “On the support of the free additive convolution,” Journal d’Analyse Mathematique, vol. 142. Springer Nature, pp. 323–348, 2020. ista: Bao Z, Erdös L, Schnelli K. 2020. On the support of the free additive convolution. Journal d’Analyse Mathematique. 142, 323–348. mla: Bao, Zhigang, et al. “On the Support of the Free Additive Convolution.” Journal d’Analyse Mathematique, vol. 142, Springer Nature, 2020, pp. 323–48, doi:10.1007/s11854-020-0135-2. short: Z. Bao, L. Erdös, K. Schnelli, Journal d’Analyse Mathematique 142 (2020) 323–348. date_created: 2021-02-07T23:01:15Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-08-24T11:16:03Z day: '01' department: - _id: LaEr doi: 10.1007/s11854-020-0135-2 ec_funded: 1 external_id: arxiv: - '1804.11199' isi: - '000611879400008' intvolume: ' 142' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.11199 month: '11' oa: 1 oa_version: Preprint page: 323-348 project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Journal d'Analyse Mathematique publication_identifier: eissn: - '15658538' issn: - '00217670' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: On the support of the free additive convolution type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 142 year: '2020' ... --- _id: '13071' abstract: - lang: eng text: This dataset comprises all data shown in the plots of the main part of the submitted article "Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State". Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Harald full_name: Schwefel, Harald last_name: Schwefel - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Hease WJ, Rueda Sanchez AR, Sahu R, et al. Bidirectional electro-optic wavelength conversion in the quantum ground state. 2020. doi:10.5281/ZENODO.4266025 apa: Hease, W. J., Rueda Sanchez, A. R., Sahu, R., Wulf, M., Arnold, G. M., Schwefel, H., & Fink, J. M. (2020). Bidirectional electro-optic wavelength conversion in the quantum ground state. Zenodo. https://doi.org/10.5281/ZENODO.4266025 chicago: Hease, William J, Alfredo R Rueda Sanchez, Rishabh Sahu, Matthias Wulf, Georg M Arnold, Harald Schwefel, and Johannes M Fink. “Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State.” Zenodo, 2020. https://doi.org/10.5281/ZENODO.4266025. ieee: W. J. Hease et al., “Bidirectional electro-optic wavelength conversion in the quantum ground state.” Zenodo, 2020. ista: Hease WJ, Rueda Sanchez AR, Sahu R, Wulf M, Arnold GM, Schwefel H, Fink JM. 2020. Bidirectional electro-optic wavelength conversion in the quantum ground state, Zenodo, 10.5281/ZENODO.4266025. mla: Hease, William J., et al. Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State. Zenodo, 2020, doi:10.5281/ZENODO.4266025. short: W.J. Hease, A.R. Rueda Sanchez, R. Sahu, M. Wulf, G.M. Arnold, H. Schwefel, J.M. Fink, (2020). date_created: 2023-05-23T16:44:11Z date_published: 2020-11-10T00:00:00Z date_updated: 2023-08-24T11:16:35Z day: '10' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.4266025 license: https://creativecommons.org/licenses/by/4.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.4266026 month: '11' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '9114' relation: used_in_publication status: public status: public title: Bidirectional electro-optic wavelength conversion in the quantum ground state tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '9195' abstract: - lang: eng text: Quantum information technology based on solid state qubits has created much interest in converting quantum states from the microwave to the optical domain. Optical photons, unlike microwave photons, can be transmitted by fiber, making them suitable for long distance quantum communication. Moreover, the optical domain offers access to a large set of very well‐developed quantum optical tools, such as highly efficient single‐photon detectors and long‐lived quantum memories. For a high fidelity microwave to optical transducer, efficient conversion at single photon level and low added noise is needed. Currently, the most promising approaches to build such systems are based on second‐order nonlinear phenomena such as optomechanical and electro‐optic interactions. Alternative approaches, although not yet as efficient, include magneto‐optical coupling and schemes based on isolated quantum systems like atoms, ions, or quantum dots. Herein, the necessary theoretical foundations for the most important microwave‐to‐optical conversion experiments are provided, their implementations are described, and the current limitations and future prospects are discussed. acknowledgement: The authors thank Amita Deb for useful comments on this manuscript. The authors acknowledge support from the MBIE of New Zealand Endeavour Smart Ideas fund. The reference numbers in Figure 8 were corrected in April 2020, after online publication. article_number: '1900077' article_processing_charge: No article_type: original author: - first_name: Nicholas J. full_name: Lambert, Nicholas J. last_name: Lambert - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Harald G. L. full_name: Schwefel, Harald G. L. last_name: Schwefel citation: ama: Lambert NJ, Rueda Sanchez AR, Sedlmeir F, Schwefel HGL. Coherent conversion between microwave and optical photons - An overview of physical implementations. Advanced Quantum Technologies. 2020;3(1). doi:10.1002/qute.201900077 apa: Lambert, N. J., Rueda Sanchez, A. R., Sedlmeir, F., & Schwefel, H. G. L. (2020). Coherent conversion between microwave and optical photons - An overview of physical implementations. Advanced Quantum Technologies. Wiley. https://doi.org/10.1002/qute.201900077 chicago: Lambert, Nicholas J., Alfredo R Rueda Sanchez, Florian Sedlmeir, and Harald G. L. Schwefel. “Coherent Conversion between Microwave and Optical Photons - An Overview of Physical Implementations.” Advanced Quantum Technologies. Wiley, 2020. https://doi.org/10.1002/qute.201900077. ieee: N. J. Lambert, A. R. Rueda Sanchez, F. Sedlmeir, and H. G. L. Schwefel, “Coherent conversion between microwave and optical photons - An overview of physical implementations,” Advanced Quantum Technologies, vol. 3, no. 1. Wiley, 2020. ista: Lambert NJ, Rueda Sanchez AR, Sedlmeir F, Schwefel HGL. 2020. Coherent conversion between microwave and optical photons - An overview of physical implementations. Advanced Quantum Technologies. 3(1), 1900077. mla: Lambert, Nicholas J., et al. “Coherent Conversion between Microwave and Optical Photons - An Overview of Physical Implementations.” Advanced Quantum Technologies, vol. 3, no. 1, 1900077, Wiley, 2020, doi:10.1002/qute.201900077. short: N.J. Lambert, A.R. Rueda Sanchez, F. Sedlmeir, H.G.L. Schwefel, Advanced Quantum Technologies 3 (2020). date_created: 2021-02-25T08:52:36Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-08-24T13:53:02Z day: '01' ddc: - '530' department: - _id: JoFi doi: 10.1002/qute.201900077 external_id: isi: - '000548088300001' file: - access_level: open_access checksum: 157e95abd6883c3b35b0fa78ae10775e content_type: application/pdf creator: dernst date_created: 2021-03-02T12:30:03Z date_updated: 2021-03-02T12:30:03Z file_id: '9216' file_name: 2020_AdvQuantumTech_Lambert.pdf file_size: 2410114 relation: main_file success: 1 file_date_updated: 2021-03-02T12:30:03Z has_accepted_license: '1' intvolume: ' 3' isi: 1 issue: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '01' oa: 1 oa_version: Published Version publication: Advanced Quantum Technologies publication_identifier: issn: - 2511-9044 publication_status: published publisher: Wiley quality_controlled: '1' related_material: link: - description: Cover Page relation: poster url: https://doi.org/10.1002/qute.202070011 status: public title: Coherent conversion between microwave and optical photons - An overview of physical implementations tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 3 year: '2020' ... --- _id: '9011' abstract: - lang: eng text: "Distributed ledgers provide high availability and integrity, making them a key enabler for practical and secure computation of distributed workloads among mutually distrustful parties. Many practical applications also require strong confidentiality, however. This work enhances permissioned and permissionless blockchains with the ability to manage confidential data without forfeiting availability or decentralization. The proposed Calypso architecture addresses two orthogonal challenges confronting modern distributed ledgers: (a) enabling the auditable management of secrets and (b) protecting distributed computations against arbitrage attacks when their results depend on the ordering and secrecy of inputs.\r\n\r\nCalypso introduces on-chain secrets, a novel abstraction that enforces atomic deposition of an auditable trace whenever users access confidential data. Calypso provides user-controlled consent management that ensures revocation atomicity and accountable anonymity. To enable permissionless deployment, we introduce an incentive scheme and provide users with the option to select their preferred trustees. We evaluated our Calypso prototype with a confidential document-sharing application and a decentralized lottery. Our benchmarks show that transaction-processing latency increases linearly in terms of security (number of trustees) and is in the range of 0.2 to 8 seconds for 16 to 128 trustees." acknowledgement: 'We thank Nicolas Gailly, Vincent Graf, Jean-Pierre Hubaux, Wouter Lueks, Massimo Marelli, Carmela Troncoso, Juan-Ramón Troncoso Pastoriza, Frédéric Pont, and Sandra Siby for their valuable feedback. This project was supported in part by the ETH domain under PHRT grant #2017−201, and by the AXA Research Fund, Byzgen, DFINITY, and the Swiss Data Science Center (SDSC).' article_processing_charge: No article_type: original author: - first_name: Eleftherios full_name: Kokoris Kogias, Eleftherios id: f5983044-d7ef-11ea-ac6d-fd1430a26d30 last_name: Kokoris Kogias - first_name: Enis Ceyhun full_name: Alp, Enis Ceyhun last_name: Alp - first_name: Linus full_name: Gasser, Linus last_name: Gasser - first_name: Philipp full_name: Jovanovic, Philipp last_name: Jovanovic - first_name: Ewa full_name: Syta, Ewa last_name: Syta - first_name: Bryan full_name: Ford, Bryan last_name: Ford citation: ama: 'Kokoris Kogias E, Alp EC, Gasser L, Jovanovic P, Syta E, Ford B. CALYPSO: Private data management for decentralized ledgers. Proceedings of the VLDB Endowment. 2020;14(4):586-599. doi:10.14778/3436905.3436917' apa: 'Kokoris Kogias, E., Alp, E. C., Gasser, L., Jovanovic, P., Syta, E., & Ford, B. (2020). CALYPSO: Private data management for decentralized ledgers. Proceedings of the VLDB Endowment. Association for Computing Machinery. https://doi.org/10.14778/3436905.3436917' chicago: 'Kokoris Kogias, Eleftherios, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford. “CALYPSO: Private Data Management for Decentralized Ledgers.” Proceedings of the VLDB Endowment. Association for Computing Machinery, 2020. https://doi.org/10.14778/3436905.3436917.' ieee: 'E. Kokoris Kogias, E. C. Alp, L. Gasser, P. Jovanovic, E. Syta, and B. Ford, “CALYPSO: Private data management for decentralized ledgers,” Proceedings of the VLDB Endowment, vol. 14, no. 4. Association for Computing Machinery, pp. 586–599, 2020.' ista: 'Kokoris Kogias E, Alp EC, Gasser L, Jovanovic P, Syta E, Ford B. 2020. CALYPSO: Private data management for decentralized ledgers. Proceedings of the VLDB Endowment. 14(4), 586–599.' mla: 'Kokoris Kogias, Eleftherios, et al. “CALYPSO: Private Data Management for Decentralized Ledgers.” Proceedings of the VLDB Endowment, vol. 14, no. 4, Association for Computing Machinery, 2020, pp. 586–99, doi:10.14778/3436905.3436917.' short: E. Kokoris Kogias, E.C. Alp, L. Gasser, P. Jovanovic, E. Syta, B. Ford, Proceedings of the VLDB Endowment 14 (2020) 586–599. date_created: 2021-01-17T23:01:13Z date_published: 2020-12-01T00:00:00Z date_updated: 2023-08-24T13:57:13Z day: '01' department: - _id: ElKo doi: 10.14778/3436905.3436917 external_id: isi: - '000658495400012' intvolume: ' 14' isi: 1 issue: '4' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ main_file_link: - open_access: '1' url: https://dl.acm.org/doi/10.14778/3436905.3436917 month: '12' oa: 1 oa_version: Published Version page: 586-599 publication: Proceedings of the VLDB Endowment publication_identifier: eissn: - 2150-8097 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: 'CALYPSO: Private data management for decentralized ledgers' tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2020' ... --- _id: '8308' abstract: - lang: eng text: 'Many-body localization provides a mechanism to avoid thermalization in isolated interacting quantum systems. The breakdown of thermalization may be complete, when all eigenstates in the many-body spectrum become localized, or partial, when the so-called many-body mobility edge separates localized and delocalized parts of the spectrum. Previously, De Roeck et al. [Phys. Rev. B 93, 014203 (2016)] suggested a possible instability of the many-body mobility edge in energy density. The local ergodic regions—so-called “bubbles”—resonantly spread throughout the system, leading to delocalization. In order to study such instability mechanism, in this work we design a model featuring many-body mobility edge in particle density: the states at small particle density are localized, while increasing the density of particles leads to delocalization. Using numerical simulations with matrix product states, we demonstrate the stability of many-body localization with respect to small bubbles in large dilute systems for experimentally relevant timescales. In addition, we demonstrate that processes where the bubble spreads are favored over processes that lead to resonant tunneling, suggesting a possible mechanism behind the observed stability of many-body mobility edge. We conclude by proposing experiments to probe particle density mobility edge in the Bose-Hubbard model.' acknowledgement: 'Acknowledgments. We acknowledge useful discussions with W. De Roeck and A. Michailidis. P.B. was supported by the European Union''s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 665385. D.A. was supported by the Swiss National Science Foundation. M.S. was supported by European Research Council (ERC) under the European Union''s Horizon 2020 research and innovation program (Grant Agreement No. 850899). This work benefited from visits to KITP, supported by the National Science Foundation under Grant No. NSF PHY-1748958 and from the program “Thermalization, Many Body Localization and Hydrodynamics” at International Centre for Theoretical Sciences (Code: ICTS/hydrodynamics2019/11).' article_number: 060202(R) article_processing_charge: No article_type: original author: - first_name: Pietro full_name: Brighi, Pietro id: 4115AF5C-F248-11E8-B48F-1D18A9856A87 last_name: Brighi orcid: 0000-0002-7969-2729 - first_name: Dmitry A. full_name: Abanin, Dmitry A. last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Brighi P, Abanin DA, Serbyn M. Stability of mobility edges in disordered interacting systems. Physical Review B. 2020;102(6). doi:10.1103/physrevb.102.060202 apa: Brighi, P., Abanin, D. A., & Serbyn, M. (2020). Stability of mobility edges in disordered interacting systems. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.102.060202 chicago: Brighi, Pietro, Dmitry A. Abanin, and Maksym Serbyn. “Stability of Mobility Edges in Disordered Interacting Systems.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/physrevb.102.060202. ieee: P. Brighi, D. A. Abanin, and M. Serbyn, “Stability of mobility edges in disordered interacting systems,” Physical Review B, vol. 102, no. 6. American Physical Society, 2020. ista: Brighi P, Abanin DA, Serbyn M. 2020. Stability of mobility edges in disordered interacting systems. Physical Review B. 102(6), 060202(R). mla: Brighi, Pietro, et al. “Stability of Mobility Edges in Disordered Interacting Systems.” Physical Review B, vol. 102, no. 6, 060202(R), American Physical Society, 2020, doi:10.1103/physrevb.102.060202. short: P. Brighi, D.A. Abanin, M. Serbyn, Physical Review B 102 (2020). date_created: 2020-08-26T19:27:42Z date_published: 2020-08-26T00:00:00Z date_updated: 2023-08-24T14:20:21Z day: '26' ddc: - '530' department: - _id: MaSe doi: 10.1103/physrevb.102.060202 ec_funded: 1 external_id: isi: - '000562628300001' file: - access_level: open_access checksum: 716442fa7861323fcc80b93718ca009c content_type: application/pdf creator: mserbyn date_created: 2020-08-26T19:28:55Z date_updated: 2020-08-26T19:28:55Z file_id: '8309' file_name: PhysRevB.102.060202.pdf file_size: 488825 relation: main_file success: 1 - access_level: open_access checksum: be0abdc8f60fe065ea6dc92e08487122 content_type: application/pdf creator: mserbyn date_created: 2020-08-26T19:29:00Z date_updated: 2020-08-26T19:29:00Z file_id: '8310' file_name: Supplementary-mbme.pdf file_size: 711405 relation: main_file success: 1 file_date_updated: 2020-08-26T19:29:00Z has_accepted_license: '1' intvolume: ' 102' isi: 1 issue: '6' language: - iso: eng month: '08' oa: 1 oa_version: None project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '12732' relation: dissertation_contains status: public scopus_import: '1' status: public title: Stability of mobility edges in disordered interacting systems type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 102 year: '2020' ... --- _id: '10862' abstract: - lang: eng text: We consider the sum of two large Hermitian matrices A and B with a Haar unitary conjugation bringing them into a general relative position. We prove that the eigenvalue density on the scale slightly above the local eigenvalue spacing is asymptotically given by the free additive convolution of the laws of A and B as the dimension of the matrix increases. This implies optimal rigidity of the eigenvalues and optimal rate of convergence in Voiculescu's theorem. Our previous works [4], [5] established these results in the bulk spectrum, the current paper completely settles the problem at the spectral edges provided they have the typical square-root behavior. The key element of our proof is to compensate the deterioration of the stability of the subordination equations by sharp error estimates that properly account for the local density near the edge. Our results also hold if the Haar unitary matrix is replaced by the Haar orthogonal matrix. acknowledgement: Partially supported by ERC Advanced Grant RANMAT No. 338804. article_number: '108639' article_processing_charge: No article_type: original author: - first_name: Zhigang full_name: Bao, Zhigang id: 442E6A6C-F248-11E8-B48F-1D18A9856A87 last_name: Bao orcid: 0000-0003-3036-1475 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Kevin full_name: Schnelli, Kevin last_name: Schnelli citation: ama: Bao Z, Erdös L, Schnelli K. Spectral rigidity for addition of random matrices at the regular edge. Journal of Functional Analysis. 2020;279(7). doi:10.1016/j.jfa.2020.108639 apa: Bao, Z., Erdös, L., & Schnelli, K. (2020). Spectral rigidity for addition of random matrices at the regular edge. Journal of Functional Analysis. Elsevier. https://doi.org/10.1016/j.jfa.2020.108639 chicago: Bao, Zhigang, László Erdös, and Kevin Schnelli. “Spectral Rigidity for Addition of Random Matrices at the Regular Edge.” Journal of Functional Analysis. Elsevier, 2020. https://doi.org/10.1016/j.jfa.2020.108639. ieee: Z. Bao, L. Erdös, and K. Schnelli, “Spectral rigidity for addition of random matrices at the regular edge,” Journal of Functional Analysis, vol. 279, no. 7. Elsevier, 2020. ista: Bao Z, Erdös L, Schnelli K. 2020. Spectral rigidity for addition of random matrices at the regular edge. Journal of Functional Analysis. 279(7), 108639. mla: Bao, Zhigang, et al. “Spectral Rigidity for Addition of Random Matrices at the Regular Edge.” Journal of Functional Analysis, vol. 279, no. 7, 108639, Elsevier, 2020, doi:10.1016/j.jfa.2020.108639. short: Z. Bao, L. Erdös, K. Schnelli, Journal of Functional Analysis 279 (2020). date_created: 2022-03-18T10:18:59Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-08-24T14:08:42Z day: '15' department: - _id: LaEr doi: 10.1016/j.jfa.2020.108639 ec_funded: 1 external_id: arxiv: - '1708.01597' isi: - '000559623200009' intvolume: ' 279' isi: 1 issue: '7' keyword: - Analysis language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1708.01597 month: '10' oa: 1 oa_version: Preprint project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Journal of Functional Analysis publication_identifier: issn: - 0022-1236 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Spectral rigidity for addition of random matrices at the regular edge type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 279 year: '2020' ... --- _id: '10867' abstract: - lang: eng text: In this paper we find a tight estimate for Gromov’s waist of the balls in spaces of constant curvature, deduce the estimates for the balls in Riemannian manifolds with upper bounds on the curvature (CAT(ϰ)-spaces), and establish similar result for normed spaces. acknowledgement: ' Supported by the Russian Foundation for Basic Research grant 18-01-00036.' article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Roman full_name: Karasev, Roman last_name: Karasev citation: ama: Akopyan A, Karasev R. Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. 2020;2020(3):669-697. doi:10.1093/imrn/rny037 apa: Akopyan, A., & Karasev, R. (2020). Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rny037 chicago: Akopyan, Arseniy, and Roman Karasev. “Waist of Balls in Hyperbolic and Spherical Spaces.” International Mathematics Research Notices. Oxford University Press, 2020. https://doi.org/10.1093/imrn/rny037. ieee: A. Akopyan and R. Karasev, “Waist of balls in hyperbolic and spherical spaces,” International Mathematics Research Notices, vol. 2020, no. 3. Oxford University Press, pp. 669–697, 2020. ista: Akopyan A, Karasev R. 2020. Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. 2020(3), 669–697. mla: Akopyan, Arseniy, and Roman Karasev. “Waist of Balls in Hyperbolic and Spherical Spaces.” International Mathematics Research Notices, vol. 2020, no. 3, Oxford University Press, 2020, pp. 669–97, doi:10.1093/imrn/rny037. short: A. Akopyan, R. Karasev, International Mathematics Research Notices 2020 (2020) 669–697. date_created: 2022-03-18T11:39:30Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-24T14:19:55Z day: '01' department: - _id: HeEd doi: 10.1093/imrn/rny037 external_id: arxiv: - '1702.07513' isi: - '000522852700002' intvolume: ' 2020' isi: 1 issue: '3' keyword: - General Mathematics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1702.07513 month: '02' oa: 1 oa_version: Preprint page: 669-697 publication: International Mathematics Research Notices publication_identifier: eissn: - 1687-0247 issn: - 1073-7928 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Waist of balls in hyperbolic and spherical spaces type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2020 year: '2020' ... --- _id: '9799' abstract: - lang: eng text: Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations. article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: John J. full_name: Welch, John J. last_name: Welch citation: ama: Fraisse C, Welch JJ. Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes. 2020. doi:10.6084/m9.figshare.7957469.v1 apa: Fraisse, C., & Welch, J. J. (2020). Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes. Royal Society of London. https://doi.org/10.6084/m9.figshare.7957469.v1 chicago: Fraisse, Christelle, and John J. Welch. “Simulation Code for Fig S1 from the Distribution of Epistasis on Simple Fitness Landscapes.” Royal Society of London, 2020. https://doi.org/10.6084/m9.figshare.7957469.v1. ieee: C. Fraisse and J. J. Welch, “Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes.” Royal Society of London, 2020. ista: Fraisse C, Welch JJ. 2020. Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes, Royal Society of London, 10.6084/m9.figshare.7957469.v1. mla: Fraisse, Christelle, and John J. Welch. Simulation Code for Fig S1 from the Distribution of Epistasis on Simple Fitness Landscapes. Royal Society of London, 2020, doi:10.6084/m9.figshare.7957469.v1. short: C. Fraisse, J.J. Welch, (2020). date_created: 2021-08-06T11:26:57Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-08-25T10:34:41Z day: '15' department: - _id: BeVi - _id: NiBa doi: 10.6084/m9.figshare.7957469.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.7957469.v1 month: '10' oa: 1 oa_version: Published Version publisher: Royal Society of London related_material: record: - id: '6467' relation: used_in_publication status: public status: public title: Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '9798' abstract: - lang: eng text: Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations. article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: John J. full_name: Welch, John J. last_name: Welch citation: ama: Fraisse C, Welch JJ. Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes. 2020. doi:10.6084/m9.figshare.7957472.v1 apa: Fraisse, C., & Welch, J. J. (2020). Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes. Royal Society of London. https://doi.org/10.6084/m9.figshare.7957472.v1 chicago: Fraisse, Christelle, and John J. Welch. “Simulation Code for Fig S2 from the Distribution of Epistasis on Simple Fitness Landscapes.” Royal Society of London, 2020. https://doi.org/10.6084/m9.figshare.7957472.v1. ieee: C. Fraisse and J. J. Welch, “Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes.” Royal Society of London, 2020. ista: Fraisse C, Welch JJ. 2020. Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes, Royal Society of London, 10.6084/m9.figshare.7957472.v1. mla: Fraisse, Christelle, and John J. Welch. Simulation Code for Fig S2 from the Distribution of Epistasis on Simple Fitness Landscapes. Royal Society of London, 2020, doi:10.6084/m9.figshare.7957472.v1. short: C. Fraisse, J.J. Welch, (2020). date_created: 2021-08-06T11:18:15Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-08-25T10:34:41Z day: '15' department: - _id: BeVi - _id: NiBa doi: 10.6084/m9.figshare.7957472.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.7957472.v1 month: '10' oa: 1 oa_version: Published Version publisher: Royal Society of London related_material: record: - id: '6467' relation: used_in_publication status: public status: public title: Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '6488' abstract: - lang: eng text: We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix W˜ and its minor W. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of W˜ and W. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish. article_number: '2050006' article_processing_charge: No article_type: original author: - first_name: Giorgio full_name: Cipolloni, Giorgio id: 42198EFA-F248-11E8-B48F-1D18A9856A87 last_name: Cipolloni orcid: 0000-0002-4901-7992 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 citation: ama: 'Cipolloni G, Erdös L. Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices. Random Matrices: Theory and Application. 2020;9(3). doi:10.1142/S2010326320500069' apa: 'Cipolloni, G., & Erdös, L. (2020). Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices. Random Matrices: Theory and Application. World Scientific Publishing. https://doi.org/10.1142/S2010326320500069' chicago: 'Cipolloni, Giorgio, and László Erdös. “Fluctuations for Differences of Linear Eigenvalue Statistics for Sample Covariance Matrices.” Random Matrices: Theory and Application. World Scientific Publishing, 2020. https://doi.org/10.1142/S2010326320500069.' ieee: 'G. Cipolloni and L. Erdös, “Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices,” Random Matrices: Theory and Application, vol. 9, no. 3. World Scientific Publishing, 2020.' ista: 'Cipolloni G, Erdös L. 2020. Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices. Random Matrices: Theory and Application. 9(3), 2050006.' mla: 'Cipolloni, Giorgio, and László Erdös. “Fluctuations for Differences of Linear Eigenvalue Statistics for Sample Covariance Matrices.” Random Matrices: Theory and Application, vol. 9, no. 3, 2050006, World Scientific Publishing, 2020, doi:10.1142/S2010326320500069.' short: 'G. Cipolloni, L. Erdös, Random Matrices: Theory and Application 9 (2020).' date_created: 2019-05-26T21:59:14Z date_published: 2020-07-01T00:00:00Z date_updated: 2023-08-28T08:38:48Z day: '01' department: - _id: LaEr doi: 10.1142/S2010326320500069 ec_funded: 1 external_id: arxiv: - '1806.08751' isi: - '000547464400001' intvolume: ' 9' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.08751 month: '07' oa: 1 oa_version: Preprint project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 'Random Matrices: Theory and Application' publication_identifier: eissn: - '20103271' issn: - '20103263' publication_status: published publisher: World Scientific Publishing quality_controlled: '1' scopus_import: '1' status: public title: Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ...