TY - GEN AB - Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development by controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scissin machinery in plants, but the precise roles of these proteins in this process is not fully understood. Here, we characterised the roles of Plant Dynamin-Related Proteins 2 (DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to Dynamins’ recruiters, like Endophilin and Amphiphysin, in the CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the Dsh3p1,2,3 triple-mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggests that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME. One Sentence Summary In contrast to predictions based on mammalian systems, plant Dynamin-related proteins 2 are recruited to the site of Clathrin-mediated endocytosis independently of BAR-SH3 proteins. AU - Gnyliukh, Nataliia AU - Johnson, Alexander J AU - Nagel, Marie-Kristin AU - Monzer, Aline AU - Hlavata, Annamaria AU - Isono, Erika AU - Loose, Martin AU - Friml, Jiří ID - 14591 T2 - bioRxiv TI - Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants ER - TY - JOUR AB - Background: Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. Methods: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. Results: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. Conclusions: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as “OGDHL-related disorders”. AU - Lin, Sheng-Jia AU - Vona, Barbara AU - Lau, Tracy AU - Huang, Kevin AU - Zaki, Maha S. AU - Aldeen, Huda Shujaa AU - Karimiani, Ehsan Ghayoor AU - Rocca, Clarissa AU - Noureldeen, Mahmoud M. AU - Saad, Ahmed K. AU - Petree, Cassidy AU - Bartolomaeus, Tobias AU - Abou Jamra, Rami AU - Zifarelli, Giovanni AU - Gotkhindikar, Aditi AU - Wentzensen, Ingrid M. AU - Liao, Mingjuan AU - Cork, Emalyn Elise AU - Varshney, Pratishtha AU - Hashemi, Narges AU - Mohammadi, Mohammad Hasan AU - Rad, Aboulfazl AU - Neira, Juanita AU - Toosi, Mehran Beiraghi AU - Knopp, Cordula AU - Kurth, Ingo AU - Challman, Thomas D. AU - Smith, Rebecca AU - Abdalla, Asmahan AU - Haaf, Thomas AU - Suri, Mohnish AU - Joshi, Manali AU - Chung, Wendy K. AU - Moreno-De-Luca, Andres AU - Houlden, Henry AU - Maroofian, Reza AU - Varshney, Gaurav K. ID - 14639 JF - Genome Medicine KW - Genetics (clinical) KW - Genetics KW - Molecular Biology KW - Molecular Medicine SN - 1756-994X TI - Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity VL - 15 ER - TY - JOUR AB - We introduce a compact, intuitive procedural graph representation for cellular metamaterials, which are small-scale, tileable structures that can be architected to exhibit many useful material properties. Because the structures’ “architectures” vary widely—with elements such as beams, thin shells, and solid bulks—it is difficult to explore them using existing representations. Generic approaches like voxel grids are versatile, but it is cumbersome to represent and edit individual structures; architecture-specific approaches address these issues, but are incompatible with one another. By contrast, our procedural graph succinctly represents the construction process for any structure using a simple skeleton annotated with spatially varying thickness. To express the highly constrained triply periodic minimal surfaces (TPMS) in this manner, we present the first fully automated version of the conjugate surface construction method, which allows novices to create complex TPMS from intuitive input. We demonstrate our representation’s expressiveness, accuracy, and compactness by constructing a wide range of established structures and hundreds of novel structures with diverse architectures and material properties. We also conduct a user study to verify our representation’s ease-of-use and ability to expand engineers’ capacity for exploration. AU - Makatura, Liane AU - Wang, Bohan AU - Chen, Yi-Lu AU - Deng, Bolei AU - Wojtan, Christopher J AU - Bickel, Bernd AU - Matusik, Wojciech ID - 14628 IS - 5 JF - ACM Transactions on Graphics KW - Computer Graphics and Computer-Aided Design SN - 0730-0301 TI - Procedural metamaterials: A unified procedural graph for metamaterial design VL - 42 ER - TY - GEN AB - Transcription by RNA polymerase II (Pol II) can be repressed by noncoding RNA, including the human RNA Alu. However, the mechanism by which endogenous RNAs repress transcription remains unclear. Here we present cryo-electron microscopy structures of Pol II bound to Alu RNA, which reveal that Alu RNA mimics how DNA and RNA bind to Pol II during transcription elongation. Further, we show how domains of the general transcription factor TFIIF affect complex dynamics and control repressive activity. Together, we reveal how a non-coding RNA can regulate mammalian gene expression. AU - Tluckova, Katarina AU - Testa Salmazo, Anita P AU - Bernecky, Carrie A ID - 14644 TI - Mechanism of mammalian transcriptional repression by noncoding RNA ER - TY - THES AU - Hennessey-Wesen, Mike ID - 14641 KW - microfluidics KW - miceobiology KW - mutations KW - quorum sensing SN - 2663 - 337X TI - Adaptive mutation in E. coli modulated by luxS ER - TY - JOUR AB - We investigate spin-charge separation of a spin- 1 2 Fermi system confined in a triple well where multiple bands are occupied. We assume that our finite fermionic system is close to fully spin polarized while being doped by a hole and an impurity fermion with opposite spin. Our setup involves ferromagnetic couplings among the particles in different bands, leading to the development of strong spin-transport correlations in an intermediate interaction regime. Interactions are then strong enough to lift the degeneracy among singlet and triplet spin configurations in the well of the spin impurity but not strong enough to prohibit hole-induced magnetic excitations to the singlet state. Despite the strong spin-hole correlations, the system exhibits spin-charge deconfinement allowing for long-range entanglement of the spatial and spin degrees of freedom. AU - Becker, J. M. AU - Koutentakis, Georgios AU - Schmelcher, P. ID - 14658 IS - 4 JF - Physical Review Research SN - 2643-1564 TI - Spin-charge correlations in finite one-dimensional multiband Fermi systems VL - 5 ER - TY - JOUR AB - We study the out-of-equilibrium quantum dynamics of dipolar polarons, i.e., impurities immersed in a dipolar Bose-Einstein condensate, after a quench of the impurity-boson interaction. We show that the dipolar nature of the condensate and of the impurity results in anisotropic relaxation dynamics, in particular, anisotropic dressing of the polaron. More relevantly for cold-atom setups, quench dynamics is strongly affected by the interplay between dipolar anisotropy and trap geometry. Our findings pave the way for simulating impurities in anisotropic media utilizing experiments with dipolar mixtures. AU - Volosniev, Artem AU - Bighin, Giacomo AU - Santos, Luis AU - Peña Ardila, Luisllu A. ID - 14650 IS - 6 JF - SciPost Physics KW - General Physics and Astronomy SN - 2542-4653 TI - Non-equilibrium dynamics of dipolar polarons VL - 15 ER - TY - JOUR AB - Mass spectrometry imaging (MSI) is a powerful analytical technique for the two-dimensional (2D) localization of chemicals on surfaces. Conventional MSI experiments require to predefine the surface of interest based on photographic or microscopic images. Typically, these boundaries can no longer be changed or adjusted once the experiment has been started. In terms of a more interactive approach we recently developed a pen-like ionization interface which is directly connected to the mass spectrometer. The device allows the user to ionize chemicals by desorption electrospray ionization (DESI) and to freely move the interface over a surface of interest. A mini camera, which is mounted on the tip of the pen, magnifies the desorption area and enables a simple positioning of the pen. The combination of optical data from the camera module and chemical data obtained by mass analysis facilitates a novel type of imaging experiment: interactive mass spectrometry imaging (IMSI). For this application, we present a novel approach for a robust, optical flow-based motion detection. While the live video stream from the camera is used to track the pen's motion across the surface a post-acquisition algorithm correlates the coordinates of the pen trajectory with respective mass spectra obtained from a simultaneous mass spectrometric data acquisition. This algorithm is no longer dependent on a single, manually applied optical marker on the sample surface, which has to be visible on all video frames throughout the analysis. The advanced DESI-IMSI method was successfully tested on inkjet-printed letters as well as mouse brain tissue samples. Validation of the results was done by comparing DESI-IMSI with standard DESI-MSI data. AU - Kluibenschedl, Florian AU - Ploner, Anna AU - Meisenbichler, Christina AU - Konrat, Robert AU - Müller, Thomas ID - 14653 JF - International Journal of Mass Spectrometry SN - 1387-3806 TI - Advanced motion tracking for interactive mass spectrometry imaging (IMSI) VL - 495 ER - TY - GEN AB - In the developing vertebrate central nervous system, neurons and glia typically arise sequentially from common progenitors. Here, we report that the transcription factor Forkhead Box G1 (Foxg1) regulates gliogenesis in the mouse neocortex via distinct cell-autonomous roles in progenitors and in postmitotic neurons that regulate different aspects of the gliogenic FGF signalling pathway. We demonstrate that loss of Foxg1 in cortical progenitors at neurogenic stages causes premature astrogliogenesis. We identify a novel FOXG1 target, the pro-gliogenic FGF pathway component Fgfr3, which is suppressed by FOXG1 cell-autonomously to maintain neurogenesis. Furthermore, FOXG1 can also suppress premature astrogliogenesis triggered by the augmentation of FGF signalling. We identify a second novel function of FOXG1 in regulating the expression of gliogenic ligand FGF18 in new born neocortical upper-layer neurons. Loss of FOXG1 in postmitotic neurons increases Fgf18 expression and enhances gliogenesis in the progenitors. These results fit well with the model that new born neurons secrete cues that trigger progenitors to produce the next wave of cell types, astrocytes. If FGF signalling is attenuated in Foxg1 null progenitors, they progress to oligodendrocyte production. Therefore, loss of FOXG1 transitions the progenitor to a gliogenic state, producing either astrocytes or oligodendrocytes depending on FGF signalling levels. Our results uncover how FOXG1 integrates extrinsic signalling via the FGF pathway to regulate the sequential generation of neurons, astrocytes, and oligodendrocytes in the cerebral cortex. AU - Bose, Mahima AU - Suresh, Varun AU - Mishra, Urvi AU - Talwar, Ishita AU - Yadav, Anuradha AU - Biswas, Shiona AU - Hippenmeyer, Simon AU - Tole, Shubha ID - 14647 T2 - bioRxiv TI - Dual role of FOXG1 in regulating gliogenesis in the developing neocortex via the FGF signalling pathway ER - TY - JOUR AB - The kinetics of the assembly of semiflexible filaments through end-to-end annealing is key to the structure of the cytoskeleton, but is not understood. We analyze this problem through scaling theory and simulations, and uncover a regime where filaments’ ends find each other through bending fluctuations without the need for the whole filament to diffuse. This results in a very substantial speedup of assembly in physiological regimes, and could help with understanding the dynamics of actin and intermediate filaments in biological processes such as wound healing and cell division. AU - Sorichetti, Valerio AU - Lenz, Martin ID - 14655 IS - 22 JF - Physical Review Letters SN - 0031-9007 TI - Transverse fluctuations control the assembly of semiflexible filaments VL - 131 ER - TY - JOUR AB - The classical Steinitz theorem states that if the origin belongs to the interior of the convex hull of a set 𝑆⊂ℝ𝑑, then there are at most 2𝑑 points of 𝑆 whose convex hull contains the origin in the interior. Bárány, Katchalski,and Pach proved the following quantitative version of Steinitz’s theorem. Let 𝑄 be a convex polytope in ℝ𝑑 containing the standard Euclidean unit ball 𝐁𝑑. Then there exist at most 2𝑑 vertices of 𝑄 whose convex hull 𝑄′ satisfies 𝑟𝐁𝑑⊂𝑄′ with 𝑟⩾𝑑−2𝑑. They conjectured that 𝑟⩾𝑐𝑑−1∕2 holds with a universal constant 𝑐>0. We prove 𝑟⩾15𝑑2, the first polynomial lower bound on 𝑟. Furthermore, we show that 𝑟 is not greater than 2/√𝑑. AU - Ivanov, Grigory AU - Naszódi, Márton ID - 14660 JF - Bulletin of the London Mathematical Society SN - 0024-6093 TI - Quantitative Steinitz theorem: A polynomial bound ER - TY - JOUR AB - So-called spontaneous activity is a central hallmark of most nervous systems. Such non-causal firing is contrary to the tenet of spikes as a means of communication, and its purpose remains unclear. We propose that self-initiated firing can serve as a release valve to protect neurons from the toxic conditions arising in mitochondria from lower-than-baseline energy consumption. To demonstrate the viability of our hypothesis, we built a set of models that incorporate recent experimental results indicating homeostatic control of metabolic products—Adenosine triphosphate (ATP), adenosine diphosphate (ADP), and reactive oxygen species (ROS)—by changes in firing. We explore the relationship of metabolic cost of spiking with its effect on the temporal patterning of spikes and reproduce experimentally observed changes in intrinsic firing in the fruitfly dorsal fan-shaped body neuron in a model with ROS-modulated potassium channels. We also show that metabolic spiking homeostasis can produce indefinitely sustained avalanche dynamics in cortical circuits. Our theory can account for key features of neuronal activity observed in many studies ranging from ion channel function all the way to resting state dynamics. We finish with a set of experimental predictions that would confirm an integrated, crucial role for metabolically regulated spiking and firmly link metabolic homeostasis and neuronal function. AU - Chintaluri, Chaitanya AU - Vogels, Tim P ID - 14666 IS - 48 JF - Proceedings of the National Academy of Sciences of the United States of America SN - 0027-8424 TI - Metabolically regulated spiking could serve neuronal energy homeostasis and protect from reactive oxygen species VL - 120 ER - TY - JOUR AB - Although much is known about how single neurons in the hippocampus represent an animal's position, how circuit interactions contribute to spatial coding is less well understood. Using a novel statistical estimator and theoretical modeling, both developed in the framework of maximum entropy models, we reveal highly structured CA1 cell-cell interactions in male rats during open field exploration. The statistics of these interactions depend on whether the animal is in a familiar or novel environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that differ in the informativeness of their spatial inputs. This structure facilitates linear decodability, making the information easy to read out by downstream circuits. Overall, our findings suggest that the efficient coding hypothesis is not only applicable to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain. AU - Nardin, Michele AU - Csicsvari, Jozsef L AU - Tkačik, Gašper AU - Savin, Cristina ID - 14656 IS - 48 JF - The Journal of Neuroscience TI - The structure of hippocampal CA1 interactions optimizes spatial coding across experience VL - 43 ER - TY - JOUR AB - Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader’s fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader’s dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader’s connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader’s fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident. AU - Tkadlec, Josef AU - Kaveh, Kamran AU - Chatterjee, Krishnendu AU - Nowak, Martin A. ID - 14657 IS - 208 JF - Journal of the Royal Society, Interface TI - Evolutionary dynamics of mutants that modify population structure VL - 20 ER - TY - JOUR AB - The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a “Janus” nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts “on demand”. AU - Hema, Kuntrapakam AU - Grommet, Angela B. AU - Białek, Michał J. AU - Wang, Jinhua AU - Schneider, Laura AU - Drechsler, Christoph AU - Yanshyna, Oksana AU - Diskin-Posner, Yael AU - Clever, Guido H. AU - Klajn, Rafal ID - 14664 IS - 45 JF - Journal of the American Chemical Society SN - 0002-7863 TI - Guest encapsulation alters the thermodynamic landscape of a coordination host VL - 145 ER - TY - JOUR AB - As a bottleneck in the direct synthesis of hydrogen peroxide, the development of an efficient palladium-based catalyst has garnered great attention. However, elusive active centers and reaction mechanism issues inhibit further optimization of its performance. In this work, advanced microkinetic modeling with the adsorbate–adsorbate interaction and nanoparticle size effect based on first-principles calculations is developed. A full mechanism uncovering the significance of adsorbate–adsorbate interaction is determined on Pd nanoparticles. We demonstrate unambiguously that Pd(100) with main coverage species of O2 and H is beneficial to H2O2 production, being consistent with experimental operando observation, while H2O forms on Pd(111) covered by O species and Pd(211) covered by O and OH species. Kinetic analyses further enable quantitative estimation of the influence of temperature, pressure, and particle size. Large-size Pd nanoparticles are found to achieve a high H2O2 reaction rate when the operating conditions are moderate temperature and higher oxygen partial pressure. We reveal that specific facets of the Pd nanoparticles are crucial factors for their selectivity and activity. Consistent with the experiment, the production of H2O2 is discovered to be more favorable on Pd nanoparticles containing Pd(100) facets. The ratio of H2/O2 induces substantial variations in the coverage of intermediates of O2 and H on Pd(100), resulting in a change in product selectivity. AU - Zhao, Jinyan AU - Yao, Zihao AU - Bunting, Rhys AU - Hu, P. AU - Wang, Jianguo ID - 14663 IS - 22 JF - ACS Catalysis TI - Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles VL - 13 ER - TY - JOUR AB - For large dimensional non-Hermitian random matrices X with real or complex independent, identically distributed, centered entries, we consider the fluctuations of f (X) as a matrix where f is an analytic function around the spectrum of X. We prove that for a generic bounded square matrix A, the quantity Tr f (X)A exhibits Gaussian fluctuations as the matrix size grows to infinity, which consists of two independent modes corresponding to the tracial and traceless parts of A. We find a new formula for the variance of the traceless part that involves the Frobenius norm of A and the L2-norm of f on the boundary of the limiting spectrum. AU - Erdös, László AU - Ji, Hong Chang ID - 14667 IS - 4 JF - Annales de l'institut Henri Poincare (B) Probability and Statistics SN - 0246-0203 TI - Functional CLT for non-Hermitian random matrices VL - 59 ER - TY - JOUR AB - We consider a class of polaron models, including the Fröhlich model, at zero total momentum, and show that at sufficiently weak coupling there are no excited eigenvalues below the essential spectrum. AU - Seiringer, Robert ID - 14662 IS - 3 JF - Journal of Spectral Theory SN - 1664-039X TI - Absence of excited eigenvalues for Fröhlich type polaron models at weak coupling VL - 13 ER - TY - JOUR AB - In order to demonstrate the stability of newly proposed iridium-based Ir2Cr(In,Sn) and IrRhCr(In,Sn) heusler alloys, we present ab-initio analysis of these alloys by examining various properties to prove their stability. The stability of these alloys can be inferred from different cohesive and formation energies as well as positive phonon frequencies. Their electronic structure results indicate that they are semi-metals in nature. The magnetic moments are computed using the Slater-Pauling formula and exhibit a high value, with the Cr atom contributing the most in all alloys. Mulliken’s charge analysis results show that our alloys contain a range of linkages, mainly ionic and covalent ones. The ductility and mechanical stability of these alloys are confirmed by elastic constants viz. Poisson’s ratio, Pugh’s ratio, and many different types of elastic moduli. AU - Gupta, Shyam Lal AU - Singh, Saurabh AU - Kumar, Sumit AU - Anupam, Unknown AU - Thakur, Samjeet Singh AU - Kumar, Ashish AU - Panwar, Sanjay AU - Diwaker, D. ID - 14652 JF - Physica B: Condensed Matter SN - 0921-4526 TI - Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys VL - 674 ER - TY - JOUR AB - Sleep plays a key role in preserving brain function, keeping the brain network in a state that ensures optimal computational capabilities. Empirical evidence indicates that such a state is consistent with criticality, where scale-free neuronal avalanches emerge. However, the relationship between sleep, emergent avalanches, and criticality remains poorly understood. Here we fully characterize the critical behavior of avalanches during sleep, and study their relationship with the sleep macro- and micro-architecture, in particular the cyclic alternating pattern (CAP). We show that avalanche size and duration distributions exhibit robust power laws with exponents approximately equal to −3/2 e −2, respectively. Importantly, we find that sizes scale as a power law of the durations, and that all critical exponents for neuronal avalanches obey robust scaling relations, which are consistent with the mean-field directed percolation universality class. Our analysis demonstrates that avalanche dynamics depends on the position within the NREM-REM cycles, with the avalanche density increasing in the descending phases and decreasing in the ascending phases of sleep cycles. Moreover, we show that, within NREM sleep, avalanche occurrence correlates with CAP activation phases, particularly A1, which are the expression of slow wave sleep propensity and have been proposed to be beneficial for cognitive processes. The results suggest that neuronal avalanches, and thus tuning to criticality, actively contribute to sleep development and play a role in preserving network function. Such findings, alongside characterization of the universality class for avalanches, open new avenues to the investigation of functional role of criticality during sleep with potential clinical application.Significance statementWe fully characterize the critical behavior of neuronal avalanches during sleep, and show that avalanches follow precise scaling laws that are consistent with the mean-field directed percolation universality class. The analysis provides first evidence of a functional relationship between avalanche occurrence, slow-wave sleep dynamics, sleep stage transitions and occurrence of CAP phase A during NREM sleep. Because CAP is considered one of the major guardians of NREM sleep that allows the brain to dynamically react to external perturbation and contributes to the cognitive consolidation processes occurring in sleep, our observations suggest that neuronal avalanches at criticality are associated with flexible response to external inputs and to cognitive processes, a key assumption of the critical brain hypothesis. AU - Scarpetta, Silvia AU - Morrisi, Niccolò AU - Mutti, Carlotta AU - Azzi, Nicoletta AU - Trippi, Irene AU - Ciliento, Rosario AU - Apicella, Ilenia AU - Messuti, Giovanni AU - Angiolelli, Marianna AU - Lombardi, Fabrizio AU - Parrino, Liborio AU - Vaudano, Anna Elisabetta ID - 12487 IS - 10 JF - iScience TI - Criticality of neuronal avalanches in human sleep and their relationship with sleep macro- and micro-architecture VL - 26 ER -