--- _id: '12702' abstract: - lang: eng text: Hydrocarbon mixtures are extremely abundant in the Universe, and diamond formation from them can play a crucial role in shaping the interior structure and evolution of planets. With first-principles accuracy, we first estimate the melting line of diamond, and then reveal the nature of chemical bonding in hydrocarbons at extreme conditions. We finally establish the pressure-temperature phase boundary where it is thermodynamically possible for diamond to form from hydrocarbon mixtures with different atomic fractions of carbon. Notably, here we show a depletion zone at pressures above 200 GPa and temperatures below 3000 K-3500 K where diamond formation is thermodynamically favorable regardless of the carbon atomic fraction, due to a phase separation mechanism. The cooler condition of the interior of Neptune compared to Uranus means that the former is much more likely to contain the depletion zone. Our findings can help explain the dichotomy of the two ice giants manifested by the low luminosity of Uranus, and lead to a better understanding of (exo-)planetary formation and evolution. acknowledgement: BC thanks Daan Frenkel for stimulating discussions. We thank Aleks Reinhardt, Daan Frenkel, Marius Millot, Federica Coppari, Rhys Bunting, and Chris J. Pickard for critically reading the manuscript and providing useful suggestions. BC acknowledges resources provided by the Cambridge Tier-2 system operated by the University of Cambridge Research Computing Service funded by EPSRC Tier-2 capital grant EP/P020259/1. SH acknowledges support from LDRD 19-ERD-031 and computing support from the Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. MB acknowledges support by the European Horizon 2020 program within the Marie Skłodowska-Curie actions (xICE grant number 894725), funding from the NOMIS foundation and computational resources at the North-German Supercomputing Alliance (HLRN) facilities. article_number: '1104' article_processing_charge: No article_type: original author: - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 - first_name: Sebastien full_name: Hamel, Sebastien last_name: Hamel - first_name: Mandy full_name: Bethkenhagen, Mandy id: 201939f4-803f-11ed-ab7e-d8da4bd1517f last_name: Bethkenhagen orcid: 0000-0002-1838-2129 citation: ama: Cheng B, Hamel S, Bethkenhagen M. Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nature Communications. 2023;14. doi:10.1038/s41467-023-36841-1 apa: Cheng, B., Hamel, S., & Bethkenhagen, M. (2023). Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-36841-1 chicago: Cheng, Bingqing, Sebastien Hamel, and Mandy Bethkenhagen. “Thermodynamics of Diamond Formation from Hydrocarbon Mixtures in Planets.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-36841-1. ieee: B. Cheng, S. Hamel, and M. Bethkenhagen, “Thermodynamics of diamond formation from hydrocarbon mixtures in planets,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Cheng B, Hamel S, Bethkenhagen M. 2023. Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nature Communications. 14, 1104. mla: Cheng, Bingqing, et al. “Thermodynamics of Diamond Formation from Hydrocarbon Mixtures in Planets.” Nature Communications, vol. 14, 1104, Springer Nature, 2023, doi:10.1038/s41467-023-36841-1. short: B. Cheng, S. Hamel, M. Bethkenhagen, Nature Communications 14 (2023). date_created: 2023-03-05T23:01:04Z date_published: 2023-02-27T00:00:00Z date_updated: 2023-08-01T13:36:11Z day: '27' ddc: - '540' department: - _id: BiCh doi: 10.1038/s41467-023-36841-1 external_id: isi: - '000939678300002' pmid: - '36843123' file: - access_level: open_access checksum: 5ff61ad21511950c15abb73b18613883 content_type: application/pdf creator: cchlebak date_created: 2023-03-07T10:58:00Z date_updated: 2023-03-07T10:58:00Z file_id: '12713' file_name: 2023_NatComm_Cheng.pdf file_size: 1946443 relation: main_file success: 1 file_date_updated: 2023-03-07T10:58:00Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 9B861AAC-BA93-11EA-9121-9846C619BF3A name: NOMIS Fellowship Program publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Thermodynamics of diamond formation from hydrocarbon mixtures in planets tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '12719' abstract: - lang: eng text: "Background\r\nEpigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to develop accurate epigenetic predictors of cAge and bAge, whilst improving our understanding of their epigenomic architecture.\r\n\r\nMethods\r\nFirst, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological age and all-cause mortality. Next, to create a cAge predictor, we use methylation data from 24,674 participants from the Generation Scotland study, the Lothian Birth Cohorts (LBC) of 1921 and 1936, and 8 other cohorts with publicly available data. In addition, we train a predictor of time to all-cause mortality as a proxy for bAge using the Generation Scotland cohort (1214 observed deaths). For this purpose, we use epigenetic surrogates (EpiScores) for 109 plasma proteins and the 8 component parts of GrimAge, one of the current best epigenetic predictors of survival. We test this bAge predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women’s Health Initiative study).\r\n\r\nResults\r\nThrough the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross-validation framework, we obtain cAge prediction with a median absolute error equal to 2.3 years. Our bAge predictor was found to slightly outperform GrimAge in terms of the strength of its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 × 10−52, and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 × 10−60). Finally, we introduce MethylBrowsR, an online tool to visualise epigenome-wide CpG-age associations.\r\n\r\nConclusions\r\nThe integration of multiple large datasets, EpiScores, non-linear DNAm effects, and new approaches to feature selection has facilitated improvements to the blood-based epigenetic prediction of biological and chronological age." acknowledgement: We are grateful to all the families who took part, the general practitioners, and the Scottish School of Primary Care for their help in recruiting them and the whole GS team that includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, healthcare assistants, and nurses. article_number: '12' article_processing_charge: No article_type: original author: - first_name: Elena full_name: Bernabeu, Elena last_name: Bernabeu - first_name: Daniel L. full_name: Mccartney, Daniel L. last_name: Mccartney - first_name: Danni A. full_name: Gadd, Danni A. last_name: Gadd - first_name: Robert F. full_name: Hillary, Robert F. last_name: Hillary - first_name: Ake T. full_name: Lu, Ake T. last_name: Lu - first_name: Lee full_name: Murphy, Lee last_name: Murphy - first_name: Nicola full_name: Wrobel, Nicola last_name: Wrobel - first_name: Archie full_name: Campbell, Archie last_name: Campbell - first_name: Sarah E. full_name: Harris, Sarah E. last_name: Harris - first_name: David full_name: Liewald, David last_name: Liewald - first_name: Caroline full_name: Hayward, Caroline last_name: Hayward - first_name: Cathie full_name: Sudlow, Cathie last_name: Sudlow - first_name: Simon R. full_name: Cox, Simon R. last_name: Cox - first_name: Kathryn L. full_name: Evans, Kathryn L. last_name: Evans - first_name: Steve full_name: Horvath, Steve last_name: Horvath - first_name: Andrew M. full_name: Mcintosh, Andrew M. last_name: Mcintosh - first_name: Matthew Richard full_name: Robinson, Matthew Richard id: E5D42276-F5DA-11E9-8E24-6303E6697425 last_name: Robinson orcid: 0000-0001-8982-8813 - first_name: Catalina A. full_name: Vallejos, Catalina A. last_name: Vallejos - first_name: Riccardo E. full_name: Marioni, Riccardo E. last_name: Marioni citation: ama: Bernabeu E, Mccartney DL, Gadd DA, et al. Refining epigenetic prediction of chronological and biological age. Genome Medicine. 2023;15. doi:10.1186/s13073-023-01161-y apa: Bernabeu, E., Mccartney, D. L., Gadd, D. A., Hillary, R. F., Lu, A. T., Murphy, L., … Marioni, R. E. (2023). Refining epigenetic prediction of chronological and biological age. Genome Medicine. Springer Nature. https://doi.org/10.1186/s13073-023-01161-y chicago: Bernabeu, Elena, Daniel L. Mccartney, Danni A. Gadd, Robert F. Hillary, Ake T. Lu, Lee Murphy, Nicola Wrobel, et al. “Refining Epigenetic Prediction of Chronological and Biological Age.” Genome Medicine. Springer Nature, 2023. https://doi.org/10.1186/s13073-023-01161-y. ieee: E. Bernabeu et al., “Refining epigenetic prediction of chronological and biological age,” Genome Medicine, vol. 15. Springer Nature, 2023. ista: Bernabeu E, Mccartney DL, Gadd DA, Hillary RF, Lu AT, Murphy L, Wrobel N, Campbell A, Harris SE, Liewald D, Hayward C, Sudlow C, Cox SR, Evans KL, Horvath S, Mcintosh AM, Robinson MR, Vallejos CA, Marioni RE. 2023. Refining epigenetic prediction of chronological and biological age. Genome Medicine. 15, 12. mla: Bernabeu, Elena, et al. “Refining Epigenetic Prediction of Chronological and Biological Age.” Genome Medicine, vol. 15, 12, Springer Nature, 2023, doi:10.1186/s13073-023-01161-y. short: E. Bernabeu, D.L. Mccartney, D.A. Gadd, R.F. Hillary, A.T. Lu, L. Murphy, N. Wrobel, A. Campbell, S.E. Harris, D. Liewald, C. Hayward, C. Sudlow, S.R. Cox, K.L. Evans, S. Horvath, A.M. Mcintosh, M.R. Robinson, C.A. Vallejos, R.E. Marioni, Genome Medicine 15 (2023). date_created: 2023-03-12T23:01:02Z date_published: 2023-02-28T00:00:00Z date_updated: 2023-08-01T13:38:12Z day: '28' ddc: - '570' department: - _id: MaRo doi: 10.1186/s13073-023-01161-y external_id: isi: - '000940286600001' file: - access_level: open_access checksum: 833b837910c4db42fb5f0f34125f77a7 content_type: application/pdf creator: cchlebak date_created: 2023-03-14T10:29:47Z date_updated: 2023-03-14T10:29:47Z file_id: '12722' file_name: 2023_GenomeMed_Bernabeu.pdf file_size: 4275987 relation: main_file success: 1 file_date_updated: 2023-03-14T10:29:47Z has_accepted_license: '1' intvolume: ' 15' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Genome Medicine publication_identifier: eissn: - 1756-994X publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Refining epigenetic prediction of chronological and biological age tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 15 year: '2023' ... --- _id: '12704' abstract: - lang: eng text: Adversarial training (i.e., training on adversarially perturbed input data) is a well-studied method for making neural networks robust to potential adversarial attacks during inference. However, the improved robustness does not come for free but rather is accompanied by a decrease in overall model accuracy and performance. Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off but inflict a net loss when measured in holistic robot performance. This work revisits the robustness-accuracy trade-off in robot learning by systematically analyzing if recent advances in robust training methods and theory in conjunction with adversarial robot learning, are capable of making adversarial training suitable for real-world robot applications. We evaluate three different robot learning tasks ranging from autonomous driving in a high-fidelity environment amenable to sim-to-real deployment to mobile robot navigation and gesture recognition. Our results demonstrate that, while these techniques make incremental improvements on the trade-off on a relative scale, the negative impact on the nominal accuracy caused by adversarial training still outweighs the improved robustness by an order of magnitude. We conclude that although progress is happening, further advances in robust learning methods are necessary before they can benefit robot learning tasks in practice. acknowledgement: "We thank Christoph Lampert for inspiring this work. The\r\nviews and conclusions contained in this document are those of\r\nthe authors and should not be interpreted as representing the\r\nofficial policies, either expressed or implied, of the United States\r\nAir Force or the U.S. Government. The U.S. Government is\r\nauthorized to reproduce and distribute reprints for Government\r\npurposes notwithstanding any copyright notation herein." article_processing_charge: No article_type: original author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Lechner M, Amini A, Rus D, Henzinger TA. Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. 2023;8(3):1595-1602. doi:10.1109/LRA.2023.3240930 apa: Lechner, M., Amini, A., Rus, D., & Henzinger, T. A. (2023). Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/LRA.2023.3240930 chicago: Lechner, Mathias, Alexander Amini, Daniela Rus, and Thomas A Henzinger. “Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning.” IEEE Robotics and Automation Letters. Institute of Electrical and Electronics Engineers, 2023. https://doi.org/10.1109/LRA.2023.3240930. ieee: M. Lechner, A. Amini, D. Rus, and T. A. Henzinger, “Revisiting the adversarial robustness-accuracy tradeoff in robot learning,” IEEE Robotics and Automation Letters, vol. 8, no. 3. Institute of Electrical and Electronics Engineers, pp. 1595–1602, 2023. ista: Lechner M, Amini A, Rus D, Henzinger TA. 2023. Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. 8(3), 1595–1602. mla: Lechner, Mathias, et al. “Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning.” IEEE Robotics and Automation Letters, vol. 8, no. 3, Institute of Electrical and Electronics Engineers, 2023, pp. 1595–602, doi:10.1109/LRA.2023.3240930. short: M. Lechner, A. Amini, D. Rus, T.A. Henzinger, IEEE Robotics and Automation Letters 8 (2023) 1595–1602. date_created: 2023-03-05T23:01:04Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-01T13:36:50Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1109/LRA.2023.3240930 external_id: arxiv: - '2204.07373' isi: - '000936534100012' file: - access_level: open_access checksum: 5a75dcd326ea66685de2b1aaec259e85 content_type: application/pdf creator: cchlebak date_created: 2023-03-07T12:22:23Z date_updated: 2023-03-07T12:22:23Z file_id: '12714' file_name: 2023_IEEERobAutLetters_Lechner.pdf file_size: 944052 relation: main_file success: 1 file_date_updated: 2023-03-07T12:22:23Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 1595-1602 publication: IEEE Robotics and Automation Letters publication_identifier: eissn: - 2377-3766 publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' related_material: record: - id: '11366' relation: earlier_version status: public scopus_import: '1' status: public title: Revisiting the adversarial robustness-accuracy tradeoff in robot learning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2023' ... --- _id: '12737' abstract: - lang: eng text: The substitution of heavier, more metallic atoms into classical organic ligand frameworks provides an important strategy for tuning ligand properties, such as ligand bite and donor character, and is the basis for the emerging area of main-group supramolecular chemistry. In this paper, we explore two new ligands [E(2-Me-8-qy)3] [E = Sb (1), Bi (2); qy = quinolyl], allowing a fundamental comparison of their coordination behavior with classical tris(2-pyridyl) ligands of the type [E′(2-py)3] (E = a range of bridgehead atoms and groups, py = pyridyl). A range of new coordination modes to Cu+, Ag+, and Au+ is seen for 1 and 2, in the absence of steric constraints at the bridgehead and with their more remote N-donor atoms. A particular feature is the adaptive nature of these new ligands, with the ability to adjust coordination mode in response to the hard–soft character of coordinated metal ions, influenced also by the character of the bridgehead atom (Sb or Bi). These features can be seen in a comparison between [Cu2{Sb(2-Me-8-qy)3}2](PF6)2 (1·CuPF6) and [Cu{Bi(2-Me-8-qy)3}](PF6) (2·CuPF6), the first containing a dimeric cation in which 1 adopts an unprecedented intramolecular N,N,Sb-coordination mode while in the second, 2 adopts an unusual N,N,(π-)C coordination mode. In contrast, the previously reported analogous ligands [E(6-Me-2-py)3] (E = Sb, Bi; 2-py = 2-pyridyl) show a tris-chelating mode in their complexes with CuPF6, which is typical for the extensive tris(2-pyridyl) family with a range of metals. The greater polarity of the Bi–C bond in 2 results in ligand transfer reactions with Au(I). Although this reactivity is not in itself unusual, the characterization of several products by single-crystal X-ray diffraction provides snapshots of the ligand transfer reaction involved, with one of the products (the bimetallic complex [(BiCl){ClAu2(2-Me-8-qy)3}] (8)) containing a Au2Bi core in which the shortest Au → Bi donor–acceptor bond to date is observed. acknowledgement: The authors thank the Walters-Kundert Studentship of Selwyn College (scholarship for J.E.W.), the Leverhulme Trust (R.G.-R. and D.S.W., grant RPG-2017-146), the Australian Research Council (A.L.C., DE200100450), the Spanish Ministry of Science and Innovation (MCI) and the Spanish Ministry of Science, Innovation and Universities (MCIU) (R.G.-R., PID2021-124691NB-I00, funded by MCIN/AEI/10.13039/501100011033/FEDER, UE and PGC2018-096880-A-I00, MCIU/AEI/FEDER), The University of Valladolid and Santander Bank (Fellowship for A.G.-R.), and the U.K. EPSRC and The Royal Dutch Shell plc. (I-Case award for R.B.J., EP/R511870/1) for financial support. Calculations were carried out on an in-house Odyssey HPC cluster (Cambridge), and the authors are grateful for the calculation time used. article_processing_charge: No article_type: original author: - first_name: Álvaro full_name: García-Romero, Álvaro last_name: García-Romero - first_name: Jessica E. full_name: Waters, Jessica E. last_name: Waters - first_name: Rajesh B full_name: Jethwa, Rajesh B id: 4cc538d5-803f-11ed-ab7e-8139573aad8f last_name: Jethwa orcid: 0000-0002-0404-4356 - first_name: Andrew D. full_name: Bond, Andrew D. last_name: Bond - first_name: Annie L. full_name: Colebatch, Annie L. last_name: Colebatch - first_name: Raúl full_name: García-Rodríguez, Raúl last_name: García-Rodríguez - first_name: Dominic S. full_name: Wright, Dominic S. last_name: Wright citation: ama: García-Romero Á, Waters JE, Jethwa RB, et al. Highly adaptive nature of group 15 tris(quinolyl) ligands─studies with coinage metals. Inorganic Chemistry. 2023;62(11):4625-4636. doi:10.1021/acs.inorgchem.3c00057 apa: García-Romero, Á., Waters, J. E., Jethwa, R. B., Bond, A. D., Colebatch, A. L., García-Rodríguez, R., & Wright, D. S. (2023). Highly adaptive nature of group 15 tris(quinolyl) ligands─studies with coinage metals. Inorganic Chemistry. American Chemical Society. https://doi.org/10.1021/acs.inorgchem.3c00057 chicago: García-Romero, Álvaro, Jessica E. Waters, Rajesh B Jethwa, Andrew D. Bond, Annie L. Colebatch, Raúl García-Rodríguez, and Dominic S. Wright. “Highly Adaptive Nature of Group 15 Tris(Quinolyl) Ligands─studies with Coinage Metals.” Inorganic Chemistry. American Chemical Society, 2023. https://doi.org/10.1021/acs.inorgchem.3c00057. ieee: Á. García-Romero et al., “Highly adaptive nature of group 15 tris(quinolyl) ligands─studies with coinage metals,” Inorganic Chemistry, vol. 62, no. 11. American Chemical Society, pp. 4625–4636, 2023. ista: García-Romero Á, Waters JE, Jethwa RB, Bond AD, Colebatch AL, García-Rodríguez R, Wright DS. 2023. Highly adaptive nature of group 15 tris(quinolyl) ligands─studies with coinage metals. Inorganic Chemistry. 62(11), 4625–4636. mla: García-Romero, Álvaro, et al. “Highly Adaptive Nature of Group 15 Tris(Quinolyl) Ligands─studies with Coinage Metals.” Inorganic Chemistry, vol. 62, no. 11, American Chemical Society, 2023, pp. 4625–36, doi:10.1021/acs.inorgchem.3c00057. short: Á. García-Romero, J.E. Waters, R.B. Jethwa, A.D. Bond, A.L. Colebatch, R. García-Rodríguez, D.S. Wright, Inorganic Chemistry 62 (2023) 4625–4636. date_created: 2023-03-19T23:00:59Z date_published: 2023-03-08T00:00:00Z date_updated: 2023-08-01T13:42:59Z day: '08' department: - _id: StFr doi: 10.1021/acs.inorgchem.3c00057 external_id: isi: - '000956110300001' pmid: - '36883367' intvolume: ' 62' isi: 1 issue: '11' language: - iso: eng month: '03' oa_version: None page: 4625-4636 pmid: 1 publication: Inorganic Chemistry publication_identifier: eissn: - 1520-510X issn: - 0020-1669 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Highly adaptive nature of group 15 tris(quinolyl) ligands─studies with coinage metals type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 62 year: '2023' ... --- _id: '12723' abstract: - lang: eng text: 'Lead halide perovskites enjoy a number of remarkable optoelectronic properties. To explain their origin, it is necessary to study how electromagnetic fields interact with these systems. We address this problem here by studying two classical quantities: Faraday rotation and the complex refractive index in a paradigmatic perovskite CH3NH3PbBr3 in a broad wavelength range. We find that the minimal coupling of electromagnetic fields to the k⋅p Hamiltonian is insufficient to describe the observed data even on the qualitative level. To amend this, we demonstrate that there exists a relevant atomic-level coupling between electromagnetic fields and the spin degree of freedom. This spin-electric coupling allows for quantitative description of a number of previous as well as present experimental data. In particular, we use it here to show that the Faraday effect in lead halide perovskites is dominated by the Zeeman splitting of the energy levels and has a substantial beyond-Becquerel contribution. Finally, we present general symmetry-based phenomenological arguments that in the low-energy limit our effective model includes all basis coupling terms to the electromagnetic field in the linear order.' article_number: '106901' article_processing_charge: No article_type: original author: - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Abhishek full_name: Shiva Kumar, Abhishek id: 5e9a6931-eb97-11eb-a6c2-e96f7058d77a last_name: Shiva Kumar - first_name: Dusan full_name: Lorenc, Dusan id: 40D8A3E6-F248-11E8-B48F-1D18A9856A87 last_name: Lorenc - first_name: Younes full_name: Ashourishokri, Younes id: e32c111f-f6e0-11ea-865d-eb955baea334 last_name: Ashourishokri - first_name: Ayan A. full_name: Zhumekenov, Ayan A. last_name: Zhumekenov - first_name: Osman M. full_name: Bakr, Osman M. last_name: Bakr - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 citation: ama: Volosniev A, Shiva Kumar A, Lorenc D, et al. Spin-electric coupling in lead halide perovskites. Physical Review Letters. 2023;130(10). doi:10.1103/physrevlett.130.106901 apa: Volosniev, A., Shiva Kumar, A., Lorenc, D., Ashourishokri, Y., Zhumekenov, A. A., Bakr, O. M., … Alpichshev, Z. (2023). Spin-electric coupling in lead halide perovskites. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.130.106901 chicago: Volosniev, Artem, Abhishek Shiva Kumar, Dusan Lorenc, Younes Ashourishokri, Ayan A. Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Spin-Electric Coupling in Lead Halide Perovskites.” Physical Review Letters. American Physical Society, 2023. https://doi.org/10.1103/physrevlett.130.106901. ieee: A. Volosniev et al., “Spin-electric coupling in lead halide perovskites,” Physical Review Letters, vol. 130, no. 10. American Physical Society, 2023. ista: Volosniev A, Shiva Kumar A, Lorenc D, Ashourishokri Y, Zhumekenov AA, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Spin-electric coupling in lead halide perovskites. Physical Review Letters. 130(10), 106901. mla: Volosniev, Artem, et al. “Spin-Electric Coupling in Lead Halide Perovskites.” Physical Review Letters, vol. 130, no. 10, 106901, American Physical Society, 2023, doi:10.1103/physrevlett.130.106901. short: A. Volosniev, A. Shiva Kumar, D. Lorenc, Y. Ashourishokri, A.A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, Physical Review Letters 130 (2023). date_created: 2023-03-14T13:11:59Z date_published: 2023-03-10T00:00:00Z date_updated: 2023-08-01T13:39:04Z day: '10' department: - _id: GradSch - _id: ZhAl - _id: MiLe doi: 10.1103/physrevlett.130.106901 external_id: arxiv: - '2203.09443' isi: - '000982435900002' intvolume: ' 130' isi: 1 issue: '10' keyword: - General Physics and Astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2203.09443 month: '03' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Spin-electric coupling in lead halide perovskites type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 130 year: '2023' ... --- _id: '12724' abstract: - lang: eng text: 'We use general symmetry-based arguments to construct an effective model suitable for studying optical properties of lead halide perovskites. To build the model, we identify an atomic-level interaction between electromagnetic fields and the spin degree of freedom that should be added to a minimally coupled k⋅p Hamiltonian. As a first application, we study two basic optical characteristics of the material: the Verdet constant and the refractive index. Beyond these linear characteristics of the material, the model is suitable for calculating nonlinear effects such as the third-order optical susceptibility. Analysis of this quantity shows that the geometrical properties of the spin-electric term imply isotropic optical response of the system, and that optical anisotropy of lead halide perovskites is a manifestation of hopping of charge carriers. To illustrate this, we discuss third-harmonic generation.' article_number: '125201' article_processing_charge: No article_type: original author: - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Abhishek full_name: Shiva Kumar, Abhishek id: 5e9a6931-eb97-11eb-a6c2-e96f7058d77a last_name: Shiva Kumar - first_name: Dusan full_name: Lorenc, Dusan id: 40D8A3E6-F248-11E8-B48F-1D18A9856A87 last_name: Lorenc - first_name: Younes full_name: Ashourishokri, Younes id: e32c111f-f6e0-11ea-865d-eb955baea334 last_name: Ashourishokri - first_name: Ayan full_name: Zhumekenov, Ayan last_name: Zhumekenov - first_name: Osman M. full_name: Bakr, Osman M. last_name: Bakr - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 citation: ama: Volosniev A, Shiva Kumar A, Lorenc D, et al. Effective model for studying optical properties of lead halide perovskites. Physical Review B. 2023;107(12). doi:10.1103/physrevb.107.125201 apa: Volosniev, A., Shiva Kumar, A., Lorenc, D., Ashourishokri, Y., Zhumekenov, A., Bakr, O. M., … Alpichshev, Z. (2023). Effective model for studying optical properties of lead halide perovskites. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.107.125201 chicago: Volosniev, Artem, Abhishek Shiva Kumar, Dusan Lorenc, Younes Ashourishokri, Ayan Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Effective Model for Studying Optical Properties of Lead Halide Perovskites.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/physrevb.107.125201. ieee: A. Volosniev et al., “Effective model for studying optical properties of lead halide perovskites,” Physical Review B, vol. 107, no. 12. American Physical Society, 2023. ista: Volosniev A, Shiva Kumar A, Lorenc D, Ashourishokri Y, Zhumekenov A, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Effective model for studying optical properties of lead halide perovskites. Physical Review B. 107(12), 125201. mla: Volosniev, Artem, et al. “Effective Model for Studying Optical Properties of Lead Halide Perovskites.” Physical Review B, vol. 107, no. 12, 125201, American Physical Society, 2023, doi:10.1103/physrevb.107.125201. short: A. Volosniev, A. Shiva Kumar, D. Lorenc, Y. Ashourishokri, A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, Physical Review B 107 (2023). date_created: 2023-03-14T13:13:05Z date_published: 2023-03-15T00:00:00Z date_updated: 2023-08-01T13:39:47Z day: '15' department: - _id: GradSch - _id: ZhAl - _id: MiLe doi: 10.1103/physrevb.107.125201 external_id: arxiv: - '2204.04022' isi: - '000972602200006' intvolume: ' 107' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2204.04022 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Effective model for studying optical properties of lead halide perovskites type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12759' abstract: - lang: eng text: Stereological methods for estimating the 3D particle size and density from 2D projections are essential to many research fields. These methods are, however, prone to errors arising from undetected particle profiles due to sectioning and limited resolution, known as ‘lost caps’. A potential solution developed by Keiding, Jensen, and Ranek in 1972, which we refer to as the Keiding model, accounts for lost caps by quantifying the smallest detectable profile in terms of its limiting ‘cap angle’ (ϕ), a size-independent measure of a particle’s distance from the section surface. However, this simple solution has not been widely adopted nor tested. Rather, model-independent design-based stereological methods, which do not explicitly account for lost caps, have come to the fore. Here, we provide the first experimental validation of the Keiding model by comparing the size and density of particles estimated from 2D projections with direct measurement from 3D EM reconstructions of the same tissue. We applied the Keiding model to estimate the size and density of somata, nuclei and vesicles in the cerebellum of mice and rats, where high packing density can be problematic for design-based methods. Our analysis reveals a Gaussian distribution for ϕ rather than a single value. Nevertheless, curve fits of the Keiding model to the 2D diameter distribution accurately estimate the mean ϕ and 3D diameter distribution. While systematic testing using simulations revealed an upper limit to determining ϕ, our analysis shows that estimated ϕ can be used to determine the 3D particle density from the 2D density under a wide range of conditions, and this method is potentially more accurate than minimum-size-based lost-cap corrections and disector methods. Our results show the Keiding model provides an efficient means of accurately estimating the size and density of particles from 2D projections even under conditions of a high density. acknowledged_ssus: - _id: EM-Fac acknowledgement: "We thank the IST Austria Electron Microscopy Facility for technical support, and Diccon Coyle, Andrea Lőrincz and Zoltan Nusser for their helpful comments and discussions.\r\nFunding for JSR and RAS was from the Wellcome Trust (203048; 224499; https://\r\nwellcome.org/). RAS is in receipt of a Wellcome Trust Principal Research Fellowship (224499).\r\nFunding for CBM and PJ was from Fond zur Förderung der Wissenschaftlichen Forschung (V\r\n739-B27 Elise-Richter Programme to CBM, Z 312-B27 Wittgenstein Award to PJ; \r\nhttps://www.fwf.ac.at). PJ received funding from the European Research Council (ERC; https://erc.europa.eu) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 692692). NH was supported by a European\r\nResearch Council Advanced Grant (ERC-AG787157)." article_number: e0277148 article_processing_charge: No article_type: original author: - first_name: Jason Seth full_name: Rothman, Jason Seth last_name: Rothman - first_name: Carolina full_name: Borges Merjane, Carolina id: 4305C450-F248-11E8-B48F-1D18A9856A87 last_name: Borges Merjane orcid: 0000-0003-0005-401X - first_name: Noemi full_name: Holderith, Noemi last_name: Holderith - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: R. full_name: Angus Silver, R. last_name: Angus Silver citation: ama: Rothman JS, Borges Merjane C, Holderith N, Jonas PM, Angus Silver R. Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy. PLoS ONE. 2023;18(3 March). doi:10.1371/journal.pone.0277148 apa: Rothman, J. S., Borges Merjane, C., Holderith, N., Jonas, P. M., & Angus Silver, R. (2023). Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy. PLoS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0277148 chicago: Rothman, Jason Seth, Carolina Borges Merjane, Noemi Holderith, Peter M Jonas, and R. Angus Silver. “Validation of a Stereological Method for Estimating Particle Size and Density from 2D Projections with High Accuracy.” PLoS ONE. Public Library of Science, 2023. https://doi.org/10.1371/journal.pone.0277148. ieee: J. S. Rothman, C. Borges Merjane, N. Holderith, P. M. Jonas, and R. Angus Silver, “Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy,” PLoS ONE, vol. 18, no. 3 March. Public Library of Science, 2023. ista: Rothman JS, Borges Merjane C, Holderith N, Jonas PM, Angus Silver R. 2023. Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy. PLoS ONE. 18(3 March), e0277148. mla: Rothman, Jason Seth, et al. “Validation of a Stereological Method for Estimating Particle Size and Density from 2D Projections with High Accuracy.” PLoS ONE, vol. 18, no. 3 March, e0277148, Public Library of Science, 2023, doi:10.1371/journal.pone.0277148. short: J.S. Rothman, C. Borges Merjane, N. Holderith, P.M. Jonas, R. Angus Silver, PLoS ONE 18 (2023). date_created: 2023-03-26T22:01:07Z date_published: 2023-03-17T00:00:00Z date_updated: 2023-08-01T13:46:39Z day: '17' ddc: - '570' department: - _id: PeJo doi: 10.1371/journal.pone.0277148 ec_funded: 1 external_id: isi: - '001024737400001' file: - access_level: open_access checksum: 2380331ec27cc87808826fc64419ac1c content_type: application/pdf creator: dernst date_created: 2023-03-27T06:51:09Z date_updated: 2023-03-27T06:51:09Z file_id: '12770' file_name: 2023_PLoSOne_Rothman.pdf file_size: 7290413 relation: main_file success: 1 file_date_updated: 2023-03-27T06:51:09Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: 3 March language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 2696E7FE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: V00739 name: Structural plasticity at mossy fiber-CA3 synapses publication: PLoS ONE publication_identifier: eissn: - 1932-6203 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2023' ... --- _id: '12756' abstract: - lang: eng text: ESCRT-III family proteins form composite polymers that deform and cut membrane tubes in the context of a wide range of cell biological processes across the tree of life. In reconstituted systems, sequential changes in the composition of ESCRT-III polymers induced by the AAA–adenosine triphosphatase Vps4 have been shown to remodel membranes. However, it is not known how composite ESCRT-III polymers are organized and remodeled in space and time in a cellular context. Taking advantage of the relative simplicity of the ESCRT-III–dependent division system in Sulfolobus acidocaldarius, one of the closest experimentally tractable prokaryotic relatives of eukaryotes, we use super-resolution microscopy, electron microscopy, and computational modeling to show how CdvB/CdvB1/CdvB2 proteins form a precisely patterned composite ESCRT-III division ring, which undergoes stepwise Vps4-dependent disassembly and contracts to cut cells into two. These observations lead us to suggest sequential changes in a patterned composite polymer as a general mechanism of ESCRT-III–dependent membrane remodeling. acknowledgement: "We thank Y. Liu and V. Hale for help with electron cryotomography; the Medical Research Council (MRC) LMB Electron Microscopy Facility for access, training, and support; and T. Darling and J. Grimmett at the MRC LMB for help with computing infrastructure. We also thank the Flow Cytometry Facility and the MRC LMB for training and support.\r\n F.H. and G.T.-R. were supported by a grant from the Wellcome Trust (203276/Z/16/Z). A.C. was supported by an EMBO long-term fellowship: ALTF_1041-2021. J.T. was supported by a grant from the VW Foundation (94933). A.A.P. was supported by the Wellcome Trust (203276/Z/16/Z) and the HFSP (LT001027/2019). B.B. received support from the MRC LMB, the Wellcome Trust (203276/Z/16/Z), the VW Foundation (94933), the Life Sciences–Moore-Simons Foundation (735929LPI), and a Gordon and Betty Moore Foundation’s Symbiosis in Aquatic Systems Initiative (9346). A.Š. and X.J. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 802960). L.H.-K. acknowledges support from Biotechnology and Biological Sciences Research Council LIDo Programme. T.N. and J.L. were supported by the MRC (U105184326) and the Wellcome Trust (203276/Z/16/Z)." article_number: eade5224 article_processing_charge: No article_type: original author: - first_name: Fredrik full_name: Hurtig, Fredrik last_name: Hurtig - first_name: Thomas C.Q. full_name: Burgers, Thomas C.Q. last_name: Burgers - first_name: Alice full_name: Cezanne, Alice last_name: Cezanne - first_name: Xiuyun full_name: Jiang, Xiuyun last_name: Jiang - first_name: Frank N. full_name: Mol, Frank N. last_name: Mol - first_name: Jovan full_name: Traparić, Jovan last_name: Traparić - first_name: Andre Arashiro full_name: Pulschen, Andre Arashiro last_name: Pulschen - first_name: Tim full_name: Nierhaus, Tim last_name: Nierhaus - first_name: Gabriel full_name: Tarrason-Risa, Gabriel last_name: Tarrason-Risa - first_name: Lena full_name: Harker-Kirschneck, Lena last_name: Harker-Kirschneck - first_name: Jan full_name: Löwe, Jan last_name: Löwe - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Rifka full_name: Vlijm, Rifka last_name: Vlijm - first_name: Buzz full_name: Baum, Buzz last_name: Baum citation: ama: Hurtig F, Burgers TCQ, Cezanne A, et al. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Science Advances. 2023;9(11). doi:10.1126/sciadv.ade5224 apa: Hurtig, F., Burgers, T. C. Q., Cezanne, A., Jiang, X., Mol, F. N., Traparić, J., … Baum, B. (2023). The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.ade5224 chicago: Hurtig, Fredrik, Thomas C.Q. Burgers, Alice Cezanne, Xiuyun Jiang, Frank N. Mol, Jovan Traparić, Andre Arashiro Pulschen, et al. “The Patterned Assembly and Stepwise Vps4-Mediated Disassembly of Composite ESCRT-III Polymers Drives Archaeal Cell Division.” Science Advances. American Association for the Advancement of Science, 2023. https://doi.org/10.1126/sciadv.ade5224. ieee: F. Hurtig et al., “The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division,” Science Advances, vol. 9, no. 11. American Association for the Advancement of Science, 2023. ista: Hurtig F, Burgers TCQ, Cezanne A, Jiang X, Mol FN, Traparić J, Pulschen AA, Nierhaus T, Tarrason-Risa G, Harker-Kirschneck L, Löwe J, Šarić A, Vlijm R, Baum B. 2023. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Science Advances. 9(11), eade5224. mla: Hurtig, Fredrik, et al. “The Patterned Assembly and Stepwise Vps4-Mediated Disassembly of Composite ESCRT-III Polymers Drives Archaeal Cell Division.” Science Advances, vol. 9, no. 11, eade5224, American Association for the Advancement of Science, 2023, doi:10.1126/sciadv.ade5224. short: F. Hurtig, T.C.Q. Burgers, A. Cezanne, X. Jiang, F.N. Mol, J. Traparić, A.A. Pulschen, T. Nierhaus, G. Tarrason-Risa, L. Harker-Kirschneck, J. Löwe, A. Šarić, R. Vlijm, B. Baum, Science Advances 9 (2023). date_created: 2023-03-26T22:01:06Z date_published: 2023-03-17T00:00:00Z date_updated: 2023-08-01T13:45:54Z day: '17' ddc: - '570' department: - _id: AnSa doi: 10.1126/sciadv.ade5224 ec_funded: 1 external_id: isi: - '000968083500010' file: - access_level: open_access checksum: 6d7dbe9ed86a116c8a002d62971202c5 content_type: application/pdf creator: dernst date_created: 2023-03-27T06:24:49Z date_updated: 2023-03-27T06:24:49Z file_id: '12768' file_name: 2023_ScienceAdvances_Hurtig.pdf file_size: 1826471 relation: main_file success: 1 file_date_updated: 2023-03-27T06:24:49Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '11' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: eba2549b-77a9-11ec-83b8-a81e493eae4e call_identifier: H2020 grant_number: '802960' name: 'Non-Equilibrium Protein Assembly: from Building Blocks to Biological Machines' publication: Science Advances publication_identifier: eissn: - 2375-2548 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2023' ... --- _id: '12758' abstract: - lang: eng text: AlphaFold changed the field of structural biology by achieving three-dimensional (3D) structure prediction from protein sequence at experimental quality. The astounding success even led to claims that the protein folding problem is “solved”. However, protein folding problem is more than just structure prediction from sequence. Presently, it is unknown if the AlphaFold-triggered revolution could help to solve other problems related to protein folding. Here we assay the ability of AlphaFold to predict the impact of single mutations on protein stability (ΔΔG) and function. To study the question we extracted the pLDDT and metrics from AlphaFold predictions before and after single mutation in a protein and correlated the predicted change with the experimentally known ΔΔG values. Additionally, we correlated the same AlphaFold pLDDT metrics with the impact of a single mutation on structure using a large scale dataset of single mutations in GFP with the experimentally assayed levels of fluorescence. We found a very weak or no correlation between AlphaFold output metrics and change of protein stability or fluorescence. Our results imply that AlphaFold may not be immediately applied to other problems or applications in protein folding. acknowledgement: The authors acknowledge the use of Zhores supercomputer [28] for obtaining the results presented in this paper.The authors thank Zimin Foundation and Petrovax for support of the presented study at the School of Molecular and Theoretical Biology 2021. article_number: e0282689 article_processing_charge: No article_type: original author: - first_name: Marina A. full_name: Pak, Marina A. last_name: Pak - first_name: Karina A. full_name: Markhieva, Karina A. last_name: Markhieva - first_name: Mariia S. full_name: Novikova, Mariia S. last_name: Novikova - first_name: Dmitry S. full_name: Petrov, Dmitry S. last_name: Petrov - first_name: Ilya S. full_name: Vorobyev, Ilya S. last_name: Vorobyev - first_name: Ekaterina full_name: Maksimova, Ekaterina id: 2FBE0DE4-F248-11E8-B48F-1D18A9856A87 last_name: Maksimova - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Dmitry N. full_name: Ivankov, Dmitry N. last_name: Ivankov citation: ama: Pak MA, Markhieva KA, Novikova MS, et al. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE. 2023;18(3). doi:10.1371/journal.pone.0282689 apa: Pak, M. A., Markhieva, K. A., Novikova, M. S., Petrov, D. S., Vorobyev, I. S., Maksimova, E., … Ivankov, D. N. (2023). Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0282689 chicago: Pak, Marina A., Karina A. Markhieva, Mariia S. Novikova, Dmitry S. Petrov, Ilya S. Vorobyev, Ekaterina Maksimova, Fyodor Kondrashov, and Dmitry N. Ivankov. “Using AlphaFold to Predict the Impact of Single Mutations on Protein Stability and Function.” PLoS ONE. Public Library of Science, 2023. https://doi.org/10.1371/journal.pone.0282689. ieee: M. A. Pak et al., “Using AlphaFold to predict the impact of single mutations on protein stability and function,” PLoS ONE, vol. 18, no. 3. Public Library of Science, 2023. ista: Pak MA, Markhieva KA, Novikova MS, Petrov DS, Vorobyev IS, Maksimova E, Kondrashov F, Ivankov DN. 2023. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE. 18(3), e0282689. mla: Pak, Marina A., et al. “Using AlphaFold to Predict the Impact of Single Mutations on Protein Stability and Function.” PLoS ONE, vol. 18, no. 3, e0282689, Public Library of Science, 2023, doi:10.1371/journal.pone.0282689. short: M.A. Pak, K.A. Markhieva, M.S. Novikova, D.S. Petrov, I.S. Vorobyev, E. Maksimova, F. Kondrashov, D.N. Ivankov, PLoS ONE 18 (2023). date_created: 2023-03-26T22:01:07Z date_published: 2023-03-16T00:00:00Z date_updated: 2023-08-01T13:47:14Z day: '16' ddc: - '570' department: - _id: FyKo - _id: MaRo doi: 10.1371/journal.pone.0282689 external_id: isi: - '000985134400106' file: - access_level: open_access checksum: 0281bdfccf8d76c4e08dd011c603f6b6 content_type: application/pdf creator: dernst date_created: 2023-03-27T07:09:08Z date_updated: 2023-03-27T07:09:08Z file_id: '12771' file_name: 2023_PLoSOne_Pak.pdf file_size: 856625 relation: main_file success: 1 file_date_updated: 2023-03-27T07:09:08Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: PLoS ONE publication_identifier: eissn: - 1932-6203 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Using AlphaFold to predict the impact of single mutations on protein stability and function tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2023' ... --- _id: '12757' abstract: - lang: eng text: My group and myself have studied respiratory complex I for almost 30 years, starting in 1994 when it was known as a L-shaped giant ‘black box' of bioenergetics. First breakthrough was the X-ray structure of the peripheral arm, followed by structures of the membrane arm and finally the entire complex from Thermus thermophilus. The developments in cryo-EM technology allowed us to solve the first complete structure of the twice larger, ∼1 MDa mammalian enzyme in 2016. However, the mechanism coupling, over large distances, the transfer of two electrons to pumping of four protons across the membrane remained an enigma. Recently we have solved high-resolution structures of mammalian and bacterial complex I under a range of redox conditions, including catalytic turnover. This allowed us to propose a robust and universal mechanism for complex I and related protein families. Redox reactions initially drive conformational changes around the quinone cavity and a long-distance transfer of substrate protons. These set up a stage for a series of electrostatically driven proton transfers along the membrane arm (‘domino effect'), eventually resulting in proton expulsion from the distal antiporter-like subunit. The mechanism radically differs from previous suggestions, however, it naturally explains all the unusual structural features of complex I. In this review I discuss the state of knowledge on complex I, including the current most controversial issues. article_processing_charge: No article_type: review author: - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: 'Sazanov LA. From the “black box” to “domino effect” mechanism: What have we learned from the structures of respiratory complex I. The Biochemical Journal. 2023;480(5):319-333. doi:10.1042/BCJ20210285' apa: 'Sazanov, L. A. (2023). From the “black box” to “domino effect” mechanism: What have we learned from the structures of respiratory complex I. The Biochemical Journal. Portland Press. https://doi.org/10.1042/BCJ20210285' chicago: 'Sazanov, Leonid A. “From the ‘black Box’ to ‘Domino Effect’ Mechanism: What Have We Learned from the Structures of Respiratory Complex I.” The Biochemical Journal. Portland Press, 2023. https://doi.org/10.1042/BCJ20210285.' ieee: 'L. A. Sazanov, “From the ‘black box’ to ‘domino effect’ mechanism: What have we learned from the structures of respiratory complex I,” The Biochemical Journal, vol. 480, no. 5. Portland Press, pp. 319–333, 2023.' ista: 'Sazanov LA. 2023. From the ‘black box’ to ‘domino effect’ mechanism: What have we learned from the structures of respiratory complex I. The Biochemical Journal. 480(5), 319–333.' mla: 'Sazanov, Leonid A. “From the ‘black Box’ to ‘Domino Effect’ Mechanism: What Have We Learned from the Structures of Respiratory Complex I.” The Biochemical Journal, vol. 480, no. 5, Portland Press, 2023, pp. 319–33, doi:10.1042/BCJ20210285.' short: L.A. Sazanov, The Biochemical Journal 480 (2023) 319–333. date_created: 2023-03-26T22:01:06Z date_published: 2023-03-15T00:00:00Z date_updated: 2023-08-01T13:45:12Z day: '15' ddc: - '570' department: - _id: LeSa doi: 10.1042/BCJ20210285 external_id: isi: - '000957065700001' pmid: - '36920092' has_accepted_license: '1' intvolume: ' 480' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1042/BCJ20210285 month: '03' oa: 1 oa_version: Published Version page: 319-333 pmid: 1 publication: The Biochemical Journal publication_identifier: eissn: - 1470-8728 issn: - 0264-6021 publication_status: published publisher: Portland Press quality_controlled: '1' scopus_import: '1' status: public title: 'From the ''black box'' to ''domino effect'' mechanism: What have we learned from the structures of respiratory complex I' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 480 year: '2023' ...