TY - JOUR
AB - We introduce dynamically warping grids for adaptive liquid simulation. Our primary contributions are a strategy for dynamically deforming regular grids over the course of a simulation and a method for efficiently utilizing these deforming grids for liquid simulation. Prior work has shown that unstructured grids are very effective for adaptive fluid simulations. However, unstructured grids often lead to complicated implementations and a poor cache hit rate due to inconsistent memory access. Regular grids, on the other hand, provide a fast, fixed memory access pattern and straightforward implementation. Our method combines the advantages of both: we leverage the simplicity of regular grids while still achieving practical and controllable spatial adaptivity. We demonstrate that our method enables adaptive simulations that are fast, flexible, and robust to null-space issues. At the same time, our method is simple to implement and takes advantage of existing highly-tuned algorithms.
AU - Hikaru, Ibayashi
AU - Wojtan, Christopher J
AU - Thuerey, Nils
AU - Igarashi, Takeo
AU - Ando, Ryoichi
ID - 5681
IS - 6
JF - IEEE Transactions on Visualization and Computer Graphics
SN - 10772626
TI - Simulating liquids on dynamically warping grids
VL - 26
ER -
TY - JOUR
AB - We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models.
AU - Alt, Johannes
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6184
IS - 2
JF - Annals of Probability
TI - Correlated random matrices: Band rigidity and edge universality
VL - 48
ER -
TY - JOUR
AB - For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner–Dyson–Mehta universality conjecture for the last remaining universality type in the complex Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp for both symmetry classes. This result is also the key input in the companion paper (Cipolloni et al. in Pure Appl Anal, 2018. arXiv:1811.04055) where the cusp universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is also essential for the recent results on the spectral radius of non-Hermitian random matrices (Alt et al. in Spectral radius of random matrices with independent entries, 2019. arXiv:1907.13631), and the non-Hermitian edge universality (Cipolloni et al. in Edge universality for non-Hermitian random matrices, 2019. arXiv:1908.00969).
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6185
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Cusp universality for random matrices I: Local law and the complex Hermitian case
VL - 378
ER -
TY - JOUR
AB - We study dynamical optimal transport metrics between density matricesassociated to symmetric Dirichlet forms on finite-dimensional C∗-algebras. Our settingcovers arbitrary skew-derivations and it provides a unified framework that simultaneously generalizes recently constructed transport metrics for Markov chains, Lindblad equations, and the Fermi Ornstein–Uhlenbeck semigroup. We develop a non-nommutative differential calculus that allows us to obtain non-commutative Ricci curvature bounds, logarithmic Sobolev inequalities, transport-entropy inequalities, andspectral gap estimates.
AU - Carlen, Eric A.
AU - Maas, Jan
ID - 6358
IS - 2
JF - Journal of Statistical Physics
SN - 00224715
TI - Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems
VL - 178
ER -
TY - JOUR
AB - The strong rate of convergence of the Euler-Maruyama scheme for nondegenerate SDEs with irregular drift coefficients is considered. In the case of α-Hölder drift in the recent literature the rate α/2 was proved in many related situations. By exploiting the regularising effect of the noise more efficiently, we show that the rate is in fact arbitrarily close to 1/2 for all α>0. The result extends to Dini continuous coefficients, while in d=1 also to all bounded measurable coefficients.
AU - Dareiotis, Konstantinos
AU - Gerencser, Mate
ID - 6359
JF - Electronic Journal of Probability
TI - On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift
VL - 25
ER -
TY - JOUR
AB - We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix W˜ and its minor W. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of W˜ and W. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.
AU - Cipolloni, Giorgio
AU - Erdös, László
ID - 6488
IS - 3
JF - Random Matrices: Theory and Application
SN - 20103263
TI - Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices
VL - 9
ER -
TY - JOUR
AB - This paper presents two algorithms. The first decides the existence of a pointed homotopy between given simplicial maps 𝑓,𝑔:𝑋→𝑌, and the second computes the group [𝛴𝑋,𝑌]∗ of pointed homotopy classes of maps from a suspension; in both cases, the target Y is assumed simply connected. More generally, these algorithms work relative to 𝐴⊆𝑋.
AU - Filakovský, Marek
AU - Vokřínek, Lukas
ID - 6563
JF - Foundations of Computational Mathematics
SN - 16153375
TI - Are two given maps homotopic? An algorithmic viewpoint
VL - 20
ER -
TY - JOUR
AB - We consider the monotone variational inequality problem in a Hilbert space and describe a projection-type method with inertial terms under the following properties: (a) The method generates a strongly convergent iteration sequence; (b) The method requires, at each iteration, only one projection onto the feasible set and two evaluations of the operator; (c) The method is designed for variational inequality for which the underline operator is monotone and uniformly continuous; (d) The method includes an inertial term. The latter is also shown to speed up the convergence in our numerical results. A comparison with some related methods is given and indicates that the new method is promising.
AU - Shehu, Yekini
AU - Li, Xiao-Huan
AU - Dong, Qiao-Li
ID - 6593
JF - Numerical Algorithms
SN - 1017-1398
TI - An efficient projection-type method for monotone variational inequalities in Hilbert spaces
VL - 84
ER -
TY - JOUR
AB - While Hartree–Fock theory is well established as a fundamental approximation for interacting fermions, it has been unclear how to describe corrections to it due to many-body correlations. In this paper we start from the Hartree–Fock state given by plane waves and introduce collective particle–hole pair excitations. These pairs can be approximately described by a bosonic quadratic Hamiltonian. We use Bogoliubov theory to construct a trial state yielding a rigorous Gell-Mann–Brueckner–type upper bound to the ground state energy. Our result justifies the random-phase approximation in the mean-field scaling regime, for repulsive, regular interaction potentials.
AU - Benedikter, Niels P
AU - Nam, Phan Thành
AU - Porta, Marcello
AU - Schlein, Benjamin
AU - Seiringer, Robert
ID - 6649
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Optimal upper bound for the correlation energy of a Fermi gas in the mean-field regime
VL - 374
ER -
TY - JOUR
AB - Fitting a function by using linear combinations of a large number N of `simple' components is one of the most fruitful ideas in statistical learning. This idea lies at the core of a variety of methods, from two-layer neural networks to kernel regression, to boosting. In general, the resulting risk minimization problem is non-convex and is solved by gradient descent or its variants. Unfortunately, little is known about global convergence properties of these approaches.
Here we consider the problem of learning a concave function f on a compact convex domain Ω⊆ℝd, using linear combinations of `bump-like' components (neurons). The parameters to be fitted are the centers of N bumps, and the resulting empirical risk minimization problem is highly non-convex. We prove that, in the limit in which the number of neurons diverges, the evolution of gradient descent converges to a Wasserstein gradient flow in the space of probability distributions over Ω. Further, when the bump width δ tends to 0, this gradient flow has a limit which is a viscous porous medium equation. Remarkably, the cost function optimized by this gradient flow exhibits a special property known as displacement convexity, which implies exponential convergence rates for N→∞, δ→0. Surprisingly, this asymptotic theory appears to capture well the behavior for moderate values of δ,N. Explaining this phenomenon, and understanding the dependence on δ,N in a quantitative manner remains an outstanding challenge.
AU - Javanmard, Adel
AU - Mondelli, Marco
AU - Montanari, Andrea
ID - 6748
IS - 6
JF - Annals of Statistics
TI - Analysis of a two-layer neural network via displacement convexity
VL - 48
ER -
TY - JOUR
AB - In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability.
AU - Avni, Guy
AU - Henzinger, Thomas A
AU - Kupferman, Orna
ID - 6761
JF - Theoretical Computer Science
SN - 03043975
TI - Dynamic resource allocation games
VL - 807
ER -
TY - JOUR
AB - Nearby grid cells have been observed to express a remarkable degree of long-rangeorder, which is often idealized as extending potentially to infinity. Yet their strict peri-odic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent grid maps inferred in the lab relevant to chart their way in their natural habitat? We consider spheres as simple models of curved environments and waiting for the appropriate experiments to be performed, we use our adaptation model to predict what grid maps would emerge in a network with the same type of recurrent connections, which on the plane produce coherence among the units. We find that on the sphere such connections distort the maps that single grid units would express on their own, and aggregate them into clusters. When remapping to a different spherical environment, units in each cluster maintain only partial coherence, similar to what is observed in disordered materials, such as spin glasses.
AU - Stella, Federico
AU - Urdapilleta, Eugenio
AU - Luo, Yifan
AU - Treves, Alessandro
ID - 6796
IS - 4
JF - Hippocampus
SN - 10509631
TI - Partial coherence and frustration in self-organizing spherical grids
VL - 30
ER -
TY - JOUR
AB - Super-resolution fluorescence microscopy has become an important catalyst for discovery in the life sciences. In STimulated Emission Depletion (STED) microscopy, a pattern of light drives fluorophores from a signal-emitting on-state to a non-signalling off-state. Only emitters residing in a sub-diffraction volume around an intensity minimum are allowed to fluoresce, rendering them distinguishable from the nearby, but dark fluorophores. STED routinely achieves resolution in the few tens of nanometers range in biological samples and is suitable for live imaging. Here, we review the working principle of STED and provide general guidelines for successful STED imaging. The strive for ever higher resolution comes at the cost of increased light burden. We discuss techniques to reduce light exposure and mitigate its detrimental effects on the specimen. These include specialized illumination strategies as well as protecting fluorophores from photobleaching mediated by high-intensity STED light. This opens up the prospect of volumetric imaging in living cells and tissues with diffraction-unlimited resolution in all three spatial dimensions.
AU - Jahr, Wiebke
AU - Velicky, Philipp
AU - Danzl, Johann G
ID - 6808
IS - 3
JF - Methods
SN - 1046-2023
TI - Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens
VL - 174
ER -
TY - JOUR
AB - We consider the classic problem of Network Reliability. A network is given together with a source vertex, one or more target vertices, and probabilities assigned to each of the edges. Each edge of the network is operable with its associated probability and the problem is to determine the probability of having at least one source-to-target path that is entirely composed of operable edges. This problem is known to be NP-hard.
We provide a novel scalable algorithm to solve the Network Reliability problem when the treewidth of the underlying network is small. We also show our algorithm’s applicability for real-world transit networks that have small treewidth, including the metro networks of major cities, such as London and Tokyo. Our algorithm leverages tree decompositions to shrink the original graph into much smaller graphs, for which reliability can be efficiently and exactly computed using a brute force method. To the best of our knowledge, this is the first exact algorithm for Network Reliability that can scale to handle real-world instances of the problem.
AU - Goharshady, Amir Kafshdar
AU - Mohammadi, Fatemeh
ID - 6918
JF - Reliability Engineering and System Safety
SN - 09518320
TI - An efficient algorithm for computing network reliability in small treewidth
VL - 193
ER -
TY - JOUR
AB - We present a unified framework tackling two problems: class-specific 3D reconstruction from a single image, and generation of new 3D shape samples. These tasks have received considerable attention recently; however, most existing approaches rely on 3D supervision, annotation of 2D images with keypoints or poses, and/or training with multiple views of each object instance. Our framework is very general: it can be trained in similar settings to existing approaches, while also supporting weaker supervision. Importantly, it can be trained purely from 2D images, without pose annotations, and with only a single view per instance. We employ meshes as an output representation, instead of voxels used in most prior work. This allows us to reason over lighting parameters and exploit shading information during training, which previous 2D-supervised methods cannot. Thus, our method can learn to generate and reconstruct concave object classes. We evaluate our approach in various settings, showing that: (i) it learns to disentangle shape from pose and lighting; (ii) using shading in the loss improves performance compared to just silhouettes; (iii) when using a standard single white light, our model outperforms state-of-the-art 2D-supervised methods, both with and without pose supervision, thanks to exploiting shading cues; (iv) performance improves further when using multiple coloured lights, even approaching that of state-of-the-art 3D-supervised methods; (v) shapes produced by our model capture smooth surfaces and fine details better than voxel-based approaches; and (vi) our approach supports concave classes such as bathtubs and sofas, which methods based on silhouettes cannot learn.
AU - Henderson, Paul M
AU - Ferrari, Vittorio
ID - 6952
JF - International Journal of Computer Vision
SN - 0920-5691
TI - Learning single-image 3D reconstruction by generative modelling of shape, pose and shading
VL - 128
ER -
TY - JOUR
AB - The central object of investigation of this paper is the Hirzebruch class, a deformation of the Todd class, given by Hirzebruch (for smooth varieties). The generalization for singular varieties is due to Brasselet–Schürmann–Yokura. Following the work of Weber, we investigate its equivariant version for (possibly singular) toric varieties. The local decomposition of the Hirzebruch class to the fixed points of the torus action and a formula for the local class in terms of the defining fan are recalled. After this review part, we prove the positivity of local Hirzebruch classes for all toric varieties, thus proving false the alleged counterexample given by Weber.
AU - Rychlewicz, Kamil P
ID - 6965
JF - Bulletin of the London Mathematical Society
SN - 0024-6093
TI - The positivity of local equivariant Hirzebruch class for toric varieties
ER -
TY - JOUR
AB - Origami is rapidly transforming the design of robots1,2, deployable structures3,4,5,6 and metamaterials7,8,9,10,11,12,13,14. However, as foldability requires a large number of complex compatibility conditions that are difficult to satisfy, the design of crease patterns is limited to heuristics and computer optimization. Here we introduce a systematic strategy that enables intuitive and effective design of complex crease patterns that are guaranteed to fold. First, we exploit symmetries to construct 140 distinct foldable motifs, and represent these as jigsaw puzzle pieces. We then show that when these pieces are fitted together they encode foldable crease patterns. This maps origami design to solving combinatorial problems, which allows us to systematically create, count and classify a vast number of crease patterns. We show that all of these crease patterns are pluripotent—capable of folding into multiple shapes—and solve exactly for the number of possible shapes for each pattern. Finally, we employ our framework to rationally design a crease pattern that folds into two independently defined target shapes, and fabricate such pluripotent origami. Our results provide physicists, mathematicians and engineers with a powerful new design strategy.
AU - Dieleman, Peter
AU - Vasmel, Niek
AU - Waitukaitis, Scott R
AU - van Hecke, Martin
ID - 6976
IS - 1
JF - Nature Physics
SN - 1745-2473
TI - Jigsaw puzzle design of pluripotent origami
VL - 16
ER -
TY - JOUR
AU - Zhang, Yuzhou
AU - Friml, Jiří
ID - 6997
IS - 3
JF - New Phytologist
SN - 0028-646x
TI - Auxin guides roots to avoid obstacles during gravitropic growth
VL - 225
ER -
TY - JOUR
AB - We define an action of the (double of) Cohomological Hall algebra of Kontsevich and Soibelman on the cohomology of the moduli space of spiked instantons of Nekrasov. We identify this action with the one of the affine Yangian of gl(1). Based on that we derive the vertex algebra at the corner Wr1,r2,r3 of Gaiotto and Rapčák. We conjecture that our approach works for a big class of Calabi–Yau categories, including those associated with toric Calabi–Yau 3-folds.
AU - Rapcak, Miroslav
AU - Soibelman, Yan
AU - Yang, Yaping
AU - Zhao, Gufang
ID - 7004
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Cohomological Hall algebras, vertex algebras and instantons
VL - 376
ER -
TY - JOUR
AB - Removal of the Bax gene from mice completely protects the somas of retinal ganglion cells (RGCs) from apoptosis following optic nerve injury. This makes BAX a promising therapeutic target to prevent neurodegeneration. In this study, Bax+/− mice were used to test the hypothesis that lowering the quantity of BAX in RGCs would delay apoptosis following optic nerve injury. RGCs were damaged by performing optic nerve crush (ONC) and then immunostaining for phospho-cJUN, and quantitative PCR were used to monitor the status of the BAX activation mechanism in the months following injury. The apoptotic susceptibility of injured cells was directly tested by virally introducing GFP-BAX into Bax−/− RGCs after injury. The competency of quiescent RGCs to reactivate their BAX activation mechanism was tested by intravitreal injection of the JNK pathway agonist, anisomycin. Twenty-four weeks after ONC, Bax+/− mice had significantly less cell loss in their RGC layer than Bax+/+ mice 3 weeks after ONC. Bax+/− and Bax+/+ RGCs exhibited similar patterns of nuclear phospho-cJUN accumulation immediately after ONC, which persisted in Bax+/− RGCs for up to 7 weeks before abating. The transcriptional activation of BAX-activating genes was similar in Bax+/− and Bax+/+ RGCs following ONC. Intriguingly, cells deactivated their BAX activation mechanism between 7 and 12 weeks after crush. Introduction of GFP-BAX into Bax−/− cells at 4 weeks after ONC showed that these cells had a nearly normal capacity to activate this protein, but this capacity was lost 8 weeks after crush. Collectively, these data suggest that 8–12 weeks after crush, damaged cells no longer displayed increased susceptibility to BAX activation relative to their naïve counterparts. In this same timeframe, retinal glial activation and the signaling of the pro-apoptotic JNK pathway also abated. Quiescent RGCs did not show a timely reactivation of their JNK pathway following intravitreal injection with anisomycin. These findings demonstrate that lowering the quantity of BAX in RGCs is neuroprotective after acute injury. Damaged RGCs enter a quiescent state months after injury and are no longer responsive to an apoptotic stimulus. Quiescent RGCs will require rejuvenation to reacquire functionality.
AU - Donahue, RJ
AU - Maes, Margaret E
AU - Grosser, JA
AU - Nickells, RW
ID - 7033
IS - 2
JF - Molecular Neurobiology
SN - 0893-7648
TI - BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage
VL - 57
ER -