--- _id: '12736' abstract: - lang: eng text: Although a wide variety of handcrafted concurrent data structures have been proposed, there is considerable interest in universal approaches (Universal Constructions or UCs) for building concurrent data structures. UCs (semi-)automatically convert a sequential data structure into a concurrent one. The simplest approach uses locks [3, 6] that protect a sequential data structure and allow only one process to access it at a time. However, the resulting data structure is blocking. Most work on UCs instead focuses on obtaining non-blocking progress guarantees such as obstruction-freedom, lock-freedom or wait-freedom. Many non-blocking UCs have appeared. Key examples include the seminal wait-free UC [2] by Herlihy, a NUMA-aware UC [10] by Yi et al., and an efficient UC for large objects [1] by Fatourou et al. acknowledgement: 'This work was supported by: the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Program grant: RGPIN-2019-04227, and the Canada Foundation for Innovation John R. Evans Leaders Fund (CFI-JELF) with equal support from the Ontario Research Fund CFI Leaders Opportunity Fund: 38512.' article_processing_charge: No author: - first_name: Vitaly full_name: Aksenov, Vitaly last_name: Aksenov - first_name: Trevor A full_name: Brown, Trevor A id: 3569F0A0-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Alexander full_name: Fedorov, Alexander id: 2e711909-896a-11ed-bdf8-eb0f5a2984c6 last_name: Fedorov - first_name: Ilya full_name: Kokorin, Ilya last_name: Kokorin citation: ama: Aksenov V, Brown TA, Fedorov A, Kokorin I. Unexpected Scaling in Path Copying Trees. Association for Computing Machinery; 2023:438-440. doi:10.1145/3572848.3577512 apa: 'Aksenov, V., Brown, T. A., Fedorov, A., & Kokorin, I. (2023). Unexpected scaling in path copying trees. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (pp. 438–440). Montreal, QB, Canada: Association for Computing Machinery. https://doi.org/10.1145/3572848.3577512' chicago: Aksenov, Vitaly, Trevor A Brown, Alexander Fedorov, and Ilya Kokorin. Unexpected Scaling in Path Copying Trees. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. Association for Computing Machinery, 2023. https://doi.org/10.1145/3572848.3577512. ieee: V. Aksenov, T. A. Brown, A. Fedorov, and I. Kokorin, Unexpected scaling in path copying trees. Association for Computing Machinery, 2023, pp. 438–440. ista: Aksenov V, Brown TA, Fedorov A, Kokorin I. 2023. Unexpected scaling in path copying trees, Association for Computing Machinery,p. mla: Aksenov, Vitaly, et al. “Unexpected Scaling in Path Copying Trees.” Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2023, pp. 438–40, doi:10.1145/3572848.3577512. short: V. Aksenov, T.A. Brown, A. Fedorov, I. Kokorin, Unexpected Scaling in Path Copying Trees, Association for Computing Machinery, 2023. conference: end_date: 2023-03-01 location: Montreal, QB, Canada name: 'PPoPP: Sympopsium on Principles and Practice of Parallel Programming' start_date: 2023-02-25 date_created: 2023-03-19T23:00:58Z date_published: 2023-02-25T00:00:00Z date_updated: 2023-03-20T07:57:27Z day: '25' department: - _id: DaAl - _id: GradSch doi: 10.1145/3572848.3577512 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3572848.3577512 month: '02' oa: 1 oa_version: Published Version page: 438-440 publication: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming publication_identifier: isbn: - '9798400700156' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Unexpected scaling in path copying trees type: conference_poster user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12760' abstract: - lang: eng text: "Dynamic programming (DP) is one of the fundamental paradigms in algorithm design. However,\r\nmany DP algorithms have to fill in large DP tables, represented by two-dimensional arrays, which causes at least quadratic running times and space usages. This has led to the development of improved algorithms for special cases when the DPs satisfy additional properties like, e.g., the Monge property or total monotonicity.\r\nIn this paper, we consider a new condition which assumes (among some other technical assumptions) that the rows of the DP table are monotone. Under this assumption, we introduce\r\na novel data structure for computing (1 + ϵ)-approximate DP solutions in near-linear time and\r\nspace in the static setting, and with polylogarithmic update times when the DP entries change\r\ndynamically. To the best of our knowledge, our new condition is incomparable to previous conditions and is the first which allows to derive dynamic algorithms based on existing DPs. Instead of using two-dimensional arrays to store the DP tables, we store the rows of the DP tables using monotone piecewise constant functions. This allows us to store length-n DP table rows with entries in [0, W] using only polylog(n, W) bits, and to perform operations, such as (min, +)-convolution or rounding, on these functions in polylogarithmic time.\r\nWe further present several applications of our data structure. For bicriteria versions of k-balanced graph partitioning and simultaneous source location, we obtain the first dynamic algorithms with subpolynomial update times, as well as the first static algorithms using only near-linear time and space. Additionally, we obtain the currently fastest algorithm for fully dynamic knapsack." acknowledgement: "Monika Henzinger: This project has received funding from the European Research Council\r\n(ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant\r\nagreement No. 101019564 “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)” and from the Austrian Science Fund (FWF) project “Fast Algorithms for a Reactive Network Layer (ReactNet)”, P 33775-N, with additional funding from the netidee SCIENCE Stiftung, 2020–2024.\r\nStefan Neumann: This research is supported by the the ERC Advanced Grant REBOUND (834862) and the EC H2020 RIA project SoBigData++ (871042).\r\nStefan Schmid: Research supported by Austrian Science Fund (FWF) project I 5025-N (DELTA), 2020-2024." alternative_title: - LIPIcs article_number: '36' article_processing_charge: No author: - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Stefan full_name: Neumann, Stefan last_name: Neumann - first_name: Harald full_name: Räcke, Harald last_name: Räcke - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid citation: ama: 'Henzinger MH, Neumann S, Räcke H, Schmid S. Dynamic maintenance of monotone dynamic programs and applications. In: 40th International Symposium on Theoretical Aspects of Computer Science. Vol 254. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023. doi:10.4230/LIPIcs.STACS.2023.36' apa: 'Henzinger, M. H., Neumann, S., Räcke, H., & Schmid, S. (2023). Dynamic maintenance of monotone dynamic programs and applications. In 40th International Symposium on Theoretical Aspects of Computer Science (Vol. 254). Hamburg, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2023.36' chicago: Henzinger, Monika H, Stefan Neumann, Harald Räcke, and Stefan Schmid. “Dynamic Maintenance of Monotone Dynamic Programs and Applications.” In 40th International Symposium on Theoretical Aspects of Computer Science, Vol. 254. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.STACS.2023.36. ieee: M. H. Henzinger, S. Neumann, H. Räcke, and S. Schmid, “Dynamic maintenance of monotone dynamic programs and applications,” in 40th International Symposium on Theoretical Aspects of Computer Science, Hamburg, Germany, 2023, vol. 254. ista: 'Henzinger MH, Neumann S, Räcke H, Schmid S. 2023. Dynamic maintenance of monotone dynamic programs and applications. 40th International Symposium on Theoretical Aspects of Computer Science. STACS: Symposium on Theoretical Aspects of Computer Science, LIPIcs, vol. 254, 36.' mla: Henzinger, Monika H., et al. “Dynamic Maintenance of Monotone Dynamic Programs and Applications.” 40th International Symposium on Theoretical Aspects of Computer Science, vol. 254, 36, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:10.4230/LIPIcs.STACS.2023.36. short: M.H. Henzinger, S. Neumann, H. Räcke, S. Schmid, in:, 40th International Symposium on Theoretical Aspects of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. conference: end_date: 2023-03-09 location: Hamburg, Germany name: 'STACS: Symposium on Theoretical Aspects of Computer Science' start_date: 2023-03-07 date_created: 2023-03-26T22:01:07Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-03-27T06:46:27Z day: '01' ddc: - '000' department: - _id: MoHe doi: 10.4230/LIPIcs.STACS.2023.36 external_id: arxiv: - '2301.01744' file: - access_level: open_access checksum: 22141ab8bc55188e2dfff665e5daecbd content_type: application/pdf creator: dernst date_created: 2023-03-27T06:37:22Z date_updated: 2023-03-27T06:37:22Z file_id: '12769' file_name: 2023_LIPICS_HenzingerM.pdf file_size: 872706 relation: main_file success: 1 file_date_updated: 2023-03-27T06:37:22Z has_accepted_license: '1' intvolume: ' 254' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: 40th International Symposium on Theoretical Aspects of Computer Science publication_identifier: isbn: - '9783959772662' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Dynamic maintenance of monotone dynamic programs and applications tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 254 year: '2023' ... --- _id: '12716' abstract: - lang: eng text: "The process of detecting and evaluating sensory information to guide behaviour is termed perceptual decision-making (PDM), and is critical for the ability of an organism to interact with its external world. Individuals with autism, a neurodevelopmental condition primarily characterised by social and communication difficulties, frequently exhibit altered sensory processing and PDM difficulties are widely reported. Recent technological advancements have pushed forward our understanding of the genetic changes accompanying this condition, however our understanding of how these mutations affect the function of specific neuronal circuits and bring about the corresponding behavioural changes remains limited. Here, we use an innate PDM task, the looming avoidance response (LAR) paradigm, to identify a convergent behavioural abnormality across three molecularly distinct genetic mouse models of autism (Cul3, Setd5 and Ptchd1). Although mutant mice can rapidly detect threatening visual stimuli, their responses are consistently delayed, requiring longer to initiate an appropriate response than their wild-type siblings. Mutant animals show abnormal adaptation in both their stimulus- evoked escape responses and exploratory dynamics following repeated stimulus presentations. Similarly delayed behavioural responses are observed in wild-type animals when faced with more ambiguous threats, suggesting the mutant phenotype could arise from a dysfunction in the flexible control of this PDM process.\r\nOur knowledge of the core neuronal circuitry mediating the LAR facilitated a detailed dissection of the neuronal mechanisms underlying the behavioural impairment. In vivo extracellular recording revealed that visual responses were unaffected within a key brain region for the rapid processing of visual threats, the superior colliculus (SC), indicating that the behavioural delay was unlikely to originate from sensory impairments. Delayed behavioural responses were recapitulated in the Setd5 model following optogenetic stimulation of the excitatory output neurons of the SC, which are known to mediate escape initiation through the activation of cells in the underlying dorsal periaqueductal grey (dPAG). In vitro patch-clamp recordings of dPAG cells uncovered a stark hypoexcitability phenotype in two out of the three genetic models investigated (Setd5 and Ptchd1), that in Setd5, is mediated by the misregulation of voltage-gated potassium channels. Overall, our results show that the ability to use visual information to drive efficient escape responses is impaired in three diverse genetic mouse models of autism and that, in one of the models studied, this behavioural delay likely originates from differences in the intrinsic excitability of a key subcortical node, the dPAG. Furthermore, this work showcases the use of an innate behavioural paradigm to mechanistically dissect PDM processes in autism." acknowledged_ssus: - _id: PreCl - _id: Bio - _id: LifeSc - _id: M-Shop - _id: CampIT alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Laura full_name: Burnett, Laura id: 3B717F68-F248-11E8-B48F-1D18A9856A87 last_name: Burnett orcid: 0000-0002-8937-410X citation: ama: Burnett L. To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. 2023. doi:10.15479/at:ista:12716 apa: Burnett, L. (2023). To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12716 chicago: Burnett, Laura. “To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12716. ieee: L. Burnett, “To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism,” Institute of Science and Technology Austria, 2023. ista: Burnett L. 2023. To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. Institute of Science and Technology Austria. mla: Burnett, Laura. To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12716. short: L. Burnett, To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism, Institute of Science and Technology Austria, 2023. date_created: 2023-03-08T15:19:45Z date_published: 2023-03-10T00:00:00Z date_updated: 2023-04-05T10:59:04Z day: '10' ddc: - '599' - '573' degree_awarded: PhD department: - _id: GradSch - _id: MaJö doi: 10.15479/at:ista:12716 ec_funded: 1 file: - access_level: closed checksum: 6c6d9cc2c4cdacb74e6b1047a34d7332 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: lburnett date_created: 2023-03-08T15:08:46Z date_updated: 2023-03-08T15:08:46Z file_id: '12717' file_name: Burnett_Thesis_2023.docx file_size: 23029260 relation: source_file - access_level: open_access checksum: cebc77705288bf4382db9b3541483cd0 content_type: application/pdf creator: lburnett date_created: 2023-03-08T15:08:46Z date_updated: 2023-03-08T15:08:46Z file_id: '12718' file_name: Burnett_Thesis_2023_pdfA.pdf file_size: 11959869 relation: main_file success: 1 file_date_updated: 2023-03-08T15:08:46Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '178' project: - _id: 2634E9D2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '756502' name: Circuits of Visual Attention publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 title: To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12854' abstract: - lang: eng text: "The main idea behind BUBAAK is to run multiple program analyses in parallel and use runtime monitoring and enforcement to observe and control their progress in real time. The analyses send information about (un)explored states of the program and discovered invariants to a monitor. The monitor processes the received data and can force an analysis to stop the search of certain program parts (which have already been analyzed by other analyses), or to make it utilize a program invariant found by another analysis.\r\nAt SV-COMP 2023, the implementation of data exchange between the monitor and the analyses was not yet completed, which is why BUBAAK only ran several analyses in parallel, without any coordination. Still, BUBAAK won the meta-category FalsificationOverall and placed very well in several other (sub)-categories of the competition." acknowledgement: This work was supported by the ERC-2020-AdG 10102009 grant. alternative_title: - LNCS article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Henzinger TA. Bubaak: Runtime monitoring of program verifiers. In: Tools and Algorithms for the Construction and Analysis of Systems. Vol 13994. Springer Nature; 2023:535-540. doi:10.1007/978-3-031-30820-8_32' apa: 'Chalupa, M., & Henzinger, T. A. (2023). Bubaak: Runtime monitoring of program verifiers. In Tools and Algorithms for the Construction and Analysis of Systems (Vol. 13994, pp. 535–540). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30820-8_32' chicago: 'Chalupa, Marek, and Thomas A Henzinger. “Bubaak: Runtime Monitoring of Program Verifiers.” In Tools and Algorithms for the Construction and Analysis of Systems, 13994:535–40. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30820-8_32.' ieee: 'M. Chalupa and T. A. Henzinger, “Bubaak: Runtime monitoring of program verifiers,” in Tools and Algorithms for the Construction and Analysis of Systems, Paris, France, 2023, vol. 13994, pp. 535–540.' ista: 'Chalupa M, Henzinger TA. 2023. Bubaak: Runtime monitoring of program verifiers. Tools and Algorithms for the Construction and Analysis of Systems. TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 13994, 535–540.' mla: 'Chalupa, Marek, and Thomas A. Henzinger. “Bubaak: Runtime Monitoring of Program Verifiers.” Tools and Algorithms for the Construction and Analysis of Systems, vol. 13994, Springer Nature, 2023, pp. 535–40, doi:10.1007/978-3-031-30820-8_32.' short: M. Chalupa, T.A. Henzinger, in:, Tools and Algorithms for the Construction and Analysis of Systems, Springer Nature, 2023, pp. 535–540. conference: end_date: 2023-04-27 location: Paris, France name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2023-04-22 date_created: 2023-04-20T08:22:53Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-04-25T07:02:43Z day: '20' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-30820-8_32 ec_funded: 1 file: - access_level: open_access checksum: 120d2c2a38384058ad0630fdf8288312 content_type: application/pdf creator: dernst date_created: 2023-04-25T06:58:36Z date_updated: 2023-04-25T06:58:36Z file_id: '12864' file_name: 2023_LNCS_Chalupa.pdf file_size: 16096413 relation: main_file success: 1 file_date_updated: 2023-04-25T06:58:36Z has_accepted_license: '1' intvolume: ' 13994' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 535-540 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Tools and Algorithms for the Construction and Analysis of Systems publication_identifier: eisbn: - '9783031308208' eissn: - 1611-3349 isbn: - '9783031308192' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: 'Bubaak: Runtime monitoring of program verifiers' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13994 year: '2023' ... --- _id: '12846' abstract: - lang: eng text: We present a formula for the signed area of a spherical polygon via prequantization. In contrast to the traditional formula based on the Gauss-Bonnet theorem that requires measuring angles, the new formula mimics Green's theorem and is applicable to a wider range of degenerate spherical curves and polygons. acknowledgement: The authors acknowledge Chris Wojtan for his continuous support to the present work through discussions and advice. The second author thanks Anna Sisak for a fruitful discussion on prequantum bundles. This project was funded in part by the European Research Council (ERC Consolidator Grant 101045083 CoDiNA). article_number: '2303.14555' article_processing_charge: No author: - first_name: Albert full_name: Chern, Albert last_name: Chern - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida citation: ama: Chern A, Ishida S. Area formula for spherical polygons via prequantization. arXiv. doi:10.48550/arXiv.2303.14555 apa: Chern, A., & Ishida, S. (n.d.). Area formula for spherical polygons via prequantization. arXiv. https://doi.org/10.48550/arXiv.2303.14555 chicago: Chern, Albert, and Sadashige Ishida. “Area Formula for Spherical Polygons via Prequantization.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2303.14555. ieee: A. Chern and S. Ishida, “Area formula for spherical polygons via prequantization,” arXiv. . ista: Chern A, Ishida S. Area formula for spherical polygons via prequantization. arXiv, 2303.14555. mla: Chern, Albert, and Sadashige Ishida. “Area Formula for Spherical Polygons via Prequantization.” ArXiv, 2303.14555, doi:10.48550/arXiv.2303.14555. short: A. Chern, S. Ishida, ArXiv (n.d.). date_created: 2023-04-18T19:16:06Z date_published: 2023-03-25T00:00:00Z date_updated: 2023-04-25T06:51:21Z day: '25' department: - _id: GradSch - _id: ChWo doi: 10.48550/arXiv.2303.14555 external_id: arxiv: - '2303.14555' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2303.14555 month: '03' oa: 1 oa_version: Preprint project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: arXiv publication_status: submitted status: public title: Area formula for spherical polygons via prequantization type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12856' abstract: - lang: eng text: "As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both.\r\n\r\nWe present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems.\r\nWe implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch." acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093. The authors would like to thank the anonymous FASE reviewers for their valuable feedback and suggestions. alternative_title: - LNCS article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Stefanie full_name: Muroya Lei, Stefanie id: a376de31-8972-11ed-ae7b-d0251c13c8ff last_name: Muroya Lei - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. Vamos: Middleware for best-effort third-party monitoring. In: Fundamental Approaches to Software Engineering. Vol 13991. Springer Nature; 2023:260-281. doi:10.1007/978-3-031-30826-0_15' apa: 'Chalupa, M., Mühlböck, F., Muroya Lei, S., & Henzinger, T. A. (2023). Vamos: Middleware for best-effort third-party monitoring. In Fundamental Approaches to Software Engineering (Vol. 13991, pp. 260–281). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30826-0_15' chicago: 'Chalupa, Marek, Fabian Mühlböck, Stefanie Muroya Lei, and Thomas A Henzinger. “Vamos: Middleware for Best-Effort Third-Party Monitoring.” In Fundamental Approaches to Software Engineering, 13991:260–81. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30826-0_15.' ieee: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, and T. A. Henzinger, “Vamos: Middleware for best-effort third-party monitoring,” in Fundamental Approaches to Software Engineering, Paris, France, 2023, vol. 13991, pp. 260–281.' ista: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. 2023. Vamos: Middleware for best-effort third-party monitoring. Fundamental Approaches to Software Engineering. FASE: Fundamental Approaches to Software Engineering, LNCS, vol. 13991, 260–281.' mla: 'Chalupa, Marek, et al. “Vamos: Middleware for Best-Effort Third-Party Monitoring.” Fundamental Approaches to Software Engineering, vol. 13991, Springer Nature, 2023, pp. 260–81, doi:10.1007/978-3-031-30826-0_15.' short: M. Chalupa, F. Mühlböck, S. Muroya Lei, T.A. Henzinger, in:, Fundamental Approaches to Software Engineering, Springer Nature, 2023, pp. 260–281. conference: end_date: 2023-04-27 location: Paris, France name: 'FASE: Fundamental Approaches to Software Engineering' start_date: 2023-04-22 date_created: 2023-04-20T08:29:42Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-04-25T07:19:07Z day: '20' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-30826-0_15 ec_funded: 1 file: - access_level: open_access checksum: 17a7c8e08be609cf2408d37ea55e322c content_type: application/pdf creator: dernst date_created: 2023-04-25T07:16:36Z date_updated: 2023-04-25T07:16:36Z file_id: '12865' file_name: 2023_LNCS_ChalupaM.pdf file_size: 580828 relation: main_file success: 1 file_date_updated: 2023-04-25T07:16:36Z has_accepted_license: '1' intvolume: ' 13991' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 260-281 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Fundamental Approaches to Software Engineering publication_identifier: eisbn: - '9783031308260' eissn: - 1611-3349 isbn: - '9783031308253' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12407' relation: earlier_version status: public status: public title: 'Vamos: Middleware for best-effort third-party monitoring' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13991 year: '2023' ... --- _id: '12407' abstract: - lang: eng text: "As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both.\r\n\r\nWe present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems.\r\n\r\nWe implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch." acknowledgement: "This work was supported in part by the ERC-2020-AdG 101020093. \r\nThe authors would like to thank the anonymous FASE reviewers for their valuable feedback and suggestions." alternative_title: - IST Austria Technical Report article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Stefanie full_name: Muroya Lei, Stefanie id: a376de31-8972-11ed-ae7b-d0251c13c8ff last_name: Muroya Lei - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria; 2023. doi:10.15479/AT:ISTA:12407' apa: 'Chalupa, M., Mühlböck, F., Muroya Lei, S., & Henzinger, T. A. (2023). VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:12407' chicago: 'Chalupa, Marek, Fabian Mühlböck, Stefanie Muroya Lei, and Thomas A Henzinger. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:12407.' ieee: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, and T. A. Henzinger, VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023.' ista: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. 2023. VAMOS: Middleware for Best-Effort Third-Party Monitoring, Institute of Science and Technology Austria, 38p.' mla: 'Chalupa, Marek, et al. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:12407.' short: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, T.A. Henzinger, VAMOS: Middleware for Best-Effort Third-Party Monitoring, Institute of Science and Technology Austria, 2023.' date_created: 2023-01-27T03:18:08Z date_published: 2023-01-27T00:00:00Z date_updated: 2023-04-25T07:19:06Z day: '27' ddc: - '005' department: - _id: ToHe doi: 10.15479/AT:ISTA:12407 ec_funded: 1 file: - access_level: open_access checksum: 55426e463fdeafe9777fc3ff635154c7 content_type: application/pdf creator: fmuehlbo date_created: 2023-01-27T03:18:34Z date_updated: 2023-01-27T03:18:34Z file_id: '12408' file_name: main.pdf file_size: 662409 relation: main_file success: 1 file_date_updated: 2023-01-27T03:18:34Z has_accepted_license: '1' keyword: - runtime monitoring - best effort - third party language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '38' project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication_identifier: eissn: - 2664-1690 publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '12856' relation: later_version status: public status: public title: 'VAMOS: Middleware for Best-Effort Third-Party Monitoring' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12866' abstract: - lang: eng text: "Autism spectrum disorder (ASD) and epilepsy are frequently comorbid neurodevelopmental disorders. Extensive research has demonstrated shared pathological pathways, etiologies, and phenotypes. Many risk factors for these disorders, like genetic mutations and environmental pressures, are linked to changes in childhood brain development, which is a critical period for their manifestation.\r\nDecades of research have yielded many signatures for ASD and epilepsy, some shared and others unique or opposing. The anatomical, physiological, and behavioral correlates of these disorders are discussed in this chapter in the context of understanding shared pathological pathways. We end with important takeaways on the presentation, prevention, intervention, and policy changes for ASD and epilepsy. This chapter aims to explore the complexity of these disorders, both in etiology and phenotypes, with the further goal of appreciating the expanse of unknowns still to explore about the brain." alternative_title: - 'Vol. 1: Biological Development and Physical Health' article_processing_charge: No author: - first_name: Christopher full_name: Currin, Christopher id: e8321fc5-3091-11eb-8a53-83f309a11ac9 last_name: Currin orcid: 0000-0002-4809-5059 - first_name: Chad full_name: Beyer, Chad last_name: Beyer citation: ama: 'Currin C, Beyer C. Altered childhood brain development in autism and epilepsy. In: Halpern-Felsher B, ed. Encyclopedia of Child and Adolescent Health. 1st ed. Elsevier; 2023:86-98. doi:10.1016/b978-0-12-818872-9.00129-1' apa: Currin, C., & Beyer, C. (2023). Altered childhood brain development in autism and epilepsy. In B. Halpern-Felsher (Ed.), Encyclopedia of Child and Adolescent Health (1st ed., pp. 86–98). Elsevier. https://doi.org/10.1016/b978-0-12-818872-9.00129-1 chicago: Currin, Christopher, and Chad Beyer. “Altered Childhood Brain Development in Autism and Epilepsy.” In Encyclopedia of Child and Adolescent Health, edited by Bonnie Halpern-Felsher, 1st ed., 86–98. Elsevier, 2023. https://doi.org/10.1016/b978-0-12-818872-9.00129-1. ieee: C. Currin and C. Beyer, “Altered childhood brain development in autism and epilepsy,” in Encyclopedia of Child and Adolescent Health, 1st ed., B. Halpern-Felsher, Ed. Elsevier, 2023, pp. 86–98. ista: 'Currin C, Beyer C. 2023.Altered childhood brain development in autism and epilepsy. In: Encyclopedia of Child and Adolescent Health. Vol. 1: Biological Development and Physical Health, , 86–98.' mla: Currin, Christopher, and Chad Beyer. “Altered Childhood Brain Development in Autism and Epilepsy.” Encyclopedia of Child and Adolescent Health, edited by Bonnie Halpern-Felsher, 1st ed., Elsevier, 2023, pp. 86–98, doi:10.1016/b978-0-12-818872-9.00129-1. short: C. Currin, C. Beyer, in:, B. Halpern-Felsher (Ed.), Encyclopedia of Child and Adolescent Health, 1st ed., Elsevier, 2023, pp. 86–98. date_created: 2023-04-25T07:52:43Z date_published: 2023-02-01T00:00:00Z date_updated: 2023-04-25T09:25:40Z day: '01' department: - _id: TiVo doi: 10.1016/b978-0-12-818872-9.00129-1 edition: '1' editor: - first_name: Bonnie full_name: Halpern-Felsher, Bonnie last_name: Halpern-Felsher language: - iso: eng month: '02' oa_version: None page: 86-98 publication: Encyclopedia of Child and Adolescent Health publication_identifier: isbn: - '9780128188736' publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Altered childhood brain development in autism and epilepsy type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12809' abstract: - lang: eng text: "Understanding the mechanisms of learning and memory formation has always been one of\r\nthe main goals in neuroscience. Already Pavlov (1927) in his early days has used his classic\r\nconditioning experiments to study the neural mechanisms governing behavioral adaptation.\r\nWhat was not known back then was that the part of the brain that is largely responsible for\r\nthis type of associative learning is the cerebellum.\r\nSince then, plenty of theories on cerebellar learning have emerged. Despite their differences,\r\none thing they all have in common is that learning relies on synaptic and intrinsic plasticity.\r\nThe goal of my PhD project was to unravel the molecular mechanisms underlying synaptic\r\nplasticity in two synapses that have been shown to be implicated in motor learning, in an\r\neffort to understand how learning and memory formation are processed in the cerebellum.\r\nOne of the earliest and most well-known cerebellar theories postulates that motor learning\r\nlargely depends on long-term depression at the parallel fiber-Purkinje cell (PC-PC) synapse.\r\nHowever, the discovery of other types of plasticity in the cerebellar circuitry, like long-term\r\npotentiation (LTP) at the PC-PC synapse, potentiation of molecular layer interneurons (MLIs),\r\nand plasticity transfer from the cortex to the cerebellar/ vestibular nuclei has increased the\r\npopularity of the idea that multiple sites of plasticity might be involved in learning.\r\nStill a lot remains unknown about the molecular mechanisms responsible for these types of\r\nplasticity and whether they occur during physiological learning.\r\nIn the first part of this thesis we have analyzed the variation and nanodistribution of voltagegated calcium channels (VGCCs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid\r\ntype glutamate receptors (AMPARs) on the parallel fiber-Purkinje cell synapse after vestibuloocular reflex phase reversal adaptation, a behavior that has been suggested to rely on PF-PC\r\nLTP. We have found that on the last day of adaptation there is no learning trace in form of\r\nVGCCs nor AMPARs variation at the PF-PC synapse, but instead a decrease in the number of\r\nPF-PC synapses. These data seem to support the view that learning is only stored in the\r\ncerebellar cortex in an initial learning phase, being transferred later to the vestibular nuclei.\r\nNext, we have studied the role of MLIs in motor learning using a relatively simple and well characterized behavioral paradigm – horizontal optokinetic reflex (HOKR) adaptation. We\r\nhave found behavior-induced MLI potentiation in form of release probability increase that\r\ncould be explained by the increase of VGCCs at the presynaptic side. Our results strengthen\r\nthe idea of distributed cerebellar plasticity contributing to learning and provide a novel\r\nmechanism for release probability increase. " acknowledged_ssus: - _id: EM-Fac - _id: Bio - _id: PreCl alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Catarina full_name: Alcarva, Catarina id: 3A96634C-F248-11E8-B48F-1D18A9856A87 last_name: Alcarva citation: ama: 'Alcarva C. Plasticity in the cerebellum: What molecular mechanisms are behind physiological learning. 2023. doi:10.15479/at:ista:12809' apa: 'Alcarva, C. (2023). Plasticity in the cerebellum: What molecular mechanisms are behind physiological learning. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12809' chicago: 'Alcarva, Catarina. “Plasticity in the Cerebellum: What Molecular Mechanisms Are behind Physiological Learning.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12809.' ieee: 'C. Alcarva, “Plasticity in the cerebellum: What molecular mechanisms are behind physiological learning,” Institute of Science and Technology Austria, 2023.' ista: 'Alcarva C. 2023. Plasticity in the cerebellum: What molecular mechanisms are behind physiological learning. Institute of Science and Technology Austria.' mla: 'Alcarva, Catarina. Plasticity in the Cerebellum: What Molecular Mechanisms Are behind Physiological Learning. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12809.' short: 'C. Alcarva, Plasticity in the Cerebellum: What Molecular Mechanisms Are behind Physiological Learning, Institute of Science and Technology Austria, 2023.' date_created: 2023-04-06T07:54:09Z date_published: 2023-04-06T00:00:00Z date_updated: 2023-04-26T12:16:56Z day: '06' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: RySh doi: 10.15479/at:ista:12809 file: - access_level: closed checksum: 35b5997d2b0acb461f9d33d073da0df5 content_type: application/pdf creator: cchlebak date_created: 2023-04-07T06:16:06Z date_updated: 2023-04-07T06:16:06Z embargo: 2024-04-07 embargo_to: open_access file_id: '12814' file_name: Thesis_CatarinaAlcarva_final pdfA.pdf file_size: 9881969 relation: main_file - access_level: closed checksum: 81198f63c294890f6d58e8b29782efdc content_type: application/pdf creator: cchlebak date_created: 2023-04-07T06:17:11Z date_updated: 2023-04-07T06:17:11Z file_id: '12815' file_name: Thesis_CatarinaAlcarva_final_for printing.pdf file_size: 44201583 relation: source_file - access_level: closed checksum: 0317bf7f457bb585f99d453ffa69eb53 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: cchlebak date_created: 2023-04-07T06:18:05Z date_updated: 2023-04-07T06:18:05Z file_id: '12816' file_name: Thesis_CatarinaAlcarva_final.docx file_size: 84731244 relation: source_file file_date_updated: 2023-04-07T06:18:05Z has_accepted_license: '1' language: - iso: eng month: '04' oa_version: Published Version page: '115' project: - _id: 267DFB90-B435-11E9-9278-68D0E5697425 name: 'Plasticity in the cerebellum: Which molecular mechanisms are behind physiological learning?' publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 title: 'Plasticity in the cerebellum: What molecular mechanisms are behind physiological learning' type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12668' abstract: - lang: eng text: "Background: Plant and animal embryogenesis have conserved and distinct features. Cell fate transitions occur during embryogenesis in both plants and animals. The epigenomic processes regulating plant embryogenesis remain largely elusive.\r\n\r\nResults: Here, we elucidate chromatin and transcriptomic dynamics during embryogenesis of the most cultivated crop, hexaploid wheat. Time-series analysis reveals stage-specific and proximal–distal distinct chromatin accessibility and dynamics concordant with transcriptome changes. Following fertilization, the remodeling kinetics of H3K4me3, H3K27ac, and H3K27me3 differ from that in mammals, highlighting considerable species-specific epigenomic dynamics during zygotic genome activation. Polycomb repressive complex 2 (PRC2)-mediated H3K27me3 deposition is important for embryo establishment. Later H3K27ac, H3K27me3, and chromatin accessibility undergo dramatic remodeling to establish a permissive chromatin environment facilitating the access of transcription factors to cis-elements for fate patterning. Embryonic maturation is characterized by increasing H3K27me3 and decreasing chromatin accessibility, which likely participates in restricting totipotency while preventing extensive organogenesis. Finally, epigenomic signatures are correlated with biased expression among homeolog triads and divergent expression after polyploidization, revealing an epigenomic contributor to subgenome diversification in an allohexaploid genome.\r\n\r\nConclusions: Collectively, we present an invaluable resource for comparative and mechanistic analysis of the epigenomic regulation of crop embryogenesis." article_number: '7' article_processing_charge: No article_type: original author: - first_name: Long full_name: Zhao, Long last_name: Zhao - first_name: Yiman full_name: Yang, Yiman last_name: Yang - first_name: Jinchao full_name: Chen, Jinchao last_name: Chen - first_name: Xuelei full_name: Lin, Xuelei last_name: Lin - first_name: Hao full_name: Zhang, Hao last_name: Zhang - first_name: Hao full_name: Wang, Hao last_name: Wang - first_name: Hongzhe full_name: Wang, Hongzhe last_name: Wang - first_name: Xiaomin full_name: Bie, Xiaomin last_name: Bie - first_name: Jiafu full_name: Jiang, Jiafu last_name: Jiang - first_name: Xiaoqi full_name: Feng, Xiaoqi id: e0164712-22ee-11ed-b12a-d80fcdf35958 last_name: Feng orcid: 0000-0002-4008-1234 - first_name: Xiangdong full_name: Fu, Xiangdong last_name: Fu - first_name: Xiansheng full_name: Zhang, Xiansheng last_name: Zhang - first_name: Zhuo full_name: Du, Zhuo last_name: Du - first_name: Jun full_name: Xiao, Jun last_name: Xiao citation: ama: Zhao L, Yang Y, Chen J, et al. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biology. 2023;24. doi:10.1186/s13059-022-02844-2 apa: Zhao, L., Yang, Y., Chen, J., Lin, X., Zhang, H., Wang, H., … Xiao, J. (2023). Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biology. Springer Nature. https://doi.org/10.1186/s13059-022-02844-2 chicago: Zhao, Long, Yiman Yang, Jinchao Chen, Xuelei Lin, Hao Zhang, Hao Wang, Hongzhe Wang, et al. “Dynamic Chromatin Regulatory Programs during Embryogenesis of Hexaploid Wheat.” Genome Biology. Springer Nature, 2023. https://doi.org/10.1186/s13059-022-02844-2. ieee: L. Zhao et al., “Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat,” Genome Biology, vol. 24. Springer Nature, 2023. ista: Zhao L, Yang Y, Chen J, Lin X, Zhang H, Wang H, Wang H, Bie X, Jiang J, Feng X, Fu X, Zhang X, Du Z, Xiao J. 2023. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biology. 24, 7. mla: Zhao, Long, et al. “Dynamic Chromatin Regulatory Programs during Embryogenesis of Hexaploid Wheat.” Genome Biology, vol. 24, 7, Springer Nature, 2023, doi:10.1186/s13059-022-02844-2. short: L. Zhao, Y. Yang, J. Chen, X. Lin, H. Zhang, H. Wang, H. Wang, X. Bie, J. Jiang, X. Feng, X. Fu, X. Zhang, Z. Du, J. Xiao, Genome Biology 24 (2023). date_created: 2023-02-23T09:13:49Z date_published: 2023-01-13T00:00:00Z date_updated: 2023-05-08T10:52:49Z day: '13' department: - _id: XiFe doi: 10.1186/s13059-022-02844-2 extern: '1' external_id: pmid: - '36639687' intvolume: ' 24' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1186/s13059-022-02844-2 month: '01' oa: 1 oa_version: Published Version pmid: 1 publication: Genome Biology publication_identifier: issn: - 1474-760X publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2023' ...