--- _id: '8793' abstract: - lang: eng text: We study optimal election sequences for repeatedly selecting a (very) small group of leaders among a set of participants (players) with publicly known unique ids. In every time slot, every player has to select exactly one player that it considers to be the current leader, oblivious to the selection of the other players, but with the overarching goal of maximizing a given parameterized global (“social”) payoff function in the limit. We consider a quite generic model, where the local payoff achieved by a given player depends, weighted by some arbitrary but fixed real parameter, on the number of different leaders chosen in a round, the number of players that choose the given player as the leader, and whether the chosen leader has changed w.r.t. the previous round or not. The social payoff can be the maximum, average or minimum local payoff of the players. Possible applications include quite diverse examples such as rotating coordinator-based distributed algorithms and long-haul formation flying of social birds. Depending on the weights and the particular social payoff, optimal sequences can be very different, from simple round-robin where all players chose the same leader alternatingly every time slot to very exotic patterns, where a small group of leaders (at most 2) is elected in every time slot. Moreover, we study the question if and when a single player would not benefit w.r.t. its local payoff when deviating from the given optimal sequence, i.e., when our optimal sequences are Nash equilibria in the restricted strategy space of oblivious strategies. As this is the case for many parameterizations of our model, our results reveal that no punishment is needed to make it rational for the players to optimize the social payoff. acknowledgement: "We are grateful to Matthias Függer and Thomas Nowak for having raised our interest in the problem studied in this paper.\r\nThis work has been supported the Austrian Science Fund (FWF) projects S11405, S11407 (RiSE), and P28182 (ADynNet)." article_processing_charge: No article_type: original author: - first_name: Martin full_name: Zeiner, Martin last_name: Zeiner - first_name: Ulrich full_name: Schmid, Ulrich last_name: Schmid - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Zeiner M, Schmid U, Chatterjee K. Optimal strategies for selecting coordinators. Discrete Applied Mathematics. 2021;289(1):392-415. doi:10.1016/j.dam.2020.10.022 apa: Zeiner, M., Schmid, U., & Chatterjee, K. (2021). Optimal strategies for selecting coordinators. Discrete Applied Mathematics. Elsevier. https://doi.org/10.1016/j.dam.2020.10.022 chicago: Zeiner, Martin, Ulrich Schmid, and Krishnendu Chatterjee. “Optimal Strategies for Selecting Coordinators.” Discrete Applied Mathematics. Elsevier, 2021. https://doi.org/10.1016/j.dam.2020.10.022. ieee: M. Zeiner, U. Schmid, and K. Chatterjee, “Optimal strategies for selecting coordinators,” Discrete Applied Mathematics, vol. 289, no. 1. Elsevier, pp. 392–415, 2021. ista: Zeiner M, Schmid U, Chatterjee K. 2021. Optimal strategies for selecting coordinators. Discrete Applied Mathematics. 289(1), 392–415. mla: Zeiner, Martin, et al. “Optimal Strategies for Selecting Coordinators.” Discrete Applied Mathematics, vol. 289, no. 1, Elsevier, 2021, pp. 392–415, doi:10.1016/j.dam.2020.10.022. short: M. Zeiner, U. Schmid, K. Chatterjee, Discrete Applied Mathematics 289 (2021) 392–415. date_created: 2020-11-22T23:01:26Z date_published: 2021-01-31T00:00:00Z date_updated: 2023-08-04T11:12:41Z day: '31' ddc: - '510' department: - _id: KrCh doi: 10.1016/j.dam.2020.10.022 external_id: isi: - '000596823800035' file: - access_level: open_access checksum: f1039ff5a2d6ca116720efdb84ee9d5e content_type: application/pdf creator: dernst date_created: 2021-02-04T11:28:42Z date_updated: 2021-02-04T11:28:42Z file_id: '9089' file_name: 2021_DiscreteApplMath_Zeiner.pdf file_size: 652739 relation: main_file success: 1 file_date_updated: 2021-02-04T11:28:42Z has_accepted_license: '1' intvolume: ' 289' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 392-415 project: - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory publication: Discrete Applied Mathematics publication_identifier: issn: - 0166218X publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Optimal strategies for selecting coordinators tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 289 year: '2021' ... --- _id: '8816' abstract: - lang: eng text: Area-dependent quantum field theory is a modification of two-dimensional topological quantum field theory, where one equips each connected component of a bordism with a positive real number—interpreted as area—which behaves additively under glueing. As opposed to topological theories, in area-dependent theories the state spaces can be infinite-dimensional. We introduce the notion of regularised Frobenius algebras in Hilbert spaces and show that area-dependent theories are in one-to-one correspondence to commutative regularised Frobenius algebras. We also provide a state sum construction for area-dependent theories. Our main example is two-dimensional Yang–Mills theory with compact gauge group, which we treat in detail. acknowledgement: The authors thank Yuki Arano, Nils Carqueville, Alexei Davydov, Reiner Lauterbach, Pau Enrique Moliner, Chris Heunen, André Henriques, Ehud Meir, Catherine Meusburger, Gregor Schaumann, Richard Szabo and Stefan Wagner for helpful discussions and comments. We also thank the referees for their detailed comments which significantly improved the exposition of this paper. LS is supported by the DFG Research Training Group 1670 “Mathematics Inspired by String Theory and Quantum Field Theory”. Open access funding provided by Institute of Science and Technology (IST Austria). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Ingo full_name: Runkel, Ingo last_name: Runkel - first_name: Lorant full_name: Szegedy, Lorant id: 7943226E-220E-11EA-94C7-D59F3DDC885E last_name: Szegedy orcid: 0000-0003-2834-5054 citation: ama: Runkel I, Szegedy L. Area-dependent quantum field theory. Communications in Mathematical Physics. 2021;381(1):83–117. doi:10.1007/s00220-020-03902-1 apa: Runkel, I., & Szegedy, L. (2021). Area-dependent quantum field theory. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-020-03902-1 chicago: Runkel, Ingo, and Lorant Szegedy. “Area-Dependent Quantum Field Theory.” Communications in Mathematical Physics. Springer Nature, 2021. https://doi.org/10.1007/s00220-020-03902-1. ieee: I. Runkel and L. Szegedy, “Area-dependent quantum field theory,” Communications in Mathematical Physics, vol. 381, no. 1. Springer Nature, pp. 83–117, 2021. ista: Runkel I, Szegedy L. 2021. Area-dependent quantum field theory. Communications in Mathematical Physics. 381(1), 83–117. mla: Runkel, Ingo, and Lorant Szegedy. “Area-Dependent Quantum Field Theory.” Communications in Mathematical Physics, vol. 381, no. 1, Springer Nature, 2021, pp. 83–117, doi:10.1007/s00220-020-03902-1. short: I. Runkel, L. Szegedy, Communications in Mathematical Physics 381 (2021) 83–117. date_created: 2020-11-29T23:01:17Z date_published: 2021-01-01T00:00:00Z date_updated: 2023-08-04T11:13:35Z day: '01' ddc: - '510' department: - _id: MiLe doi: 10.1007/s00220-020-03902-1 external_id: isi: - '000591139000001' file: - access_level: open_access checksum: 6f451f9c2b74bedbc30cf884a3e02670 content_type: application/pdf creator: dernst date_created: 2021-02-03T15:00:30Z date_updated: 2021-02-03T15:00:30Z file_id: '9081' file_name: 2021_CommMathPhys_Runkel.pdf file_size: 790526 relation: main_file success: 1 file_date_updated: 2021-02-03T15:00:30Z has_accepted_license: '1' intvolume: ' 381' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 83–117 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Communications in Mathematical Physics publication_identifier: eissn: - '14320916' issn: - '00103616' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Area-dependent quantum field theory tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 381 year: '2021' ... --- _id: '8818' abstract: - lang: eng text: The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep1. These changes require precise homeostatic control by subcortical neuromodulatory structures2. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis. acknowledgement: We thank O. Eschenko and M. Constantinou for providing feedback on earlier versions of this work, and J. Werner and M. Schnabel for technical support during the development of this study. This research was supported by the Max Planck Society. article_processing_charge: No article_type: original author: - first_name: Juan F full_name: Ramirez Villegas, Juan F id: 44B06F76-F248-11E8-B48F-1D18A9856A87 last_name: Ramirez Villegas - first_name: Michel full_name: Besserve, Michel last_name: Besserve - first_name: Yusuke full_name: Murayama, Yusuke last_name: Murayama - first_name: Henry C. full_name: Evrard, Henry C. last_name: Evrard - first_name: Axel full_name: Oeltermann, Axel last_name: Oeltermann - first_name: Nikos K. full_name: Logothetis, Nikos K. last_name: Logothetis citation: ama: Ramirez Villegas JF, Besserve M, Murayama Y, Evrard HC, Oeltermann A, Logothetis NK. Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. Nature. 2021;589(7840):96-102. doi:10.1038/s41586-020-2914-4 apa: Ramirez Villegas, J. F., Besserve, M., Murayama, Y., Evrard, H. C., Oeltermann, A., & Logothetis, N. K. (2021). Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. Nature. Springer Nature. https://doi.org/10.1038/s41586-020-2914-4 chicago: Ramirez Villegas, Juan F, Michel Besserve, Yusuke Murayama, Henry C. Evrard, Axel Oeltermann, and Nikos K. Logothetis. “Coupling of Hippocampal Theta and Ripples with Pontogeniculooccipital Waves.” Nature. Springer Nature, 2021. https://doi.org/10.1038/s41586-020-2914-4. ieee: J. F. Ramirez Villegas, M. Besserve, Y. Murayama, H. C. Evrard, A. Oeltermann, and N. K. Logothetis, “Coupling of hippocampal theta and ripples with pontogeniculooccipital waves,” Nature, vol. 589, no. 7840. Springer Nature, pp. 96–102, 2021. ista: Ramirez Villegas JF, Besserve M, Murayama Y, Evrard HC, Oeltermann A, Logothetis NK. 2021. Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. Nature. 589(7840), 96–102. mla: Ramirez Villegas, Juan F., et al. “Coupling of Hippocampal Theta and Ripples with Pontogeniculooccipital Waves.” Nature, vol. 589, no. 7840, Springer Nature, 2021, pp. 96–102, doi:10.1038/s41586-020-2914-4. short: J.F. Ramirez Villegas, M. Besserve, Y. Murayama, H.C. Evrard, A. Oeltermann, N.K. Logothetis, Nature 589 (2021) 96–102. date_created: 2020-11-29T23:01:19Z date_published: 2021-01-07T00:00:00Z date_updated: 2023-08-04T11:13:08Z day: '07' department: - _id: JoCs doi: 10.1038/s41586-020-2914-4 external_id: isi: - '000591047800005' pmid: - '33208951' intvolume: ' 589' isi: 1 issue: '7840' language: - iso: eng month: '01' oa_version: None page: 96-102 pmid: 1 publication: Nature publication_identifier: eissn: - '14764687' issn: - '00280836' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41586-020-03068-9 scopus_import: '1' status: public title: Coupling of hippocampal theta and ripples with pontogeniculooccipital waves type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 589 year: '2021' ... --- _id: '8773' abstract: - lang: eng text: Let g be a complex semisimple Lie algebra. We give a classification of contravariant forms on the nondegenerate Whittaker g-modules Y(χ,η) introduced by Kostant. We prove that the set of all contravariant forms on Y(χ,η) forms a vector space whose dimension is given by the cardinality of the Weyl group of g. We also describe a procedure for parabolically inducing contravariant forms. As a corollary, we deduce the existence of the Shapovalov form on a Verma module, and provide a formula for the dimension of the space of contravariant forms on the degenerate Whittaker modules M(χ,η) introduced by McDowell. acknowledgement: "We would like to thank Peter Trapa for useful discussions, and Dragan Milicic and Arun Ram for valuable feedback on the structure of the paper. The first author acknowledges the support of the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie Grant Agreement No. 754411. The second author is\r\nsupported by the National Science Foundation Award No. 1803059." article_processing_charge: No article_type: original author: - first_name: Adam full_name: Brown, Adam id: 70B7FDF6-608D-11E9-9333-8535E6697425 last_name: Brown - first_name: Anna full_name: Romanov, Anna last_name: Romanov citation: ama: Brown A, Romanov A. Contravariant forms on Whittaker modules. Proceedings of the American Mathematical Society. 2021;149(1):37-52. doi:10.1090/proc/15205 apa: Brown, A., & Romanov, A. (2021). Contravariant forms on Whittaker modules. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/15205 chicago: Brown, Adam, and Anna Romanov. “Contravariant Forms on Whittaker Modules.” Proceedings of the American Mathematical Society. American Mathematical Society, 2021. https://doi.org/10.1090/proc/15205. ieee: A. Brown and A. Romanov, “Contravariant forms on Whittaker modules,” Proceedings of the American Mathematical Society, vol. 149, no. 1. American Mathematical Society, pp. 37–52, 2021. ista: Brown A, Romanov A. 2021. Contravariant forms on Whittaker modules. Proceedings of the American Mathematical Society. 149(1), 37–52. mla: Brown, Adam, and Anna Romanov. “Contravariant Forms on Whittaker Modules.” Proceedings of the American Mathematical Society, vol. 149, no. 1, American Mathematical Society, 2021, pp. 37–52, doi:10.1090/proc/15205. short: A. Brown, A. Romanov, Proceedings of the American Mathematical Society 149 (2021) 37–52. date_created: 2020-11-19T10:17:40Z date_published: 2021-01-01T00:00:00Z date_updated: 2023-08-04T11:11:47Z day: '01' department: - _id: HeEd doi: 10.1090/proc/15205 ec_funded: 1 external_id: arxiv: - '1910.08286' isi: - '000600416300004' intvolume: ' 149' isi: 1 issue: '1' keyword: - Applied Mathematics - General Mathematics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1910.08286 month: '01' oa: 1 oa_version: Preprint page: 37-52 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the American Mathematical Society publication_identifier: eissn: - 1088-6826 issn: - 0002-9939 publication_status: published publisher: American Mathematical Society quality_controlled: '1' status: public title: Contravariant forms on Whittaker modules type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 149 year: '2021' ... --- _id: '8792' abstract: - lang: eng text: This paper is concerned with a non-isothermal Cahn-Hilliard model based on a microforce balance. The model was derived by A. Miranville and G. Schimperna starting from the two fundamental laws of Thermodynamics, following M. Gurtin's two-scale approach. The main working assumptions are made on the behaviour of the heat flux as the absolute temperature tends to zero and to infinity. A suitable Ginzburg-Landau free energy is considered. Global-in-time existence for the initial-boundary value problem associated to the entropy formulation and, in a subcase, also to the weak formulation of the model is proved by deriving suitable a priori estimates and by showing weak sequential stability of families of approximating solutions. At last, some highlights are given regarding a possible approximation scheme compatible with the a-priori estimates available for the system. acknowledgement: G. Schimperna has been partially supported by GNAMPA (Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica). article_processing_charge: No article_type: original author: - first_name: Alice full_name: Marveggio, Alice id: 25647992-AA84-11E9-9D75-8427E6697425 last_name: Marveggio - first_name: Giulio full_name: Schimperna, Giulio last_name: Schimperna citation: ama: Marveggio A, Schimperna G. On a non-isothermal Cahn-Hilliard model based on a microforce balance. Journal of Differential Equations. 2021;274(2):924-970. doi:10.1016/j.jde.2020.10.030 apa: Marveggio, A., & Schimperna, G. (2021). On a non-isothermal Cahn-Hilliard model based on a microforce balance. Journal of Differential Equations. Elsevier. https://doi.org/10.1016/j.jde.2020.10.030 chicago: Marveggio, Alice, and Giulio Schimperna. “On a Non-Isothermal Cahn-Hilliard Model Based on a Microforce Balance.” Journal of Differential Equations. Elsevier, 2021. https://doi.org/10.1016/j.jde.2020.10.030. ieee: A. Marveggio and G. Schimperna, “On a non-isothermal Cahn-Hilliard model based on a microforce balance,” Journal of Differential Equations, vol. 274, no. 2. Elsevier, pp. 924–970, 2021. ista: Marveggio A, Schimperna G. 2021. On a non-isothermal Cahn-Hilliard model based on a microforce balance. Journal of Differential Equations. 274(2), 924–970. mla: Marveggio, Alice, and Giulio Schimperna. “On a Non-Isothermal Cahn-Hilliard Model Based on a Microforce Balance.” Journal of Differential Equations, vol. 274, no. 2, Elsevier, 2021, pp. 924–70, doi:10.1016/j.jde.2020.10.030. short: A. Marveggio, G. Schimperna, Journal of Differential Equations 274 (2021) 924–970. date_created: 2020-11-22T23:01:26Z date_published: 2021-02-15T00:00:00Z date_updated: 2023-08-04T11:12:16Z day: '15' department: - _id: JuFi doi: 10.1016/j.jde.2020.10.030 external_id: arxiv: - '2004.02618' isi: - '000600845300023' intvolume: ' 274' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2004.02618 month: '02' oa: 1 oa_version: Preprint page: 924-970 publication: Journal of Differential Equations publication_identifier: eissn: - '10902732' issn: - '00220396' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: On a non-isothermal Cahn-Hilliard model based on a microforce balance type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 274 year: '2021' ... --- _id: '8912' abstract: - lang: eng text: "For automata, synchronization, the problem of bringing an automaton to a particular state regardless of its initial state, is important. It has several applications in practice and is related to a fifty-year-old conjecture on the length of the shortest synchronizing word. Although using shorter words increases the effectiveness in practice, finding a shortest one (which is not necessarily unique) is NP-hard. For this reason, there exist various heuristics in the literature. However, high-quality heuristics such as SynchroP producing relatively shorter sequences are very expensive and can take hours when the automaton has tens of thousands of states. The SynchroP heuristic has been frequently used as a benchmark to evaluate the performance of the new heuristics. In this work, we first improve the runtime of SynchroP and its variants by using algorithmic techniques. We then focus on adapting SynchroP for many-core architectures,\r\nand overall, we obtain more than 1000× speedup on GPUs compared to naive sequential implementation that has been frequently used as a benchmark to evaluate new heuristics in the literature. We also propose two SynchroP variants and evaluate their performance." acknowledgement: This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) [grant number 114E569]. This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). We would like to thank the authors of (Roman & Szykula, 2015) for providing their heuristics implementations, which we used to compare our SynchroP implementation as given in Table 11. article_number: '114203' article_processing_charge: No article_type: original author: - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac - first_name: Ömer Faruk full_name: Altun, Ömer Faruk last_name: Altun - first_name: Kamil Tolga full_name: Atam, Kamil Tolga last_name: Atam - first_name: Sertac full_name: Karahoda, Sertac last_name: Karahoda - first_name: Kamer full_name: Kaya, Kamer last_name: Kaya - first_name: Hüsnü full_name: Yenigün, Hüsnü last_name: Yenigün citation: ama: Sarac NE, Altun ÖF, Atam KT, Karahoda S, Kaya K, Yenigün H. Boosting expensive synchronizing heuristics. Expert Systems with Applications. 2021;167(4). doi:10.1016/j.eswa.2020.114203 apa: Sarac, N. E., Altun, Ö. F., Atam, K. T., Karahoda, S., Kaya, K., & Yenigün, H. (2021). Boosting expensive synchronizing heuristics. Expert Systems with Applications. Elsevier. https://doi.org/10.1016/j.eswa.2020.114203 chicago: Sarac, Naci E, Ömer Faruk Altun, Kamil Tolga Atam, Sertac Karahoda, Kamer Kaya, and Hüsnü Yenigün. “Boosting Expensive Synchronizing Heuristics.” Expert Systems with Applications. Elsevier, 2021. https://doi.org/10.1016/j.eswa.2020.114203. ieee: N. E. Sarac, Ö. F. Altun, K. T. Atam, S. Karahoda, K. Kaya, and H. Yenigün, “Boosting expensive synchronizing heuristics,” Expert Systems with Applications, vol. 167, no. 4. Elsevier, 2021. ista: Sarac NE, Altun ÖF, Atam KT, Karahoda S, Kaya K, Yenigün H. 2021. Boosting expensive synchronizing heuristics. Expert Systems with Applications. 167(4), 114203. mla: Sarac, Naci E., et al. “Boosting Expensive Synchronizing Heuristics.” Expert Systems with Applications, vol. 167, no. 4, 114203, Elsevier, 2021, doi:10.1016/j.eswa.2020.114203. short: N.E. Sarac, Ö.F. Altun, K.T. Atam, S. Karahoda, K. Kaya, H. Yenigün, Expert Systems with Applications 167 (2021). date_created: 2020-12-02T13:34:25Z date_published: 2021-04-01T00:00:00Z date_updated: 2023-08-04T11:19:00Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1016/j.eswa.2020.114203 external_id: isi: - '000640531100038' file: - access_level: open_access checksum: 600c2f81bc898a725bcfa7cf26ff4fed content_type: application/pdf creator: esarac date_created: 2020-12-02T13:33:51Z date_updated: 2020-12-02T13:33:51Z file_id: '8913' file_name: synchroPaperRevised.pdf file_size: 634967 relation: main_file file_date_updated: 2020-12-02T13:33:51Z has_accepted_license: '1' intvolume: ' 167' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Expert Systems with Applications publication_identifier: issn: - '09574174' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Boosting expensive synchronizing heuristics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 167 year: '2021' ... --- _id: '8928' abstract: - lang: eng text: Domestication is a human‐induced selection process that imprints the genomes of domesticated populations over a short evolutionary time scale and that occurs in a given demographic context. Reconstructing historical gene flow, effective population size changes and their timing is therefore of fundamental interest to understand how plant demography and human selection jointly shape genomic divergence during domestication. Yet, the comparison under a single statistical framework of independent domestication histories across different crop species has been little evaluated so far. Thus, it is unclear whether domestication leads to convergent demographic changes that similarly affect crop genomes. To address this question, we used existing and new transcriptome data on three crop species of Solanaceae (eggplant, pepper and tomato), together with their close wild relatives. We fitted twelve demographic models of increasing complexity on the unfolded joint allele frequency spectrum for each wild/crop pair, and we found evidence for both shared and species‐specific demographic processes between species. A convergent history of domestication with gene flow was inferred for all three species, along with evidence of strong reduction in the effective population size during the cultivation stage of tomato and pepper. The absence of any reduction in size of the crop in eggplant stands out from the classical view of the domestication process; as does the existence of a “protracted period” of management before cultivation. Our results also suggest divergent management strategies of modern cultivars among species as their current demography substantially differs. Finally, the timing of domestication is species‐specific and supported by the few historical records available. acknowledgement: This work was supported by the EU Marie Curie Career Integration grant (FP7‐PEOPLE‐2011‐CIG grant agreement PCIG10‐GA‐2011‐304164) attributed to CS. SA was supported by a PhD fellowship from the French Région PACA and the Plant Breeding division of INRA, in partnership with Gautier Semences. CF was supported by an Austrian Science Foundation FWF grant (Project M 2463‐B29). Authors thank Mathilde Causse and Beatriz Vicoso for their team leading. Thanks to the Italian Eggplant Genome Consortium, which includes the DISAFA, Plant Genetics and Breeding (University of Torino), the Biotechnology Department (University of Verona), the CREA‐ORL in Montanaso Lombardo (LO) and the ENEA in Rome for providing access to the eggplant genome reference. Thanks to CRB‐lég ( https://www6.paca.inra.fr/gafl_eng/Vegetables-GRC ) for managing and providing the genetic resources, to Marie‐Christine Daunay and Alain Palloix (INRA UR1052) for assistance in choosing the biological material used, to Muriel Latreille and Sylvain Santoni from the UMR AGAP (INRA Montpellier, France) for their help with RNAseq library preparation, to Jean‐Paul Bouchet and Jacques Lagnel (INRA UR1052) for their Bioinformatics assistance. article_processing_charge: No article_type: original author: - first_name: Stéphanie full_name: Arnoux, Stéphanie last_name: Arnoux - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: Christopher full_name: Sauvage, Christopher last_name: Sauvage citation: ama: Arnoux S, Fraisse C, Sauvage C. Genomic inference of complex domestication histories in three Solanaceae species. Journal of Evolutionary Biology. 2021;34(2):270-283. doi:10.1111/jeb.13723 apa: Arnoux, S., Fraisse, C., & Sauvage, C. (2021). Genomic inference of complex domestication histories in three Solanaceae species. Journal of Evolutionary Biology. Wiley. https://doi.org/10.1111/jeb.13723 chicago: Arnoux, Stéphanie, Christelle Fraisse, and Christopher Sauvage. “Genomic Inference of Complex Domestication Histories in Three Solanaceae Species.” Journal of Evolutionary Biology. Wiley, 2021. https://doi.org/10.1111/jeb.13723. ieee: S. Arnoux, C. Fraisse, and C. Sauvage, “Genomic inference of complex domestication histories in three Solanaceae species,” Journal of Evolutionary Biology, vol. 34, no. 2. Wiley, pp. 270–283, 2021. ista: Arnoux S, Fraisse C, Sauvage C. 2021. Genomic inference of complex domestication histories in three Solanaceae species. Journal of Evolutionary Biology. 34(2), 270–283. mla: Arnoux, Stéphanie, et al. “Genomic Inference of Complex Domestication Histories in Three Solanaceae Species.” Journal of Evolutionary Biology, vol. 34, no. 2, Wiley, 2021, pp. 270–83, doi:10.1111/jeb.13723. short: S. Arnoux, C. Fraisse, C. Sauvage, Journal of Evolutionary Biology 34 (2021) 270–283. date_created: 2020-12-06T23:01:16Z date_published: 2021-02-01T00:00:00Z date_updated: 2023-08-04T11:19:26Z day: '01' department: - _id: NiBa doi: 10.1111/jeb.13723 external_id: isi: - '000587769700001' pmid: - '33107098' intvolume: ' 34' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/jeb.13723 month: '02' oa: 1 oa_version: Published Version page: 270-283 pmid: 1 project: - _id: 2662AADE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02463 name: Sex chromosomes and species barriers publication: Journal of Evolutionary Biology publication_identifier: eissn: - '14209101' issn: - 1010061X publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '13065' relation: research_data status: public scopus_import: '1' status: public title: Genomic inference of complex domestication histories in three Solanaceae species type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 34 year: '2021' ... --- _id: '8992' abstract: - lang: eng text: The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network. acknowledgement: This work was supported by the European Union’s Horizon 2020 Program (ERC grant agreement no. 742985 to J.F.). S.T. was funded by a European Molecular Biology Organization (EMBO) long-term postdoctoral fellowship (ALTF 723-2015). C.L. is supported by the Austrian Science Fund (FWF; P 31493). article_processing_charge: No article_type: original author: - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Christian full_name: Luschnig, Christian last_name: Luschnig - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Tan S, Luschnig C, Friml J. Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling. Molecular Plant. 2021;14(1):151-165. doi:10.1016/j.molp.2020.11.004' apa: 'Tan, S., Luschnig, C., & Friml, J. (2021). Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling. Molecular Plant. Elsevier. https://doi.org/10.1016/j.molp.2020.11.004' chicago: 'Tan, Shutang, Christian Luschnig, and Jiří Friml. “Pho-View of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling.” Molecular Plant. Elsevier, 2021. https://doi.org/10.1016/j.molp.2020.11.004.' ieee: 'S. Tan, C. Luschnig, and J. Friml, “Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling,” Molecular Plant, vol. 14, no. 1. Elsevier, pp. 151–165, 2021.' ista: 'Tan S, Luschnig C, Friml J. 2021. Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling. Molecular Plant. 14(1), 151–165.' mla: 'Tan, Shutang, et al. “Pho-View of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling.” Molecular Plant, vol. 14, no. 1, Elsevier, 2021, pp. 151–65, doi:10.1016/j.molp.2020.11.004.' short: S. Tan, C. Luschnig, J. Friml, Molecular Plant 14 (2021) 151–165. date_created: 2021-01-03T23:01:23Z date_published: 2021-01-04T00:00:00Z date_updated: 2023-08-04T11:21:13Z day: '04' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.molp.2020.11.004 ec_funded: 1 external_id: isi: - '000605359400014' pmid: - '33186755' file: - access_level: open_access checksum: 917e60e57092f22e16beac70b1775ea6 content_type: application/pdf creator: dernst date_created: 2021-01-07T14:03:53Z date_updated: 2021-01-07T14:03:53Z file_id: '8995' file_name: 2020_MolecularPlant_Tan.pdf file_size: 871088 relation: main_file success: 1 file_date_updated: 2021-01-07T14:03:53Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 151-165 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 256FEF10-B435-11E9-9278-68D0E5697425 grant_number: 723-2015 name: Long Term Fellowship publication: Molecular Plant publication_identifier: eissn: - '17529867' issn: - '16742052' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2021' ... --- _id: '8988' abstract: - lang: eng text: The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1’s functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1’s enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching. acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: EM-Fac acknowledgement: "We thank Urban Bezeljak, Natalia Baranova, Mar Lopez-Pelegrin, Catarina Alcarva, and Victoria Faas for sharing reagents and helpful discussions. We thank Veronika Szentirmai for help with protein purifications. We thank Carrie Bernecky, Sascha Martens, and the M.L. lab for comments on the manuscript. We thank the bioimaging facility, the life science facility, and Armel Nicolas from the mass spec facility at the Institute of Science and Technology (IST) Austria for technical support. C.D. acknowledges funding from the IST fellowship program; this work was supported by Human Frontier Science Program Young Investigator Grant\r\nRGY0083/2016. " article_number: e2010054118 article_processing_charge: No article_type: original author: - first_name: Christian F full_name: Düllberg, Christian F id: 459064DC-F248-11E8-B48F-1D18A9856A87 last_name: Düllberg orcid: 0000-0001-6335-9748 - first_name: Albert full_name: Auer, Albert id: 3018E8C2-F248-11E8-B48F-1D18A9856A87 last_name: Auer orcid: 0000-0002-3580-2906 - first_name: Nikola full_name: Canigova, Nikola id: 3795523E-F248-11E8-B48F-1D18A9856A87 last_name: Canigova orcid: 0000-0002-8518-5926 - first_name: Katrin full_name: Loibl, Katrin id: 3760F32C-F248-11E8-B48F-1D18A9856A87 last_name: Loibl orcid: 0000-0002-2429-7668 - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 citation: ama: Düllberg CF, Auer A, Canigova N, Loibl K, Loose M. In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1. PNAS. 2021;118(1). doi:10.1073/pnas.2010054118 apa: Düllberg, C. F., Auer, A., Canigova, N., Loibl, K., & Loose, M. (2021). In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.2010054118 chicago: Düllberg, Christian F, Albert Auer, Nikola Canigova, Katrin Loibl, and Martin Loose. “In Vitro Reconstitution Reveals Phosphoinositides as Cargo-Release Factors and Activators of the ARF6 GAP ADAP1.” PNAS. National Academy of Sciences, 2021. https://doi.org/10.1073/pnas.2010054118. ieee: C. F. Düllberg, A. Auer, N. Canigova, K. Loibl, and M. Loose, “In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1,” PNAS, vol. 118, no. 1. National Academy of Sciences, 2021. ista: Düllberg CF, Auer A, Canigova N, Loibl K, Loose M. 2021. In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1. PNAS. 118(1), e2010054118. mla: Düllberg, Christian F., et al. “In Vitro Reconstitution Reveals Phosphoinositides as Cargo-Release Factors and Activators of the ARF6 GAP ADAP1.” PNAS, vol. 118, no. 1, e2010054118, National Academy of Sciences, 2021, doi:10.1073/pnas.2010054118. short: C.F. Düllberg, A. Auer, N. Canigova, K. Loibl, M. Loose, PNAS 118 (2021). date_created: 2021-01-03T23:01:23Z date_published: 2021-01-05T00:00:00Z date_updated: 2023-08-04T11:20:46Z day: '05' department: - _id: MaLo - _id: MiSi doi: 10.1073/pnas.2010054118 external_id: isi: - '000607270100018' pmid: - '33443153' intvolume: ' 118' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1073/pnas.2010054118 month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2599F062-B435-11E9-9278-68D0E5697425 grant_number: RGY0083/2016 name: Reconstitution of cell polarity and axis determination in a cell-free system publication: PNAS publication_identifier: eissn: - '10916490' issn: - '00278424' publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1 type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 118 year: '2021' ... --- _id: '8927' abstract: - lang: eng text: The recent outbreak of coronavirus disease 2019 (COVID‐19), caused by the Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) has resulted in a world‐wide pandemic. Disseminated lung injury with the development of acute respiratory distress syndrome (ARDS) is the main cause of mortality in COVID‐19. Although liver failure does not seem to occur in the absence of pre‐existing liver disease, hepatic involvement in COVID‐19 may correlate with overall disease severity and serve as a prognostic factor for the development of ARDS. The spectrum of liver injury in COVID‐19 may range from direct infection by SARS‐CoV‐2, indirect involvement by systemic inflammation, hypoxic changes, iatrogenic causes such as drugs and ventilation to exacerbation of underlying liver disease. This concise review discusses the potential pathophysiological mechanisms for SARS‐CoV‐2 hepatic tropism as well as acute and possibly long‐term liver injury in COVID‐19. acknowledgement: This work was supported by grant F7310‐B21 from the Austrian Science Foundation (to MT). We thank Jelena Remetic, Claudia D. Fuchs, Veronika Mlitz and Daniel Steinacher, for their valuable input and discussion. Figure 1 and Figure 2 have been created with BioRender.com. article_processing_charge: No article_type: original author: - first_name: Alexander D. full_name: Nardo, Alexander D. last_name: Nardo - first_name: Mathias full_name: Schneeweiss-Gleixner, Mathias last_name: Schneeweiss-Gleixner - first_name: May M full_name: Bakail, May M id: FB3C3F8E-522F-11EA-B186-22963DDC885E last_name: Bakail orcid: 0000-0002-9592-1587 - first_name: Emmanuel D. full_name: Dixon, Emmanuel D. last_name: Dixon - first_name: Sigurd F. full_name: Lax, Sigurd F. last_name: Lax - first_name: Michael full_name: Trauner, Michael last_name: Trauner citation: ama: Nardo AD, Schneeweiss-Gleixner M, Bakail MM, Dixon ED, Lax SF, Trauner M. Pathophysiological mechanisms of liver injury in COVID-19. Liver International. 2021;41(1):20-32. doi:10.1111/liv.14730 apa: Nardo, A. D., Schneeweiss-Gleixner, M., Bakail, M. M., Dixon, E. D., Lax, S. F., & Trauner, M. (2021). Pathophysiological mechanisms of liver injury in COVID-19. Liver International. Wiley. https://doi.org/10.1111/liv.14730 chicago: Nardo, Alexander D., Mathias Schneeweiss-Gleixner, May M Bakail, Emmanuel D. Dixon, Sigurd F. Lax, and Michael Trauner. “Pathophysiological Mechanisms of Liver Injury in COVID-19.” Liver International. Wiley, 2021. https://doi.org/10.1111/liv.14730. ieee: A. D. Nardo, M. Schneeweiss-Gleixner, M. M. Bakail, E. D. Dixon, S. F. Lax, and M. Trauner, “Pathophysiological mechanisms of liver injury in COVID-19,” Liver International, vol. 41, no. 1. Wiley, pp. 20–32, 2021. ista: Nardo AD, Schneeweiss-Gleixner M, Bakail MM, Dixon ED, Lax SF, Trauner M. 2021. Pathophysiological mechanisms of liver injury in COVID-19. Liver International. 41(1), 20–32. mla: Nardo, Alexander D., et al. “Pathophysiological Mechanisms of Liver Injury in COVID-19.” Liver International, vol. 41, no. 1, Wiley, 2021, pp. 20–32, doi:10.1111/liv.14730. short: A.D. Nardo, M. Schneeweiss-Gleixner, M.M. Bakail, E.D. Dixon, S.F. Lax, M. Trauner, Liver International 41 (2021) 20–32. date_created: 2020-12-06T23:01:16Z date_published: 2021-01-01T00:00:00Z date_updated: 2023-08-04T11:19:51Z day: '01' ddc: - '570' department: - _id: CampIT doi: 10.1111/liv.14730 external_id: isi: - '000594239200001' file: - access_level: open_access checksum: 6e4f21b77ef22c854e016240974fc473 content_type: application/pdf creator: dernst date_created: 2021-02-04T12:01:45Z date_updated: 2021-02-04T12:01:45Z file_id: '9091' file_name: 2021_Liver_Nardo.pdf file_size: 930414 relation: main_file success: 1 file_date_updated: 2021-02-04T12:01:45Z has_accepted_license: '1' intvolume: ' 41' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 20-32 publication: Liver International publication_identifier: eissn: - '14783231' issn: - '14783223' publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Pathophysiological mechanisms of liver injury in COVID-19 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2021' ...