TY - GEN AB - This is associated with our paper "Plant size, latitude, and phylogeny explain within-population variability in herbivory" published in Science. AU - Wetzel, William ID - 14579 TI - HerbVar-Network/HV-Large-Patterns-MS-public: v1.0.0 ER - TY - JOUR AB - Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform–specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration. AU - Fäßler, Florian AU - Javoor, Manjunath AU - Datler, Julia AU - Döring, Hermann AU - Hofer, Florian AU - Dimchev, Georgi A AU - Hodirnau, Victor-Valentin AU - Faix, Jan AU - Rottner, Klemens AU - Schur, Florian KM ID - 12334 IS - 3 JF - Science Advances KW - Multidisciplinary SN - 2375-2548 TI - ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning VL - 9 ER - TY - DATA AB - Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform–specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration. AU - Schur, Florian KM ID - 14562 TI - Research data of the publication "ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning" ER - TY - COMP AB - A precise quantitative description of the ultrastructural characteristics underlying biological mechanisms is often key to their understanding. This is particularly true for dynamic extra- and intracellular filamentous assemblies, playing a role in cell motility, cell integrity, cytokinesis, tissue formation and maintenance. For example, genetic manipulation or modulation of actin regulatory proteins frequently manifests in changes of the morphology, dynamics, and ultrastructural architecture of actin filament-rich cell peripheral structures, such as lamellipodia or filopodia. However, the observed ultrastructural effects often remain subtle and require sufficiently large datasets for appropriate quantitative analysis. The acquisition of such large datasets has been enabled by recent advances in high-throughput cryo-electron tomography (cryo-ET) methods. This also necessitates the development of complementary approaches to maximize the extraction of relevant biological information. We have developed a computational toolbox for the semi-automatic quantification of segmented and vectorized fila- mentous networks from pre-processed cryo-electron tomograms, facilitating the analysis and cross-comparison of multiple experimental conditions. GUI-based components simplify the processing of data and allow users to obtain a large number of ultrastructural parameters describing filamentous assemblies. We demonstrate the feasibility of this workflow by analyzing cryo-ET data of untreated and chemically perturbed branched actin filament networks and that of parallel actin filament arrays. In principle, the computational toolbox presented here is applicable for data analysis comprising any type of filaments in regular (i.e. parallel) or random arrangement. We show that it can ease the identification of key differences between experimental groups and facilitate the in-depth analysis of ultrastructural data in a time-efficient manner. AU - Dimchev, Georgi A AU - Amiri, Behnam AU - Fäßler, Florian AU - Falcke, Martin AU - Schur, Florian KM ID - 14502 KW - cryo-electron tomography KW - actin cytoskeleton KW - toolbox TI - Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data ER - TY - JOUR AB - Motile cells moving in multicellular organisms encounter microenvironments of locally heterogeneous mechanochemical composition. Individual compositional parameters like chemotactic signals, adhesiveness, and pore sizes are well known to be sensed by motile cells, providing individual guidance cues for cellular pathfinding. However, motile cells encounter diverse mechanochemical signals at the same time, raising the question of how cells respond to locally diverse and potentially competing signals on their migration routes. Here, we reveal that motile amoeboid cells require nuclear repositioning, termed nucleokinesis, for adaptive pathfinding in heterogeneous mechanochemical microenvironments. Using mammalian immune cells and the amoebaDictyostelium discoideum, we discover that frequent, rapid and long-distance nucleokinesis is a basic component of amoeboid pathfinding, enabling cells to reorientate quickly between locally competing cues. Amoeboid nucleokinesis comprises a two-step cell polarity switch and is driven by myosin II-forces, sliding the nucleus from a ‘losing’ to the ‘winning’ leading edge to re-adjust the nuclear to the cellular path. Impaired nucleokinesis distorts fast path adaptions and causes cellular arrest in the microenvironment. Our findings establish that nucleokinesis is required for amoeboid cell navigation. Given that motile single-cell amoebae, many immune cells, and some cancer cells utilize an amoeboid migration strategy, these results suggest that amoeboid nucleokinesis underlies cellular navigation during unicellular biology, immunity, and disease. AU - Kroll, Janina AU - Hauschild, Robert AU - Kuznetcov, Arthur AU - Stefanowski, Kasia AU - Hermann, Monika D. AU - Merrin, Jack AU - Shafeek, Lubuna B AU - Müller-Taubenberger, Annette AU - Renkawitz, Jörg ID - 13342 JF - EMBO Journal SN - 0261-4189 TI - Adaptive pathfinding by nucleokinesis during amoeboid migration ER - TY - JOUR AB - AbstractEndomembrane damage represents a form of stress that is detrimental for eukaryotic cells1,2. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis3–7. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. Here, by combining in vitro and in cellulo studies with computational modelling we uncover a biological function for stress granules whereby these biomolecular condensates form rapidly at endomembrane damage sites and act as a plug that stabilizes the ruptured membrane. Functionally, we demonstrate that stress granule formation and membrane stabilization enable efficient repair of damaged endolysosomes, through both ESCRT (endosomal sorting complex required for transport)-dependent and independent mechanisms. We also show that blocking stress granule formation in human macrophages creates a permissive environment for Mycobacterium tuberculosis, a human pathogen that exploits endomembrane damage to survive within the host. AU - Bussi, Claudio AU - Mangiarotti, Agustín AU - Vanhille-Campos, Christian Eduardo AU - Aylan, Beren AU - Pellegrino, Enrica AU - Athanasiadi, Natalia AU - Fearns, Antony AU - Rodgers, Angela AU - Franzmann, Titus M. AU - Šarić, Anđela AU - Dimova, Rumiana AU - Gutierrez, Maximiliano G. ID - 14610 JF - Nature KW - Multidisciplinary SN - 0028-0836 TI - Stress granules plug and stabilize damaged endolysosomal membranes ER - TY - DATA AB - Data related to the following paper: "Stress granules plug and stabilize damaged endolysosomal membranes" (https://doi.org/10.1038/s41586-023-06726-w) Abstract: Endomembrane damage represents a form of stress that is detrimental for eukaryotic cells. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. In this work we use a minimal coarse-grained molecular dynamics system to explore how lipid vesicles undergoing poration in a protein-rich medium can be plugged and stabilised by condensate formation. The solution of proteins in and out of the vesicle is described by beads dispersed in implicit solvent. The membrane is described as a one-bead-thick fluid elastic layer of mechanical properties that mimic biological membranes. We tune the interactions between solution beads in the different compartments to capture the differences between the cytoplasmic and endosomal protein solutions and explore how the system responds to different degrees of membrane poration. We find that, in the right interaction regime, condensates form rapidly at the damage site upon solution mixing and act as a plug that prevents futher mixing and destabilisation of the vesicle. Further, when the condensate can interact with the membrane (wetting interactions) we find that it mediates pore sealing and membrane repair. This research is part of the work published in "Stress granules plug and stabilize damaged endolysosomal membranes", Bussi et al, Nature, 2023 - 10.1038/s41586-023-06726-w. AU - Vanhille-Campos, Christian Eduardo AU - Šarić, Anđela ID - 14472 TI - Stress granules plug and stabilize damaged endolysosomal membranes ER - TY - JOUR AB - Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing. AU - Cikes, Domagoj AU - Elsayad, Kareem AU - Sezgin, Erdinc AU - Koitai, Erika AU - Ferenc, Torma AU - Orthofer, Michael AU - Yarwood, Rebecca AU - Heinz, Leonhard X. AU - Sedlyarov, Vitaly AU - Darwish-Miranda, Nasser AU - Taylor, Adrian AU - Grapentine, Sophie AU - al-Murshedi, Fathiya AU - Abot, Anne AU - Weidinger, Adelheid AU - Kutchukian, Candice AU - Sanchez, Colline AU - Cronin, Shane J. F. AU - Novatchkova, Maria AU - Kavirayani, Anoop AU - Schuetz, Thomas AU - Haubner, Bernhard AU - Haas, Lisa AU - Hagelkruys, Astrid AU - Jackowski, Suzanne AU - Kozlov, Andrey AU - Jacquemond, Vincent AU - Knauf, Claude AU - Superti-Furga, Giulio AU - Rullman, Eric AU - Gustafsson, Thomas AU - McDermot, John AU - Lowe, Martin AU - Radak, Zsolt AU - Chamberlain, Jeffrey S. AU - Bakovic, Marica AU - Banka, Siddharth AU - Penninger, Josef M. ID - 12747 JF - Nature Metabolism KW - Cell Biology KW - Physiology (medical) KW - Endocrinology KW - Diabetes and Metabolism KW - Internal Medicine SN - 2522-5812 TI - PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing VL - 5 ER - TY - JOUR AB - The phonon transport mechanisms and ultralow lattice thermal conductivities (κL) in silver halide AgX (X=Cl,Br,I) compounds are not yet well understood. Herein, we study the lattice dynamics and thermal property of AgX under the framework of perturbation theory and the two-channel Wigner thermal transport model based on accurate machine learning potentials. We find that an accurate extraction of the third-order atomic force constants from largely displaced configurations is significant for the calculation of the κL of AgX, and the coherence thermal transport is also non-negligible. In AgI, however, the calculated κL still considerably overestimates the experimental values even including four-phonon scatterings. Molecular dynamics (MD) simulations using machine learning potential suggest an important role of the higher-than-fourth-order lattice anharmonicity in the low-frequency phonon linewidths of AgI at room temperature, which can be related to the simultaneous restrictions of the three- and four-phonon phase spaces. The κL of AgI calculated using MD phonon lifetimes including full-order lattice anharmonicity shows a better agreement with experiments. AU - Ouyang, Niuchang AU - Zeng, Zezhu AU - Wang, Chen AU - Wang, Qi AU - Chen, Yue ID - 14605 IS - 17 JF - Physical Review B SN - 2469-9950 TI - Role of high-order lattice anharmonicity in the phonon thermal transport of silver halide AgX (X=Cl,Br, I) VL - 108 ER - TY - CONF AB - Distributed Key Generation (DKG) is a technique to bootstrap threshold cryptosystems without a trusted party. DKG is an essential building block to many decentralized protocols such as randomness beacons, threshold signatures, Byzantine consensus, and multiparty computation. While significant progress has been made recently, existing asynchronous DKG constructions are inefficient when the reconstruction threshold is larger than one-third of the total nodes. In this paper, we present a simple and concretely efficient asynchronous DKG (ADKG) protocol among n = 3t + 1 nodes that can tolerate up to t malicious nodes and support any reconstruction threshold ℓ ≥ t. Our protocol has an expected O(κn3) communication cost, where κ is the security parameter, and only assumes the hardness of the Discrete Logarithm. The core ingredient of our ADKG protocol is an asynchronous protocol to secret share a random polynomial of degree ℓ ≥ t, which has other applications, such as asynchronous proactive secret sharing and asynchronous multiparty computation. We implement our high-threshold ADKG protocol and evaluate it using a network of up to 128 geographically distributed nodes. Our evaluation shows that our high-threshold ADKG protocol reduces the running time by 90% and bandwidth usage by 80% over the state-of-the-art. AU - Das, Sourav AU - Xiang, Zhuolun AU - Kokoris Kogias, Eleftherios AU - Ren, Ling ID - 14609 SN - 9781713879497 T2 - 32nd USENIX Security Symposium TI - Practical asynchronous high-threshold distributed key generation and distributed polynomial sampling VL - 8 ER - TY - JOUR AB - Computing the solubility of crystals in a solvent using atomistic simulations is notoriously challenging due to the complexities and convergence issues associated with free-energy methods, as well as the slow equilibration in direct-coexistence simulations. This paper introduces a molecular-dynamics workflow that simplifies and robustly computes the solubility of molecular or ionic crystals. This method is considerably more straightforward than the state-of-the-art, as we have streamlined and optimised each step of the process. Specifically, we calculate the chemical potential of the crystal using the gas-phase molecule as a reference state, and employ the S0 method to determine the concentration dependence of the chemical potential of the solute. We use this workflow to predict the solubilities of sodium chloride in water, urea polymorphs in water, and paracetamol polymorphs in both water and ethanol. Our findings indicate that the predicted solubility is sensitive to the chosen potential energy surface. Furthermore, we note that the harmonic approximation often fails for both molecular crystals and gas molecules at or above room temperature, and that the assumption of an ideal solution becomes less valid for highly soluble substances. AU - Reinhardt, Aleks AU - Chew, Pin Yu AU - Cheng, Bingqing ID - 14603 IS - 18 JF - Journal of Chemical Physics SN - 0021-9606 TI - A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals VL - 159 ER - TY - JOUR AB - Sex chromosomes have evolved independently multiple times, but why some are conserved for more than 100 million years whereas others turnover rapidly remains an open question. Here, we examine the homology of sex chromosomes across nine orders of insects, plus the outgroup springtails. We find that the X chromosome is likely homologous across insects and springtails; the only exception is in the Lepidoptera, which has lost the X and now has a ZZ/ZW sex-chromosome system. These results suggest the ancestral insect X chromosome has persisted for more than 450 million years—the oldest known sex chromosome to date. Further, we propose that the shrinking of gene content the dipteran X chromosome has allowed for a burst of sex-chromosome turnover that is absent from other speciose insect orders. AU - Toups, Melissa A AU - Vicoso, Beatriz ID - 14604 IS - 11 JF - Evolution TI - The X chromosome of insects likely predates the origin of class Insecta VL - 77 ER - TY - GEN AB - Sex chromosomes have evolved independently multiple times, but why some are conserved for more than 100 million years whereas others turnover rapidly remains an open question. Here, we examine the homology of sex chromosomes across nine orders of insects, plus the outgroup springtails. We find that the X chromosome is likely homologous across insects and springtails; the only exception is in the Lepidoptera, which has lost the X and now has a ZZ/ZW sex chromosome system. These results suggest the ancestral insect X chromosome has persisted for more than 450 million years – the oldest known sex chromosome to date. Further, we propose that the shrinking of gene content of the Dipteran X chromosome has allowed for a burst of sex-chromosome turnover that is absent from other speciose insect orders. AU - Toups, Melissa A AU - Vicoso, Beatriz ID - 14616 TI - The X chromosome of insects likely predates the origin of Class Insecta ER - TY - GEN AB - Sex chromosomes have evolved independently multiple times, but why some are conserved for more than 100 million years whereas others turnover rapidly remains an open question. Here, we examine the homology of sex chromosomes across nine orders of insects, plus the outgroup springtails. We find that the X chromosome is likely homologous across insects and springtails; the only exception is in the Lepidoptera, which has lost the X and now has a ZZ/ZW sex chromosome system. These results suggest the ancestral insect X chromosome has persisted for more than 450 million years – the oldest known sex chromosome to date. Further, we propose that the shrinking of gene content of the Dipteran X chromosome has allowed for a burst of sex-chromosome turnover that is absent from other speciose insect orders. AU - Toups, Melissa A AU - Vicoso, Beatriz ID - 14617 TI - The X chromosome of insects likely predates the origin of Class Insecta ER - TY - GEN AB - Data underlying the publication "A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals" (DOI https://doi.org/10.1063/5.0173341). AU - Cheng, Bingqing ID - 14619 TI - BingqingCheng/solubility: V1.0 ER - TY - JOUR AB - Cumulus parameterization (CP) in state‐of‐the‐art global climate models is based on the quasi‐equilibrium assumption (QEA), which views convection as the action of an ensemble of cumulus clouds, in a state of equilibrium with respect to a slowly varying atmospheric state. This view is not compatible with the organization and dynamical interactions across multiple scales of cloud systems in the tropics and progress in this research area was slow over decades despite the widely recognized major shortcomings. Novel ideas on how to represent key physical processes of moist convection‐large‐scale interaction to overcome the QEA have surged recently. The stochastic multicloud model (SMCM) CP in particular mimics the dynamical interactions of multiple cloud types that characterize organized tropical convection. Here, the SMCM is used to modify the Zhang‐McFarlane (ZM) CP by changing the way in which the bulk mass flux and bulk entrainment and detrainment rates are calculated. This is done by introducing a stochastic ensemble of plumes characterized by randomly varying detrainment level distributions based on the cloud area fraction of the SMCM. The SMCM is here extended to include shallow cumulus clouds resulting in a unified shallow‐deep CP. The new stochastic multicloud plume CP is validated against the control ZM scheme in the context of the single column Community Climate Model of the National Center for Atmospheric Research using data from both tropical ocean and midlatitude land convection. Some key features of the SMCM CP such as it capability to represent the tri‐modal nature of organized convection are emphasized. AU - Khouider, B. AU - GOSWAMI, BIDYUT B AU - Phani, R. AU - Majda, A. J. ID - 14564 IS - 11 JF - Journal of Advances in Modeling Earth Systems KW - General Earth and Planetary Sciences KW - Environmental Chemistry KW - Global and Planetary Change TI - A shallow‐deep unified stochastic mass flux cumulus parameterization in the single column community climate model VL - 15 ER - TY - JOUR AB - Experiments have shown that charge distributions of granular materials are non-Gaussian, with broad tails that indicate many particles with high charge. This observation has consequences for the behavior of granular materials in many settings, and may bear relevance to the underlying charge transfer mechanism. However, there is the unaddressed possibility that broad tails arise due to experimental uncertainties, as determining the shapes of tails is nontrivial. Here we show that measurement uncertainties can indeed account for most of the tail broadening previously observed. The clue that reveals this is that distributions are sensitive to the electric field at which they are measured; ones measured at low (high) fields have larger (smaller) tails. Accounting for sources of uncertainty, we reproduce this broadening in silico. Finally, we use our results to back out the true charge distribution without broadening, which we find is still non-Guassian, though with substantially different behavior at the tails and indicating significantly fewer highly charged particles. These results have implications in many natural settings where electrostatic interactions, especially among highly charged particles, strongly affect granular behavior. AU - Mujica, Nicolás AU - Waitukaitis, Scott R ID - 12789 IS - 3 JF - Physical Review E SN - 2470-0045 TI - Accurate determination of the shapes of granular charge distributions VL - 107 ER - TY - CONF AB - We consider a natural problem dealing with weighted packet selection across a rechargeable link, which e.g., finds applications in cryptocurrency networks. The capacity of a link (u, v) is determined by how much nodes u and v allocate for this link. Specifically, the input is a finite ordered sequence of packets that arrive in both directions along a link. Given (u, v) and a packet of weight x going from u to v, node u can either accept or reject the packet. If u accepts the packet, the capacity on link (u, v) decreases by x. Correspondingly, v’s capacity on (u, v) increases by x. If a node rejects the packet, this will entail a cost affinely linear in the weight of the packet. A link is “rechargeable” in the sense that the total capacity of the link has to remain constant, but the allocation of capacity at the ends of the link can depend arbitrarily on the nodes’ decisions. The goal is to minimise the sum of the capacity injected into the link and the cost of rejecting packets. We show that the problem is NP-hard, but can be approximated efficiently with a ratio of (1+ε)⋅(1+3–√) for some arbitrary ε>0. . AU - Schmid, Stefan AU - Svoboda, Jakub AU - Yeo, Michelle X ID - 13238 SN - 0302-9743 T2 - SIROCCO 2023: Structural Information and Communication Complexity TI - Weighted packet selection for rechargeable links in cryptocurrency networks: Complexity and approximation VL - 13892 ER - TY - THES AB - Payment channel networks are a promising approach to improve the scalability bottleneck of cryptocurrencies. Two design principles behind payment channel networks are efficiency and privacy. Payment channel networks improve efficiency by allowing users to transact in a peer-to-peer fashion along multi-hop routes in the network, avoiding the lengthy process of consensus on the blockchain. Transacting over payment channel networks also improves privacy as these transactions are not broadcast to the blockchain. Despite the influx of recent protocols built on top of payment channel networks and their analysis, a common shortcoming of many of these protocols is that they typically focus only on either improving efficiency or privacy, but not both. Another limitation on the efficiency front is that the models used to model actions, costs and utilities of users are limited or come with unrealistic assumptions. This thesis aims to address some of the shortcomings of recent protocols and algorithms on payment channel networks, particularly in their privacy and efficiency aspects. We first present a payment route discovery protocol based on hub labelling and private information retrieval that hides the route query and is also efficient. We then present a rebalancing protocol that formulates the rebalancing problem as a linear program and solves the linear program using multiparty computation so as to hide the channel balances. The rebalancing solution as output by our protocol is also globally optimal. We go on to develop more realistic models of the action space, costs, and utilities of both existing and new users that want to join the network. In each of these settings, we also develop algorithms to optimise the utility of these users with good guarantees on the approximation and competitive ratios. AU - Yeo, Michelle X ID - 14506 SN - 2663 - 337X TI - Advances in efficiency and privacy in payment channel network analysis ER - TY - CONF AB - Payment channel networks (PCNs) are a promising solution to the scalability problem of cryptocurrencies. Any two users connected by a payment channel in the network can theoretically send an unbounded number of instant, costless transactions between them. Users who are not directly connected can also transact with each other in a multi-hop fashion. In this work, we study the incentive structure behind the creation of payment channel networks, particularly from the point of view of a single user that wants to join the network. We define a utility function for a new user in terms of expected revenue, expected fees, and the cost of creating channels, and then provide constant factor approximation algorithms that optimise the utility function given a certain budget. Additionally, we take a step back from a single user to the whole network and examine the parameter spaces under which simple graph topologies form a Nash equilibrium. AU - Avarikioti, Zeta AU - Lizurej, Tomasz AU - Michalak, Tomasz AU - Yeo, Michelle X ID - 14490 SN - 9798350339864 T2 - 43rd International Conference on Distributed Computing Systems TI - Lightning creation games VL - 2023 ER -