--- _id: '6952' abstract: - lang: eng text: 'We present a unified framework tackling two problems: class-specific 3D reconstruction from a single image, and generation of new 3D shape samples. These tasks have received considerable attention recently; however, most existing approaches rely on 3D supervision, annotation of 2D images with keypoints or poses, and/or training with multiple views of each object instance. Our framework is very general: it can be trained in similar settings to existing approaches, while also supporting weaker supervision. Importantly, it can be trained purely from 2D images, without pose annotations, and with only a single view per instance. We employ meshes as an output representation, instead of voxels used in most prior work. This allows us to reason over lighting parameters and exploit shading information during training, which previous 2D-supervised methods cannot. Thus, our method can learn to generate and reconstruct concave object classes. We evaluate our approach in various settings, showing that: (i) it learns to disentangle shape from pose and lighting; (ii) using shading in the loss improves performance compared to just silhouettes; (iii) when using a standard single white light, our model outperforms state-of-the-art 2D-supervised methods, both with and without pose supervision, thanks to exploiting shading cues; (iv) performance improves further when using multiple coloured lights, even approaching that of state-of-the-art 3D-supervised methods; (v) shapes produced by our model capture smooth surfaces and fine details better than voxel-based approaches; and (vi) our approach supports concave classes such as bathtubs and sofas, which methods based on silhouettes cannot learn.' acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Paul M full_name: Henderson, Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 - first_name: Vittorio full_name: Ferrari, Vittorio last_name: Ferrari citation: ama: Henderson PM, Ferrari V. Learning single-image 3D reconstruction by generative modelling of shape, pose and shading. International Journal of Computer Vision. 2020;128:835-854. doi:10.1007/s11263-019-01219-8 apa: Henderson, P. M., & Ferrari, V. (2020). Learning single-image 3D reconstruction by generative modelling of shape, pose and shading. International Journal of Computer Vision. Springer Nature. https://doi.org/10.1007/s11263-019-01219-8 chicago: Henderson, Paul M, and Vittorio Ferrari. “Learning Single-Image 3D Reconstruction by Generative Modelling of Shape, Pose and Shading.” International Journal of Computer Vision. Springer Nature, 2020. https://doi.org/10.1007/s11263-019-01219-8. ieee: P. M. Henderson and V. Ferrari, “Learning single-image 3D reconstruction by generative modelling of shape, pose and shading,” International Journal of Computer Vision, vol. 128. Springer Nature, pp. 835–854, 2020. ista: Henderson PM, Ferrari V. 2020. Learning single-image 3D reconstruction by generative modelling of shape, pose and shading. International Journal of Computer Vision. 128, 835–854. mla: Henderson, Paul M., and Vittorio Ferrari. “Learning Single-Image 3D Reconstruction by Generative Modelling of Shape, Pose and Shading.” International Journal of Computer Vision, vol. 128, Springer Nature, 2020, pp. 835–54, doi:10.1007/s11263-019-01219-8. short: P.M. Henderson, V. Ferrari, International Journal of Computer Vision 128 (2020) 835–854. date_created: 2019-10-17T13:38:20Z date_published: 2020-04-01T00:00:00Z date_updated: 2023-08-17T14:01:16Z day: '01' ddc: - '004' department: - _id: ChLa doi: 10.1007/s11263-019-01219-8 external_id: arxiv: - '1901.06447' isi: - '000491042100002' file: - access_level: open_access checksum: a0f05dd4f5f64e4f713d8d9d4b5b1e3f content_type: application/pdf creator: dernst date_created: 2019-10-25T10:28:29Z date_updated: 2020-07-14T12:47:46Z file_id: '6973' file_name: 2019_CompVision_Henderson.pdf file_size: 2243134 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 128' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 835-854 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: International Journal of Computer Vision publication_identifier: eissn: - 1573-1405 issn: - 0920-5691 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Learning single-image 3D reconstruction by generative modelling of shape, pose and shading tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 128 year: '2020' ... --- _id: '7148' abstract: - lang: eng text: In the cerebellum, GluD2 is exclusively expressed in Purkinje cells, where it regulates synapse formation and regeneration, synaptic plasticity, and motor learning. Delayed cognitive development in humans with GluD2 gene mutations suggests extracerebellar functions of GluD2. However, extracerebellar expression of GluD2 and its relationship with that of GluD1 are poorly understood. GluD2 mRNA and protein were widely detected, with relatively high levels observed in the olfactory glomerular layer, medial prefrontal cortex, cingulate cortex, retrosplenial granular cortex, olfactory tubercle, subiculum, striatum, lateral septum, anterodorsal thalamic nucleus, and arcuate hypothalamic nucleus. These regions were also enriched for GluD1, and many individual neurons coexpressed the two GluDs. In the retrosplenial granular cortex, GluD1 and GluD2 were selectively expressed at PSD‐95‐expressing glutamatergic synapses, and their coexpression on the same synapses was shown by SDS‐digested freeze‐fracture replica labeling. Biochemically, GluD1 and GluD2 formed coimmunoprecipitable complex formation in HEK293T cells and in the cerebral cortex and hippocampus. We further estimated the relative protein amount by quantitative immunoblotting using GluA2/GluD2 and GluA2/GluD1 chimeric proteins as standards for titration of GluD1 and GluD2 antibodies. Intriguingly, the relative amount of GluD2 was almost comparable to that of GluD1 in the postsynaptic density fraction prepared from the cerebral cortex and hippocampus. In contrast, GluD2 was overwhelmingly predominant in the cerebellum. Thus, we have determined the relative extracerebellar expression of GluD1 and GluD2 at regional, neuronal, and synaptic levels. These data provide a molecular–anatomical basis for possible competitive and cooperative interactions of GluD family members at synapses in various brain regions. acknowledgement: This study was supported by Grants-in-Aid for Scientific Research to K.K. (18K06813), Y.M. (17K08503, 17H0631319), and K.S. (16H04650) and a grant for Scientific Research on Innovative Areas to K.S (16H06276) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). We thank K. Akashi, I. Watanabe-Iida, Y. Suzuki, and H. Azechi for technical assistance and advice, and H. Uchida for valuable discussions. We thank E. Kushiya,I. Yabe, C. Ohori, Y. Mochizuki, Y. Ishikawa, and N. Ishimoto for technical assistance in generating GluD1-KO mice. article_processing_charge: No article_type: original author: - first_name: Chihiro full_name: Nakamoto, Chihiro last_name: Nakamoto - first_name: Kohtarou full_name: Konno, Kohtarou last_name: Konno - first_name: Taisuke full_name: Miyazaki, Taisuke last_name: Miyazaki - first_name: Ena full_name: Nakatsukasa, Ena last_name: Nakatsukasa - first_name: Rie full_name: Natsume, Rie last_name: Natsume - first_name: Manabu full_name: Abe, Manabu last_name: Abe - first_name: Meiko full_name: Kawamura, Meiko last_name: Kawamura - first_name: Yugo full_name: Fukazawa, Yugo last_name: Fukazawa - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Miwako full_name: Yamasaki, Miwako last_name: Yamasaki - first_name: Kenji full_name: Sakimura, Kenji last_name: Sakimura - first_name: Masahiko full_name: Watanabe, Masahiko last_name: Watanabe citation: ama: Nakamoto C, Konno K, Miyazaki T, et al. Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Journal of Comparative Neurology. 2020;528(6):1003-1027. doi:10.1002/cne.24792 apa: Nakamoto, C., Konno, K., Miyazaki, T., Nakatsukasa, E., Natsume, R., Abe, M., … Watanabe, M. (2020). Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Journal of Comparative Neurology. Wiley. https://doi.org/10.1002/cne.24792 chicago: Nakamoto, Chihiro, Kohtarou Konno, Taisuke Miyazaki, Ena Nakatsukasa, Rie Natsume, Manabu Abe, Meiko Kawamura, et al. “Expression Mapping, Quantification, and Complex Formation of GluD1 and GluD2 Glutamate Receptors in Adult Mouse Brain.” Journal of Comparative Neurology. Wiley, 2020. https://doi.org/10.1002/cne.24792. ieee: C. Nakamoto et al., “Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain,” Journal of Comparative Neurology, vol. 528, no. 6. Wiley, pp. 1003–1027, 2020. ista: Nakamoto C, Konno K, Miyazaki T, Nakatsukasa E, Natsume R, Abe M, Kawamura M, Fukazawa Y, Shigemoto R, Yamasaki M, Sakimura K, Watanabe M. 2020. Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Journal of Comparative Neurology. 528(6), 1003–1027. mla: Nakamoto, Chihiro, et al. “Expression Mapping, Quantification, and Complex Formation of GluD1 and GluD2 Glutamate Receptors in Adult Mouse Brain.” Journal of Comparative Neurology, vol. 528, no. 6, Wiley, 2020, pp. 1003–27, doi:10.1002/cne.24792. short: C. Nakamoto, K. Konno, T. Miyazaki, E. Nakatsukasa, R. Natsume, M. Abe, M. Kawamura, Y. Fukazawa, R. Shigemoto, M. Yamasaki, K. Sakimura, M. Watanabe, Journal of Comparative Neurology 528 (2020) 1003–1027. date_created: 2019-12-04T16:09:29Z date_published: 2020-04-01T00:00:00Z date_updated: 2023-08-17T14:06:50Z day: '01' ddc: - '571' - '599' department: - _id: RySh doi: 10.1002/cne.24792 external_id: isi: - '000496410200001' pmid: - '31625608' has_accepted_license: '1' intvolume: ' 528' isi: 1 issue: '6' language: - iso: eng month: '04' oa_version: None page: 1003-1027 pmid: 1 publication: Journal of Comparative Neurology publication_identifier: eissn: - 1096-9861 issn: - 0021-9967 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 528 year: '2020' ... --- _id: '7033' abstract: - lang: eng text: Removal of the Bax gene from mice completely protects the somas of retinal ganglion cells (RGCs) from apoptosis following optic nerve injury. This makes BAX a promising therapeutic target to prevent neurodegeneration. In this study, Bax+/− mice were used to test the hypothesis that lowering the quantity of BAX in RGCs would delay apoptosis following optic nerve injury. RGCs were damaged by performing optic nerve crush (ONC) and then immunostaining for phospho-cJUN, and quantitative PCR were used to monitor the status of the BAX activation mechanism in the months following injury. The apoptotic susceptibility of injured cells was directly tested by virally introducing GFP-BAX into Bax−/− RGCs after injury. The competency of quiescent RGCs to reactivate their BAX activation mechanism was tested by intravitreal injection of the JNK pathway agonist, anisomycin. Twenty-four weeks after ONC, Bax+/− mice had significantly less cell loss in their RGC layer than Bax+/+ mice 3 weeks after ONC. Bax+/− and Bax+/+ RGCs exhibited similar patterns of nuclear phospho-cJUN accumulation immediately after ONC, which persisted in Bax+/− RGCs for up to 7 weeks before abating. The transcriptional activation of BAX-activating genes was similar in Bax+/− and Bax+/+ RGCs following ONC. Intriguingly, cells deactivated their BAX activation mechanism between 7 and 12 weeks after crush. Introduction of GFP-BAX into Bax−/− cells at 4 weeks after ONC showed that these cells had a nearly normal capacity to activate this protein, but this capacity was lost 8 weeks after crush. Collectively, these data suggest that 8–12 weeks after crush, damaged cells no longer displayed increased susceptibility to BAX activation relative to their naïve counterparts. In this same timeframe, retinal glial activation and the signaling of the pro-apoptotic JNK pathway also abated. Quiescent RGCs did not show a timely reactivation of their JNK pathway following intravitreal injection with anisomycin. These findings demonstrate that lowering the quantity of BAX in RGCs is neuroprotective after acute injury. Damaged RGCs enter a quiescent state months after injury and are no longer responsive to an apoptotic stimulus. Quiescent RGCs will require rejuvenation to reacquire functionality. acknowledgement: This work was supported by National Eye Institute grants R01 EY012223 (RWN), R01 EY030123 (RWN), T32 EY027721 (Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison), and a Vision Science Core grant P30 EY016665 (Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison), an unrestricted funding grant from Research to Prevent Blindness (Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison), the Frederick A. Davis Endowment (RWN), and the Mr. and Mrs. George Taylor Foundation (RWN). article_processing_charge: No article_type: original author: - first_name: RJ full_name: Donahue, RJ last_name: Donahue - first_name: Margaret E full_name: Maes, Margaret E id: 3838F452-F248-11E8-B48F-1D18A9856A87 last_name: Maes orcid: 0000-0001-9642-1085 - first_name: JA full_name: Grosser, JA last_name: Grosser - first_name: RW full_name: Nickells, RW last_name: Nickells citation: ama: Donahue R, Maes ME, Grosser J, Nickells R. BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage. Molecular Neurobiology. 2020;57(2):1070–1084. doi:10.1007/s12035-019-01783-7 apa: Donahue, R., Maes, M. E., Grosser, J., & Nickells, R. (2020). BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage. Molecular Neurobiology. Springer Nature. https://doi.org/10.1007/s12035-019-01783-7 chicago: Donahue, RJ, Margaret E Maes, JA Grosser, and RW Nickells. “BAX-Depleted Retinal Ganglion Cells Survive and Become Quiescent Following Optic Nerve Damage.” Molecular Neurobiology. Springer Nature, 2020. https://doi.org/10.1007/s12035-019-01783-7. ieee: R. Donahue, M. E. Maes, J. Grosser, and R. Nickells, “BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage,” Molecular Neurobiology, vol. 57, no. 2. Springer Nature, pp. 1070–1084, 2020. ista: Donahue R, Maes ME, Grosser J, Nickells R. 2020. BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage. Molecular Neurobiology. 57(2), 1070–1084. mla: Donahue, RJ, et al. “BAX-Depleted Retinal Ganglion Cells Survive and Become Quiescent Following Optic Nerve Damage.” Molecular Neurobiology, vol. 57, no. 2, Springer Nature, 2020, pp. 1070–1084, doi:10.1007/s12035-019-01783-7. short: R. Donahue, M.E. Maes, J. Grosser, R. Nickells, Molecular Neurobiology 57 (2020) 1070–1084. date_created: 2019-11-18T14:18:39Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:05:48Z day: '01' department: - _id: SaSi doi: 10.1007/s12035-019-01783-7 external_id: isi: - '000493754200001' pmid: - '31673950' intvolume: ' 57' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035206/ month: '02' oa: 1 oa_version: Submitted Version page: 1070–1084 pmid: 1 publication: Molecular Neurobiology publication_identifier: eissn: - 1559-1182 issn: - 0893-7648 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 57 year: '2020' ... --- _id: '6997' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zhang Y, Friml J. Auxin guides roots to avoid obstacles during gravitropic growth. New Phytologist. 2020;225(3):1049-1052. doi:10.1111/nph.16203 apa: Zhang, Y., & Friml, J. (2020). Auxin guides roots to avoid obstacles during gravitropic growth. New Phytologist. Wiley. https://doi.org/10.1111/nph.16203 chicago: Zhang, Yuzhou, and Jiří Friml. “Auxin Guides Roots to Avoid Obstacles during Gravitropic Growth.” New Phytologist. Wiley, 2020. https://doi.org/10.1111/nph.16203. ieee: Y. Zhang and J. Friml, “Auxin guides roots to avoid obstacles during gravitropic growth,” New Phytologist, vol. 225, no. 3. Wiley, pp. 1049–1052, 2020. ista: Zhang Y, Friml J. 2020. Auxin guides roots to avoid obstacles during gravitropic growth. New Phytologist. 225(3), 1049–1052. mla: Zhang, Yuzhou, and Jiří Friml. “Auxin Guides Roots to Avoid Obstacles during Gravitropic Growth.” New Phytologist, vol. 225, no. 3, Wiley, 2020, pp. 1049–52, doi:10.1111/nph.16203. short: Y. Zhang, J. Friml, New Phytologist 225 (2020) 1049–1052. date_created: 2019-11-12T11:41:32Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:01:49Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.16203 ec_funded: 1 external_id: isi: - '000489638800001' pmid: - '31603260' file: - access_level: open_access checksum: cd42ffdb381fd52812b9583d4d407139 content_type: application/pdf creator: dernst date_created: 2020-11-18T16:42:48Z date_updated: 2020-11-18T16:42:48Z file_id: '8772' file_name: 2020_NewPhytologist_Zhang.pdf file_size: 717345 relation: main_file success: 1 file_date_updated: 2020-11-18T16:42:48Z has_accepted_license: '1' intvolume: ' 225' isi: 1 issue: '3' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 1049-1052 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646x publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Auxin guides roots to avoid obstacles during gravitropic growth tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 225 year: '2020' ... --- _id: '7149' abstract: - lang: eng text: In recent years, many genes have been associated with chromatinopathies classified as “Cornelia de Lange Syndrome‐like.” It is known that the phenotype of these patients becomes less recognizable, overlapping to features characteristic of other syndromes caused by genetic variants affecting different regulators of chromatin structure and function. Therefore, Cornelia de Lange syndrome diagnosis might be arduous due to the seldom discordance between unexpected molecular diagnosis and clinical evaluation. Here, we review the molecular features of Cornelia de Lange syndrome, supporting the hypothesis that “CdLS‐like syndromes” are part of a larger “rare disease family” sharing multiple clinical features and common disrupted molecular pathways. acknowledgement: ' Dipartimento DiSS, Università degli Studi di Milano, Grant/Award Number: Linea 2; Fondazione Cariplo, Grant/Award Number: 2015-0783; German Federal Ministry of Education and Research (BMBF), Grant/Award Number: CHROMATIN-Net; Medical Faculty of the University of Lübeck, Grant/Award Number: J09-2017; Nickel & Co S.p.A.; Università degli Studi di Milano, Grant/Award Numbers: Molecular & Translational Medicine PhD Scholarship, Translational Medicine PhD Scholarship' article_processing_charge: No article_type: review author: - first_name: Laura full_name: Avagliano, Laura last_name: Avagliano - first_name: Ilaria full_name: Parenti, Ilaria id: D93538B0-5B71-11E9-AC62-02EBE5697425 last_name: Parenti - first_name: Paolo full_name: Grazioli, Paolo last_name: Grazioli - first_name: Elisabetta full_name: Di Fede, Elisabetta last_name: Di Fede - first_name: Chiara full_name: Parodi, Chiara last_name: Parodi - first_name: Milena full_name: Mariani, Milena last_name: Mariani - first_name: Frank J. full_name: Kaiser, Frank J. last_name: Kaiser - first_name: Angelo full_name: Selicorni, Angelo last_name: Selicorni - first_name: Cristina full_name: Gervasini, Cristina last_name: Gervasini - first_name: Valentina full_name: Massa, Valentina last_name: Massa citation: ama: 'Avagliano L, Parenti I, Grazioli P, et al. Chromatinopathies: A focus on Cornelia de Lange syndrome. Clinical Genetics. 2020;97(1):3-11. doi:10.1111/cge.13674' apa: 'Avagliano, L., Parenti, I., Grazioli, P., Di Fede, E., Parodi, C., Mariani, M., … Massa, V. (2020). Chromatinopathies: A focus on Cornelia de Lange syndrome. Clinical Genetics. Wiley. https://doi.org/10.1111/cge.13674' chicago: 'Avagliano, Laura, Ilaria Parenti, Paolo Grazioli, Elisabetta Di Fede, Chiara Parodi, Milena Mariani, Frank J. Kaiser, Angelo Selicorni, Cristina Gervasini, and Valentina Massa. “Chromatinopathies: A Focus on Cornelia de Lange Syndrome.” Clinical Genetics. Wiley, 2020. https://doi.org/10.1111/cge.13674.' ieee: 'L. Avagliano et al., “Chromatinopathies: A focus on Cornelia de Lange syndrome,” Clinical Genetics, vol. 97, no. 1. Wiley, pp. 3–11, 2020.' ista: 'Avagliano L, Parenti I, Grazioli P, Di Fede E, Parodi C, Mariani M, Kaiser FJ, Selicorni A, Gervasini C, Massa V. 2020. Chromatinopathies: A focus on Cornelia de Lange syndrome. Clinical Genetics. 97(1), 3–11.' mla: 'Avagliano, Laura, et al. “Chromatinopathies: A Focus on Cornelia de Lange Syndrome.” Clinical Genetics, vol. 97, no. 1, Wiley, 2020, pp. 3–11, doi:10.1111/cge.13674.' short: L. Avagliano, I. Parenti, P. Grazioli, E. Di Fede, C. Parodi, M. Mariani, F.J. Kaiser, A. Selicorni, C. Gervasini, V. Massa, Clinical Genetics 97 (2020) 3–11. date_created: 2019-12-04T16:10:59Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-08-17T14:06:20Z day: '01' department: - _id: GaNo doi: 10.1111/cge.13674 external_id: isi: - '000562561800001' pmid: - '31721174' intvolume: ' 97' isi: 1 issue: '1' language: - iso: eng month: '01' oa_version: None page: 3-11 pmid: 1 publication: Clinical Genetics publication_identifier: eissn: - 1399-0004 issn: - 0009-9163 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Chromatinopathies: A focus on Cornelia de Lange syndrome' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 97 year: '2020' ... --- _id: '7004' abstract: - lang: eng text: We define an action of the (double of) Cohomological Hall algebra of Kontsevich and Soibelman on the cohomology of the moduli space of spiked instantons of Nekrasov. We identify this action with the one of the affine Yangian of gl(1). Based on that we derive the vertex algebra at the corner Wr1,r2,r3 of Gaiotto and Rapčák. We conjecture that our approach works for a big class of Calabi–Yau categories, including those associated with toric Calabi–Yau 3-folds. article_processing_charge: No article_type: original author: - first_name: Miroslav full_name: Rapcak, Miroslav last_name: Rapcak - first_name: Yan full_name: Soibelman, Yan last_name: Soibelman - first_name: Yaping full_name: Yang, Yaping last_name: Yang - first_name: Gufang full_name: Zhao, Gufang id: 2BC2AC5E-F248-11E8-B48F-1D18A9856A87 last_name: Zhao citation: ama: Rapcak M, Soibelman Y, Yang Y, Zhao G. Cohomological Hall algebras, vertex algebras and instantons. Communications in Mathematical Physics. 2020;376:1803-1873. doi:10.1007/s00220-019-03575-5 apa: Rapcak, M., Soibelman, Y., Yang, Y., & Zhao, G. (2020). Cohomological Hall algebras, vertex algebras and instantons. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-019-03575-5 chicago: Rapcak, Miroslav, Yan Soibelman, Yaping Yang, and Gufang Zhao. “Cohomological Hall Algebras, Vertex Algebras and Instantons.” Communications in Mathematical Physics. Springer Nature, 2020. https://doi.org/10.1007/s00220-019-03575-5. ieee: M. Rapcak, Y. Soibelman, Y. Yang, and G. Zhao, “Cohomological Hall algebras, vertex algebras and instantons,” Communications in Mathematical Physics, vol. 376. Springer Nature, pp. 1803–1873, 2020. ista: Rapcak M, Soibelman Y, Yang Y, Zhao G. 2020. Cohomological Hall algebras, vertex algebras and instantons. Communications in Mathematical Physics. 376, 1803–1873. mla: Rapcak, Miroslav, et al. “Cohomological Hall Algebras, Vertex Algebras and Instantons.” Communications in Mathematical Physics, vol. 376, Springer Nature, 2020, pp. 1803–73, doi:10.1007/s00220-019-03575-5. short: M. Rapcak, Y. Soibelman, Y. Yang, G. Zhao, Communications in Mathematical Physics 376 (2020) 1803–1873. date_created: 2019-11-12T14:01:27Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-08-17T14:02:59Z day: '01' department: - _id: TaHa doi: 10.1007/s00220-019-03575-5 ec_funded: 1 external_id: arxiv: - '1810.10402' isi: - '000536255500004' intvolume: ' 376' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1810.10402 month: '06' oa: 1 oa_version: Preprint page: 1803-1873 project: - _id: 25E549F4-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '320593' name: Arithmetic and physics of Higgs moduli spaces publication: Communications in Mathematical Physics publication_identifier: eissn: - 1432-0916 issn: - 0010-3616 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Cohomological Hall algebras, vertex algebras and instantons type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 376 year: '2020' ... --- _id: '7204' abstract: - lang: eng text: Plant root architecture dynamically adapts to various environmental conditions, such as salt‐containing soil. The phytohormone abscisic acid (ABA) is involved among others also in these developmental adaptations, but the underlying molecular mechanism remains elusive. Here, a novel branch of the ABA signaling pathway in Arabidopsis involving PYR/PYL/RCAR (abbreviated as PYLs) receptor‐protein phosphatase 2A (PP2A) complex that acts in parallel to the canonical PYLs‐protein phosphatase 2C (PP2C) mechanism is identified. The PYLs‐PP2A signaling modulates root gravitropism and lateral root formation through regulating phytohormone auxin transport. In optimal conditions, PYLs ABA receptor interacts with the catalytic subunits of PP2A, increasing their phosphatase activity and thus counteracting PINOID (PID) kinase‐mediated phosphorylation of PIN‐FORMED (PIN) auxin transporters. By contrast, in salt and osmotic stress conditions, ABA binds to PYLs, inhibiting the PP2A activity, which leads to increased PIN phosphorylation and consequently modulated directional auxin transport leading to adapted root architecture. This work reveals an adaptive mechanism that may flexibly adjust plant root growth to withstand saline and osmotic stresses. It occurs via the cross‐talk between the stress hormone ABA and the versatile developmental regulator auxin. article_number: '1901455' article_processing_charge: No article_type: original author: - first_name: Yang full_name: Li, Yang last_name: Li - first_name: Yaping full_name: Wang, Yaping last_name: Wang - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Zhen full_name: Li, Zhen last_name: Li - first_name: Zhi full_name: Yuan, Zhi last_name: Yuan - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: David full_name: Domjan, David id: C684CD7A-257E-11EA-9B6F-D8588B4F947F last_name: Domjan orcid: 0000-0003-2267-106X - first_name: Kai full_name: Wang, Kai last_name: Wang - first_name: Wei full_name: Xuan, Wei last_name: Xuan - first_name: Yan full_name: Guo, Yan last_name: Guo - first_name: Zhizhong full_name: Gong, Zhizhong last_name: Gong - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jing full_name: Zhang, Jing last_name: Zhang citation: ama: Li Y, Wang Y, Tan S, et al. Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex. Advanced Science. 2020;7(3). doi:10.1002/advs.201901455 apa: Li, Y., Wang, Y., Tan, S., Li, Z., Yuan, Z., Glanc, M., … Zhang, J. (2020). Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex. Advanced Science. Wiley. https://doi.org/10.1002/advs.201901455 chicago: Li, Yang, Yaping Wang, Shutang Tan, Zhen Li, Zhi Yuan, Matous Glanc, David Domjan, et al. “Root Growth Adaptation Is Mediated by PYLs ABA Receptor-PP2A Protein Phosphatase Complex.” Advanced Science. Wiley, 2020. https://doi.org/10.1002/advs.201901455. ieee: Y. Li et al., “Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex,” Advanced Science, vol. 7, no. 3. Wiley, 2020. ista: Li Y, Wang Y, Tan S, Li Z, Yuan Z, Glanc M, Domjan D, Wang K, Xuan W, Guo Y, Gong Z, Friml J, Zhang J. 2020. Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex. Advanced Science. 7(3), 1901455. mla: Li, Yang, et al. “Root Growth Adaptation Is Mediated by PYLs ABA Receptor-PP2A Protein Phosphatase Complex.” Advanced Science, vol. 7, no. 3, 1901455, Wiley, 2020, doi:10.1002/advs.201901455. short: Y. Li, Y. Wang, S. Tan, Z. Li, Z. Yuan, M. Glanc, D. Domjan, K. Wang, W. Xuan, Y. Guo, Z. Gong, J. Friml, J. Zhang, Advanced Science 7 (2020). date_created: 2019-12-22T23:00:43Z date_published: 2020-02-05T00:00:00Z date_updated: 2023-08-17T14:13:17Z day: '05' ddc: - '580' department: - _id: JiFr doi: 10.1002/advs.201901455 external_id: isi: - '000501912800001' pmid: - '32042554' file: - access_level: open_access checksum: 016eeab5860860af038e2da95ffe75c3 content_type: application/pdf creator: dernst date_created: 2020-02-24T14:29:54Z date_updated: 2020-07-14T12:47:53Z file_id: '7519' file_name: 2020_AdvScience_Li.pdf file_size: 3586924 relation: main_file file_date_updated: 2020-07-14T12:47:53Z has_accepted_license: '1' intvolume: ' 7' isi: 1 issue: '3' language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Advanced Science publication_identifier: eissn: - 2198-3844 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 7 year: '2020' ... --- _id: '7220' abstract: - lang: eng text: BACKGROUND:The introduction of image-guided methods to bypass surgery has resulted in optimized preoperative identification of the recipients and excellent patency rates. However, the recently presented methods have also been resource-consuming. In the present study, we have reported a cost-efficient planning workflow for extracranial-intracranial (EC-IC) revascularization combined with transdural indocyanine green videoangiography (tICG-VA). METHODS:We performed a retrospective review at a single tertiary referral center from 2011 to 2018. A novel software-derived workflow was applied for 25 of 92 bypass procedures during the study period. The precision and accuracy were assessed using tICG-VA identification of the cortical recipients and a comparison of the virtual and actual data. The data from a control group of 25 traditionally planned procedures were also matched. RESULTS:The intraoperative transfer time of the calculated coordinates averaged 0.8 minute (range, 0.4-1.9 minutes). The definitive recipients matched the targeted branches in 80%, and a neighboring branch was used in 16%. Our workflow led to a significant craniotomy size reduction in the study group compared with that in the control group (P = 0.005). tICG-VA was successfully applied in 19 cases. An average of 2 potential recipient arteries were identified transdurally, resulting in tailored durotomy and 3 craniotomy adjustments. Follow-up patency results were available for 49 bypass surgeries, comprising 54 grafts. The overall patency rate was 91% at a median follow-up period of 26 months. No significant difference was found in the patency rate between the study and control groups (P = 0.317). CONCLUSIONS:Our clinical results have validated the presented planning and surgical workflow and support the routine implementation of tICG-VA for recipient identification before durotomy. article_processing_charge: No article_type: original author: - first_name: Philippe full_name: Dodier, Philippe last_name: Dodier - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Gabriel full_name: Mistelbauer, Gabriel last_name: Mistelbauer - first_name: Wei Te full_name: Wang, Wei Te last_name: Wang - first_name: Heber full_name: Ferraz-Leite, Heber last_name: Ferraz-Leite - first_name: Andreas full_name: Gruber, Andreas last_name: Gruber - first_name: Wolfgang full_name: Marik, Wolfgang last_name: Marik - first_name: Fabian full_name: Winter, Fabian last_name: Winter - first_name: Gerrit full_name: Fischer, Gerrit last_name: Fischer - first_name: Josa M. full_name: Frischer, Josa M. last_name: Frischer - first_name: Gerhard full_name: Bavinzski, Gerhard last_name: Bavinzski citation: ama: Dodier P, Auzinger T, Mistelbauer G, et al. Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. 2020;134(2):e892-e902. doi:10.1016/j.wneu.2019.11.038 apa: Dodier, P., Auzinger, T., Mistelbauer, G., Wang, W. T., Ferraz-Leite, H., Gruber, A., … Bavinzski, G. (2020). Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. Elsevier. https://doi.org/10.1016/j.wneu.2019.11.038 chicago: Dodier, Philippe, Thomas Auzinger, Gabriel Mistelbauer, Wei Te Wang, Heber Ferraz-Leite, Andreas Gruber, Wolfgang Marik, et al. “Novel Software-Derived Workflow in Extracranial–Intracranial Bypass Surgery Validated by Transdural Indocyanine Green Videoangiography.” World Neurosurgery. Elsevier, 2020. https://doi.org/10.1016/j.wneu.2019.11.038. ieee: P. Dodier et al., “Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography,” World Neurosurgery, vol. 134, no. 2. Elsevier, pp. e892–e902, 2020. ista: Dodier P, Auzinger T, Mistelbauer G, Wang WT, Ferraz-Leite H, Gruber A, Marik W, Winter F, Fischer G, Frischer JM, Bavinzski G. 2020. Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. 134(2), e892–e902. mla: Dodier, Philippe, et al. “Novel Software-Derived Workflow in Extracranial–Intracranial Bypass Surgery Validated by Transdural Indocyanine Green Videoangiography.” World Neurosurgery, vol. 134, no. 2, Elsevier, 2020, pp. e892–902, doi:10.1016/j.wneu.2019.11.038. short: P. Dodier, T. Auzinger, G. Mistelbauer, W.T. Wang, H. Ferraz-Leite, A. Gruber, W. Marik, F. Winter, G. Fischer, J.M. Frischer, G. Bavinzski, World Neurosurgery 134 (2020) e892–e902. date_created: 2019-12-29T23:00:48Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:14:23Z day: '01' department: - _id: BeBi doi: 10.1016/j.wneu.2019.11.038 external_id: isi: - '000512878200104' pmid: - '31733380' intvolume: ' 134' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: e892-e902 pmid: 1 publication: World Neurosurgery publication_identifier: eissn: - 1878-8769 issn: - 1878-8750 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 134 year: '2020' ... --- _id: '7142' abstract: - lang: eng text: The phytohormone auxin acts as an amazingly versatile coordinator of plant growth and development. With its morphogen-like properties, auxin controls sites and timing of differentiation and/or growth responses both, in quantitative and qualitative terms. Specificity in the auxin response depends largely on distinct modes of signal transmission, by which individual cells perceive and convert auxin signals into a remarkable diversity of responses. The best understood, or so-called canonical mechanism of auxin perception ultimately results in variable adjustments of the cellular transcriptome, via a short, nuclear signal transduction pathway. Additional findings that accumulated over decades implied that an additional, presumably, cell surface-based auxin perception mechanism mediates very rapid cellular responses and decisively contributes to the cell's overall hormonal response. Recent investigations into both, nuclear and cell surface auxin signalling challenged this assumed partition of roles for different auxin signalling pathways and revealed an unexpected complexity in transcriptional and non-transcriptional cellular responses mediated by auxin. acknowledgement: Research in J.F. laboratory is funded by the European Union's Horizon 2020 program (ERC grant agreement n° 742985); C.L. is supported by the Austrian Science Fund (FWF grant P 31493). article_processing_charge: No article_type: original author: - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Christian full_name: Luschnig, Christian last_name: Luschnig - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Gallei MC, Luschnig C, Friml J. Auxin signalling in growth: Schrödinger’s cat out of the bag. Current Opinion in Plant Biology. 2020;53(2):43-49. doi:10.1016/j.pbi.2019.10.003' apa: 'Gallei, M. C., Luschnig, C., & Friml, J. (2020). Auxin signalling in growth: Schrödinger’s cat out of the bag. Current Opinion in Plant Biology. Elsevier. https://doi.org/10.1016/j.pbi.2019.10.003' chicago: 'Gallei, Michelle C, Christian Luschnig, and Jiří Friml. “Auxin Signalling in Growth: Schrödinger’s Cat out of the Bag.” Current Opinion in Plant Biology. Elsevier, 2020. https://doi.org/10.1016/j.pbi.2019.10.003.' ieee: 'M. C. Gallei, C. Luschnig, and J. Friml, “Auxin signalling in growth: Schrödinger’s cat out of the bag,” Current Opinion in Plant Biology, vol. 53, no. 2. Elsevier, pp. 43–49, 2020.' ista: 'Gallei MC, Luschnig C, Friml J. 2020. Auxin signalling in growth: Schrödinger’s cat out of the bag. Current Opinion in Plant Biology. 53(2), 43–49.' mla: 'Gallei, Michelle C., et al. “Auxin Signalling in Growth: Schrödinger’s Cat out of the Bag.” Current Opinion in Plant Biology, vol. 53, no. 2, Elsevier, 2020, pp. 43–49, doi:10.1016/j.pbi.2019.10.003.' short: M.C. Gallei, C. Luschnig, J. Friml, Current Opinion in Plant Biology 53 (2020) 43–49. date_created: 2019-12-02T12:05:26Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:07:22Z day: '01' department: - _id: JiFr doi: 10.1016/j.pbi.2019.10.003 ec_funded: 1 external_id: isi: - '000521120600007' pmid: - '31760231' intvolume: ' 53' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: 43-49 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Current Opinion in Plant Biology publication_identifier: eissn: - 1879-0356 issn: - 1369-5266 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '11626' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Auxin signalling in growth: Schrödinger''s cat out of the bag' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 53 year: '2020' ... --- _id: '7166' abstract: - lang: eng text: In the living cell, we encounter a large variety of motile processes such as organelle transport and cytoskeleton remodeling. These processes are driven by motor proteins that generate force by transducing chemical free energy into mechanical work. In many cases, the molecular motors work in teams to collectively generate larger forces. Recent optical trapping experiments on small teams of cytoskeletal motors indicated that the collectively generated force increases with the size of the motor team but that this increase depends on the motor type and on whether the motors are studied in vitro or in vivo. Here, we use the theory of stochastic processes to describe the motion of N motors in a stationary optical trap and to compute the N-dependence of the collectively generated forces. We consider six distinct motor types, two kinesins, two dyneins, and two myosins. We show that the force increases always linearly with N but with a prefactor that depends on the performance of the single motor. Surprisingly, this prefactor increases for weaker motors with a lower stall force. This counter-intuitive behavior reflects the increased probability with which stronger motors detach from the filament during strain generation. Our theoretical results are in quantitative agreement with experimental data on small teams of kinesin-1 motors. article_processing_charge: No article_type: letter_note author: - first_name: Mehmet C full_name: Ucar, Mehmet C id: 50B2A802-6007-11E9-A42B-EB23E6697425 last_name: Ucar orcid: 0000-0003-0506-4217 - first_name: Reinhard full_name: Lipowsky, Reinhard last_name: Lipowsky citation: ama: Ucar MC, Lipowsky R. Collective force generation by molecular motors is determined by strain-induced unbinding. Nano Letters. 2020;20(1):669-676. doi:10.1021/acs.nanolett.9b04445 apa: Ucar, M. C., & Lipowsky, R. (2020). Collective force generation by molecular motors is determined by strain-induced unbinding. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.9b04445 chicago: Ucar, Mehmet C, and Reinhard Lipowsky. “Collective Force Generation by Molecular Motors Is Determined by Strain-Induced Unbinding.” Nano Letters. American Chemical Society, 2020. https://doi.org/10.1021/acs.nanolett.9b04445. ieee: M. C. Ucar and R. Lipowsky, “Collective force generation by molecular motors is determined by strain-induced unbinding,” Nano Letters, vol. 20, no. 1. American Chemical Society, pp. 669–676, 2020. ista: Ucar MC, Lipowsky R. 2020. Collective force generation by molecular motors is determined by strain-induced unbinding. Nano Letters. 20(1), 669–676. mla: Ucar, Mehmet C., and Reinhard Lipowsky. “Collective Force Generation by Molecular Motors Is Determined by Strain-Induced Unbinding.” Nano Letters, vol. 20, no. 1, American Chemical Society, 2020, pp. 669–76, doi:10.1021/acs.nanolett.9b04445. short: M.C. Ucar, R. Lipowsky, Nano Letters 20 (2020) 669–676. date_created: 2019-12-10T15:36:05Z date_published: 2020-01-08T00:00:00Z date_updated: 2023-08-17T14:07:52Z day: '08' department: - _id: EdHa doi: 10.1021/acs.nanolett.9b04445 external_id: isi: - '000507151600087' pmid: - '31797672' intvolume: ' 20' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1021/acs.nanolett.9b04445 month: '01' oa: 1 oa_version: Published Version page: 669-676 pmid: 1 publication: Nano Letters publication_identifier: eissn: - 1530-6992 issn: - 1530-6984 publication_status: published publisher: American Chemical Society quality_controlled: '1' related_material: record: - id: '9726' relation: research_data status: public - id: '9885' relation: research_data status: public scopus_import: '1' status: public title: Collective force generation by molecular motors is determined by strain-induced unbinding type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 20 year: '2020' ...