TY - GEN
AB - We consider finite-state concurrent stochastic games, played by k>=2 players for an infinite number of rounds, where in every round, each player simultaneously and independently of the other players chooses an action, whereafter the successor state is determined by a probability distribution given by the current state and the chosen actions. We consider reachability objectives that given a target set of states require that some state in the target set is visited, and the dual safety objectives that given a target set require that only states in the target set are visited. We are interested in the complexity of stationary strategies measured by their patience, which is defined as the inverse of the smallest non-zero probability employed.
Our main results are as follows: We show that in two-player zero-sum concurrent stochastic games (with reachability objective for one player and the complementary safety objective for the other player): (i) the optimal bound on the patience of optimal and epsilon-optimal strategies, for both players is doubly exponential; and (ii) even in games with a single non-absorbing state exponential (in the number of actions) patience is necessary. In general we study the class of non-zero-sum games admitting epsilon-Nash equilibria. We show that if there is at least one player with reachability objective, then doubly-exponential patience is needed in general for epsilon-Nash equilibrium strategies, whereas in contrast if all players have safety objectives, then the optimal bound on patience for epsilon-Nash equilibrium strategies is only exponential.
AU - Chatterjee, Krishnendu
AU - Ibsen-Jensen, Rasmus
AU - Hansen, Kristoffer
ID - 5431
SN - 2664-1690
TI - The patience of concurrent stochastic games with safety and reachability objectives
ER -
TY - GEN
AB - Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom in the context of evolution.The replacement graph specifies who competes with whom for reproduction.
The vertices of the two graphs are the same, and each vertex corresponds to an individual of the population. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability.
Our main results are:
(1) We show that the qualitative question is NP-complete and the quantitative approximation question is #P-hard in the special case when the interaction and the replacement graphs coincide and even with the restriction that the resident individuals do not reproduce (which corresponds to an invading population taking over an empty structure).
(2) We show that in general the qualitative question is PSPACE-complete and the quantitative approximation question is PSPACE-hard and can be solved in exponential time.
AU - Chatterjee, Krishnendu
AU - Ibsen-Jensen, Rasmus
AU - Nowak, Martin
ID - 5432
SN - 2664-1690
TI - The complexity of evolutionary games on graphs
ER -
TY - GEN
AB - DEC-POMDPs extend POMDPs to a multi-agent setting, where several agents operate in an uncertain environment independently to achieve a joint objective. DEC-POMDPs have been studied with finite-horizon and infinite-horizon discounted-sum objectives, and there exist solvers both for exact and approximate solutions. In this work we consider Goal-DEC-POMDPs, where given a set of target states, the objective is to ensure that the target set is reached with minimal cost. We consider the indefinite-horizon (infinite-horizon with either discounted-sum, or undiscounted-sum, where absorbing goal states have zero-cost) problem. We present a new method to solve the problem that extends methods for finite-horizon DEC- POMDPs and the RTDP-Bel approach for POMDPs. We present experimental results on several examples, and show our approach presents promising results.
AU - Anonymous, 1
AU - Anonymous, 2
ID - 5434
SN - 2664-1690
TI - Optimal cost indefinite-horizon reachability in goal DEC-POMDPs
ER -
TY - GEN
AB - We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives.
There have been two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector.
We consider the problem where the goal is to optimize the expectation under the constraint that the satisfaction semantics is ensured, and thus consider a generalization that unifies the existing semantics. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensures certain probabilistic guarantee).
Our main results are algorithms for the decision problem which are always polynomial in the size of the MDP.
We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Finally, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.
AU - Chatterjee, Krishnendu
AU - Komarkova, Zuzana
AU - Kretinsky, Jan
ID - 5435
SN - 2664-1690
TI - Unifying two views on multiple mean-payoff objectives in Markov decision processes
ER -
TY - GEN
AB - Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata, nor in any other know decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata which makes it possible to express important quantitative properties such as average response time.
In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in run-time verification. We establish an almost complete decidability picture for the basic decision problems about nested weighted automata, and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 5436
SN - 2664-1690
TI - Nested weighted automata
ER -
TY - GEN
AB - We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean-payoff property, the ratio property, and the minimum initial credit for energy property.
The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth, and it is well-known that the control-flow graphs of most programs have constant treewidth. Let $n$ denote the number of nodes of a graph, $m$ the number of edges (for constant treewidth graphs $m=O(n)$) and $W$ the largest absolute value of the weights.
Our main theoretical results are as follows.
First, for constant treewidth graphs we present an algorithm that approximates the mean-payoff value within a multiplicative factor of $\epsilon$ in time $O(n \cdot \log (n/\epsilon))$ and linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we present an algorithm that for constant treewidth graphs works in time $O(n \cdot \log (|a\cdot b|))=O(n\cdot\log (n\cdot W))$, when the output is $\frac{a}{b}$, as compared to the previously best known algorithm with running time $O(n^2 \cdot \log (n\cdot W))$. Third, for the minimum initial credit problem we show that (i)~for general graphs the problem can be solved in $O(n^2\cdot m)$ time and the associated decision problem can be solved in $O(n\cdot m)$ time, improving the previous known $O(n^3\cdot m\cdot \log (n\cdot W))$ and $O(n^2 \cdot m)$ bounds, respectively; and (ii)~for constant treewidth graphs we present an algorithm that requires $O(n\cdot \log n)$ time, improving the previous known $O(n^4 \cdot \log (n \cdot W))$ bound.
We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks.
AU - Chatterjee, Krishnendu
AU - Ibsen-Jensen, Rasmus
AU - Pavlogiannis, Andreas
ID - 5437
SN - 2664-1690
TI - Faster algorithms for quantitative verification in constant treewidth graphs
ER -
TY - GEN
AB - The edit distance between two words w1, w2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1 to w2. The edit distance generalizes to languages L1, L2, where the edit distance is the minimal number k such that for every word from L1 there exists a word in L2 with edit distance at most k. We study the edit distance computation problem between pushdown automata and their subclasses.
The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for deciding whether, for a given threshold k, the edit distance from a pushdown automaton to a finite automaton is at most k.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Ibsen-Jensen, Rasmus
AU - Otop, Jan
ID - 5438
SN - 2664-1690
TI - Edit distance for pushdown automata
ER -
TY - GEN
AB - The target discounted-sum problem is the following: Given a rational discount factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0 w(i)λi equals t? The problem turns out to relate to many fields of mathematics and computer science, and its decidability question is surprisingly hard to solve. We solve the finite version of the problem, and show the hardness of the infinite version, linking it to various areas and open problems in mathematics and computer science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations of the Cantor set. We provide some partial results to the infinite version, among which are solutions to its restriction to eventually-periodic sequences and to the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving some open problems on discounted-sum automata, among which are the exact-value problem for nondeterministic automata over finite words and the universality and inclusion problems for functional automata.
AU - Boker, Udi
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 5439
SN - 2664-1690
TI - The target discounted-sum problem
ER -
TY - GEN
AB - Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom for payoff in the context of evolution. The replacement graph specifies who competes with whom for reproduction. The vertices of the two graphs are the same, and each vertex corresponds to an individual of the population. The fitness (or the reproductive rate) is a non-negative number, and depends on the payoff. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability. Our main results are as follows: First, we consider a special case of the general problem, where the residents do not reproduce. We show that the qualitative question is NP-complete, and the quantitative approximation question is #P-complete, and the hardness results hold even in the special case where the interaction and the replacement graphs coincide. Second, we show that in general both the qualitative and the quantitative approximation questions are PSPACE-complete. The PSPACE-hardness result for quantitative approximation holds even when the fitness is always positive.
AU - Chatterjee, Krishnendu
AU - Ibsen-Jensen, Rasmus
AU - Nowak, Martin
ID - 5440
SN - 2664-1690
TI - The complexity of evolutionary games on graphs
ER -
TY - GEN
AB - We study algorithmic questions for concurrent systems where the transitions are labeled from a complete, closed semiring, and path properties are algebraic with semiring operations. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural problems that arise in program analysis. We consider that each component of the concurrent system is a graph with constant treewidth, a property satisfied by the controlflow graphs of most programs. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis. The study of multiple queries allows us to consider the tradeoff between the resource usage of the one-time preprocessing and for each individual query. The traditional approach constructs the product graph of all components and applies the best-known graph algorithm on the product. In this approach, even the answer to a single query requires the transitive closure (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time. Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time, each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results showing that the worst-case running time of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (i.e., improving the worst-case bound for the shortest path problem in general graphs). Preliminary experimental results show that our algorithms perform favorably on several benchmarks.
AU - Chatterjee, Krishnendu
AU - Ibsen-Jensen, Rasmus
AU - Goharshady, Amir
AU - Pavlogiannis, Andreas
ID - 5441
SN - 2664-1690
TI - Algorithms for algebraic path properties in concurrent systems of constant treewidth components
ER -
TY - GEN
AB - We study algorithmic questions for concurrent systems where the transitions are labeled from a complete, closed semiring, and path properties are algebraic with semiring operations. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural properties that arise in program analysis.
We consider that each component of the concurrent system is a graph with constant treewidth, and it is known that the controlflow graphs of most programs have constant treewidth. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis problems (e.g., alias analysis). The study of multiple queries allows us to consider the tradeoff between the resource usage of the \emph{one-time} preprocessing and for \emph{each individual} query. The traditional approaches construct the product graph of all components and apply the best-known graph algorithm on the product. In the traditional approach, even the answer to a single query requires the transitive closure computation (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time.
Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time,
each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results that show that the worst-case running times of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (such as improving
the worst-case bounds for the shortest path problem in general graphs whose current best-known bound has not been improved in five decades). Finally, we provide a prototype implementation of our algorithms which significantly outperforms the existing algorithmic methods on several benchmarks.
AU - Anonymous, 1
AU - Anonymous, 2
AU - Anonymous, 3
AU - Anonymous, 4
ID - 5442
SN - 2664-1690
TI - Algorithms for algebraic path properties in concurrent systems of constant treewidth components
ER -
TY - GEN
AB - POMDPs are standard models for probabilistic planning problems, where an agent interacts with an uncertain environment. We study the problem of almost-sure reachability, where given a set of target states, the question is to decide whether there is a policy to ensure that the target set is reached with probability 1 (almost-surely). While in general the problem is EXPTIME-complete, in many practical cases policies with a small amount of memory suffice. Moreover, the existing solution to the problem is explicit, which first requires to construct explicitly an exponential reduction to a belief-support MDP. In this work, we first study the existence of observation-stationary strategies, which is NP-complete, and then small-memory strategies. We present a symbolic algorithm by an efficient encoding to SAT and using a SAT solver for the problem. We report experimental results demonstrating the scalability of our symbolic (SAT-based) approach.
AU - Chatterjee, Krishnendu
AU - Chmelik, Martin
AU - Davies, Jessica
ID - 5443
SN - 2664-1690
TI - A symbolic SAT-based algorithm for almost-sure reachability with small strategies in POMDPs
ER -
TY - GEN
AB - A comprehensive understanding of the clonal evolution of cancer is critical for understanding neoplasia. Genome-wide sequencing data enables evolutionary studies at unprecedented depth. However, classical phylogenetic methods often struggle with noisy sequencing data of impure DNA samples and fail to detect subclones that have different evolutionary trajectories. We have developed a tool, called Treeomics, that allows us to reconstruct the phylogeny of a cancer with commonly available sequencing technologies. Using Bayesian inference and Integer Linear Programming, robust phylogenies consistent with the biological processes underlying cancer evolution were obtained for pancreatic, ovarian, and prostate cancers. Furthermore, Treeomics correctly identified sequencing artifacts such as those resulting from low statistical power; nearly 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumor heterogeneity among distinct samples. Importantly, we show that the evolutionary trees generated with Treeomics are mathematically optimal.
AU - Reiter, Johannes
AU - Makohon-Moore, Alvin
AU - Gerold, Jeffrey
AU - Bozic, Ivana
AU - Chatterjee, Krishnendu
AU - Iacobuzio-Donahue, Christine
AU - Vogelstein, Bert
AU - Nowak, Martin
ID - 5444
SN - 2664-1690
TI - Reconstructing robust phylogenies of metastatic cancers
ER -
TY - DATA
AB - This repository contains the experimental part of the CAV 2015 publication Counterexample Explanation by Learning Small Strategies in Markov Decision Processes.
We extended the probabilistic model checker PRISM to represent strategies of Markov Decision Processes as Decision Trees.
The archive contains a java executable version of the extended tool (prism_dectree.jar) together with a few examples of the PRISM benchmark library.
To execute the program, please have a look at the README.txt, which provides instructions and further information on the archive.
The archive contains scripts that (if run often enough) reproduces the data presented in the publication.
AU - Fellner, Andreas
ID - 5549
KW - Markov Decision Process
KW - Decision Tree
KW - Probabilistic Verification
KW - Counterexample Explanation
TI - Experimental part of CAV 2015 publication: Counterexample Explanation by Learning Small Strategies in Markov Decision Processes
ER -
TY - JOUR
AB - We present here the first integer-based algorithm for constructing a well-defined lattice sphere specified by integer radius and integer center. The algorithm evolves from a unique correspondence between the lattice points comprising the sphere and the distribution of sum of three square numbers in integer intervals. We characterize these intervals to derive a useful set of recurrences, which, in turn, aids in efficient computation. Each point of the lattice sphere is determined by resorting to only a few primitive operations in the integer domain. The symmetry of its quadraginta octants provides an added advantage by confining the computation to its prima quadraginta octant. Detailed theoretical analysis and experimental results have been furnished to demonstrate its simplicity and elegance.
AU - Biswas, Ranita
AU - Bhowmick, Partha
ID - 5804
IS - 4
JF - Theoretical Computer Science
SN - 0304-3975
TI - From prima quadraginta octant to lattice sphere through primitive integer operations
VL - 624
ER -
TY - JOUR
AU - Biswas, Ranita
AU - Bhowmick, Partha
ID - 5807
IS - 11
JF - Theoretical Computer Science
SN - 0304-3975
TI - On different topological classes of spherical geodesic paths and circles inZ3
VL - 605
ER -
TY - JOUR
AU - Biswas, Ranita
AU - Bhowmick, Partha
ID - 5808
IS - 6-8
JF - The Visual Computer
SN - 0178-2789
TI - Layer the sphere
VL - 31
ER -
TY - JOUR
AB - Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.
AU - Sainsbury, Sarah
AU - Bernecky, Carrie A
AU - Cramer, Patrick
ID - 594
IS - 3
JF - Nature Reviews Molecular Cell Biology
TI - Structural basis of transcription initiation by RNA polymerase II
VL - 16
ER -
TY - JOUR
AB - Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called “BAG,” “AFD,” and “ASE” that respond to CO2 stimuli. Using in vivo Ca2+ imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca2+. In contrast, glial sheath cells harboring the sensory endings of C. elegans’ major chemosensory neurons exhibit strong and sustained decreases in Ca2+ in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry.
AU - Fenk, Lorenz A.
AU - de Bono, Mario
ID - 6118
IS - 27
JF - Proceedings of the National Academy of Sciences
SN - 0027-8424
TI - Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity
VL - 112
ER -
TY - JOUR
AB - Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed.
AU - Laurent, Patrick
AU - Soltesz, Zoltan
AU - Nelson, Geoffrey M
AU - Chen, Changchun
AU - Arellano-Carbajal, Fausto
AU - Levy, Emmanuel
AU - de Bono, Mario
ID - 6120
JF - eLife
SN - 2050-084X
TI - Decoding a neural circuit controlling global animal state in C. elegans
VL - 4
ER -
TY - JOUR
AB - The osteoclast-associated receptor (OSCAR) is a collagen-binding immune receptor with important roles in dendritic cell maturation and activation of inflammatory monocytes as well as in osteoclastogenesis. The crystal structure of the OSCAR ectodomain is presented, both free and in complex with a consensus triple-helical peptide (THP). The structures revealed a collagen-binding site in each immunoglobulin-like domain (D1 and D2). The THP binds near a predicted collagen-binding groove in D1, but a more extensive interaction with D2 is facilitated by the unusually wide D1-D2 interdomain angle in OSCAR. Direct binding assays, combined with site-directed mutagenesis, confirm that the primary collagen-binding site in OSCAR resides in D2, in marked contrast to the related collagen receptors, glycoprotein VI (GPVI) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). Monomeric OSCAR D1D2 binds to the consensus THP with a KD of 28 µM measured in solution, but shows a higher affinity (KD 1.5 μM) when binding to a solid-phase THP, most likely due to an avidity effect. These data suggest a 2-stage model for the interaction of OSCAR with a collagen fibril, with transient, low-affinity interactions initiated by the membrane-distal D1, followed by firm adhesion to the primary binding site in D2.
AU - Zhou, Long
AU - Hinerman, J. M.
AU - Blaszczyk, M.
AU - Miller, J. L. C.
AU - Conrady, D. G.
AU - Barrow, A. D.
AU - Chirgadze, D. Y.
AU - Bihan, D.
AU - Farndale, R. W.
AU - Herr, A. B.
ID - 6507
IS - 5
JF - Blood
SN - 0006-4971
TI - Structural basis for collagen recognition by the immune receptor OSCAR
VL - 127
ER -
TY - JOUR
AB - Motivated by the significant performance gains which polar codes experience under successive cancellation list decoding, their scaling exponent is studied as a function of the list size. In particular, the error probability is fixed, and the tradeoff between the block length and back-off from capacity is analyzed. A lower bound is provided on the error probability under MAP decoding with list size L for any binary-input memoryless output-symmetric channel and for any class of linear codes such that their minimum distance is unbounded as the block length grows large. Then, it is shown that under MAP decoding, although the introduction of a list can significantly improve the involved constants, the scaling exponent itself, i.e., the speed at which capacity is approached, stays unaffected for any finite list size. In particular, this result applies to polar codes, since their minimum distance tends to infinity as the block length increases. A similar result is proved for genie-aided successive cancellation decoding when transmission takes place over the binary erasure channel, namely, the scaling exponent remains constant for any fixed number of helps from the genie. Note that since genie-aided successive cancellation decoding might be strictly worse than successive cancellation list decoding, the problem of establishing the scaling exponent of the latter remains open.
AU - Mondelli, Marco
AU - Hassani, Hamed
AU - Urbanke, Rudiger
ID - 6736
IS - 9
JF - IEEE Transactions on Information Theory
TI - Scaling exponent of list decoders with applications to polar codes
VL - 61
ER -
TY - JOUR
AB - This paper presents polar coding schemes for the two-user discrete memoryless broadcast channel (DM-BC) which achieve Marton's region with both common and private messages. This is the best achievable rate region known to date, and it is tight for all classes of two-user DM-BCs whose capacity regions are known. To accomplish this task, we first construct polar codes for both the superposition as well as binning strategy. By combining these two schemes, we obtain Marton's region with private messages only. Finally, we show how to handle the case of common information. The proposed coding schemes possess the usual advantages of polar codes, i.e., they have low encoding and decoding complexity and a superpolynomial decay rate of the error probability. We follow the lead of Goela, Abbe, and Gastpar, who recently introduced polar codes emulating the superposition and binning schemes. To align the polar indices, for both schemes, their solution involves some degradedness constraints that are assumed to hold between the auxiliary random variables and channel outputs. To remove these constraints, we consider the transmission of k blocks and employ a chaining construction that guarantees the proper alignment of the polarized indices. The techniques described in this paper are quite general, and they can be adopted to many other multiterminal scenarios whenever there polar indices need to be aligned.
AU - Mondelli, Marco
AU - Hassani, Hamed
AU - Sason, Igal
AU - Urbanke, Rudiger
ID - 6737
IS - 2
JF - IEEE Transactions on Information Theory
TI - Achieving Marton’s region for broadcast channels using polar codes
VL - 61
ER -
TY - JOUR
AB - Torque magnetization measurements on YBa2Cu3Oy (YBCO) at doping y=6.67 (p=0.12), in dc fields (B) up to 33 T and temperatures down to 4.5 K, show that weak diamagnetism persists above the extrapolated irreversibility field Hirr(T=0)≈24 T. The differential susceptibility dM/dB, however, is more rapidly suppressed for B≳16 T than expected from the properties of the low field superconducting state, and saturates at a low value for fields B≳24 T. In addition, torque measurements on a p=0.11 YBCO crystal in pulsed field up to 65 T and temperatures down to 8 K show similar behavior, with no additional features at higher fields. We offer two candidate scenarios to explain these observations: (a) superconductivity survives but is heavily suppressed at high field by competition with charge-density-wave (CDW) order; (b) static superconductivity disappears near 24 T and is followed by a region of fluctuating superconductivity, which causes dM/dB to saturate at high field. The diamagnetic signal observed above 50 T for the p=0.11 crystal at 40 K and below may be caused by changes in the normal state susceptibility rather than bulk or fluctuating superconductivity. There will be orbital (Landau) diamagnetism from electron pockets and possibly a reduction in spin susceptibility caused by the stronger three-dimensional ordered CDW.
AU - Yu, Jing Fei
AU - Ramshaw, B. J.
AU - Kokanović, I.
AU - Modic, Kimberly A
AU - Harrison, N.
AU - Day, James
AU - Liang, Ruixing
AU - Hardy, W. N.
AU - Bonn, D. A.
AU - McCollam, A.
AU - Julian, S. R.
AU - Cooper, J. R.
ID - 7070
IS - 18
JF - Physical Review B
SN - 1098-0121
TI - Magnetization of underdoped YBa2Cu3Oy above the irreversibility field
VL - 92
ER -
TY - JOUR
AB - In this paper, we develop an energy method to study finite speed of propagation and waiting time phenomena for the stochastic porous media equation with linear multiplicative noise in up to three spatial dimensions. Based on a novel iteration technique and on stochastic counterparts of weighted integral estimates used in the deterministic setting, we formulate a sufficient criterion on the growth of initial data which locally guarantees a waiting time phenomenon to occur almost surely. Up to a logarithmic factor, this criterion coincides with the optimal criterion known from the deterministic setting. Our technique can be modified to prove finite speed of propagation as well.
AU - Julian Fischer
AU - Grün, Günther
ID - 1311
IS - 1
JF - SIAM Journal on Mathematical Analysis
TI - Finite speed of propagation and waiting times for the stochastic porous medium equation: A unifying approach
VL - 47
ER -
TY - JOUR
AB - We present an algorithm for the derivation of lower bounds on support propagation for a certain class of nonlinear parabolic equations. We proceed by combining the ideas in some recent papers by the author with the algorithmic construction of entropies due to Jüngel and Matthes, reducing the problem to a quantifier elimination problem. Due to its complexity, the quantifier elimination problem cannot be solved by present exact algorithms. However, by tackling the quantifier elimination problem numerically, in the case of the thin-film equation we are able to improve recent results by the author in the regime of strong slippage n ∈ (1, 2). For certain second-order doubly nonlinear parabolic equations, we are able to extend the known lower bounds on free boundary propagation to the case of irregular oscillatory initial data. Finally, we apply our method to a sixth-order quantum drift-diffusion equation, resulting in an upper bound on the time which it takes for the support to reach every point in the domain.
AU - Julian Fischer
ID - 1313
IS - 1
JF - Interfaces and Free Boundaries
TI - Estimates on front propagation for nonlinear higher-order parabolic equations: An algorithmic approach
VL - 17
ER -
TY - JOUR
AB - We derive a posteriori estimates for the modeling error caused by the assumption of perfect incompressibility in the incompressible Navier-Stokes equation: Real fluids are never perfectly incompressible but always feature at least some low amount of compressibility. Thus, their behavior is described by the compressible Navier-Stokes equation, the pressure being a steep function of the density. We rigorously estimate the difference between an approximate solution to the incompressible Navier-Stokes equation and any weak solution to the compressible Navier-Stokes equation in the sense of Lions (without assuming any additional regularity of solutions). Heuristics and numerical results suggest that our error estimates are of optimal order in the case of "well-behaved" flows and divergence-free approximations of the velocity field. Thus, we expect our estimates to justify the idealization of fluids as perfectly incompressible also in practical situations.
AU - Fischer, Julian L
ID - 1314
IS - 5
JF - SIAM Journal on Numerical Analysis
TI - A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier-Stokes equation
VL - 53
ER -
TY - JOUR
AB - In the present work we introduce the notion of a renormalized solution for reaction–diffusion systems with entropy-dissipating reactions. We establish the global existence of renormalized solutions. In the case of integrable reaction terms our notion of a renormalized solution reduces to the usual notion of a weak solution. Our existence result in particular covers all reaction–diffusion systems involving a single reversible reaction with mass-action kinetics and (possibly species-dependent) Fick-law diffusion; more generally, it covers the case of systems of reversible reactions with mass-action kinetics which satisfy the detailed balance condition. For such equations the existence of any kind of solution in general was an open problem, thereby motivating the study of renormalized solutions.
AU - Julian Fischer
ID - 1316
IS - 1
JF - Archive for Rational Mechanics and Analysis
TI - Global existence of renormalized solutions to entropy-dissipating reaction–diffusion systems
VL - 218
ER -
TY - JOUR
AB - In plants, vacuolar H+-ATPase (V-ATPase) activity acidifies both the trans-Golgi network/early endosome (TGN/EE) and the vacuole. This dual V-ATPase function has impeded our understanding of how the pH homeostasis within the plant TGN/EE controls exo- and endocytosis. Here, we show that the weak V-ATPase mutant deetiolated3 (det3) displayed a pH increase in the TGN/EE, but not in the vacuole, strongly impairing secretion and recycling of the brassinosteroid receptor and the cellulose synthase complexes to the plasma membrane, in contrast to mutants lacking tonoplast-localized V-ATPase activity only. The brassinosteroid insensitivity and the cellulose deficiency defects in det3 were tightly correlated with reduced Golgi and TGN/EE motility. Thus, our results provide strong evidence that acidification of the TGN/EE, but not of the vacuole, is indispensable for functional secretion and recycling in plants.
AU - Yu, Luo
AU - Scholl, Stefan
AU - Doering, Anett
AU - Yi, Zhang
AU - Irani, Niloufer
AU - Di Rubbo, Simone
AU - Neumetzler, Lutz
AU - Krishnamoorthy, Praveen
AU - Van Houtte, Isabelle
AU - Mylle, Evelien
AU - Bischoff, Volker
AU - Vernhettes, Samantha
AU - Winne, Johan
AU - Friml, Jirí
AU - Stierhof, York
AU - Schumacher, Karin
AU - Persson, Staffan
AU - Russinova, Eugenia
ID - 1383
IS - 7
JF - Nature Plants
TI - V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis
VL - 1
ER -
TY - THES
AB - This thesis is concerned with the computation and approximation of intrinsic volumes. Given a smooth body M and a certain digital approximation of it, we develop algorithms to approximate various intrinsic volumes of M using only measurements taken from its digital approximations. The crucial idea behind our novel algorithms is to link the recent theory of persistent homology to the theory of intrinsic volumes via the Crofton formula from integral geometry and, in particular, via Euler characteristic computations. Our main contributions are a multigrid convergent digital algorithm to compute the first intrinsic volume of a solid body in R^n as well as an appropriate integration pipeline to approximate integral-geometric integrals defined over the Grassmannian manifold.
AU - Pausinger, Florian
ID - 1399
TI - On the approximation of intrinsic volumes
ER -
TY - THES
AB - Cancer results from an uncontrolled growth of abnormal cells. Sequentially accumulated genetic and epigenetic alterations decrease cell death and increase cell replication. We used mathematical models to quantify the effect of driver gene mutations. The recently developed targeted therapies can lead to dramatic regressions. However, in solid cancers, clinical responses are often short-lived because resistant cancer cells evolve. We estimated that approximately 50 different mutations can confer resistance to a typical targeted therapeutic agent. We find that resistant cells are likely to be present in expanded subclones before the start of the treatment. The dominant strategy to prevent the evolution of resistance is combination therapy. Our analytical results suggest that in most patients, dual therapy, but not monotherapy, can result in long-term disease control. However, long-term control can only occur if there are no possible mutations in the genome that can cause cross-resistance to both drugs. Furthermore, we showed that simultaneous therapy with two drugs is much more likely to result in long-term disease control than sequential therapy with the same drugs. To improve our understanding of the underlying subclonal evolution we reconstruct the evolutionary history of a patient's cancer from next-generation sequencing data of spatially-distinct DNA samples. Using a quantitative measure of genetic relatedness, we found that pancreatic cancers and their metastases demonstrated a higher level of relatedness than that expected for any two cells randomly taken from a normal tissue. This minimal amount of genetic divergence among advanced lesions indicates that genetic heterogeneity, when quantitatively defined, is not a fundamental feature of the natural history of untreated pancreatic cancers. Our newly developed, phylogenomic tool Treeomics finds evidence for seeding patterns of metastases and can directly be used to discover rules governing the evolution of solid malignancies to transform cancer into a more predictable disease.
AU - Reiter, Johannes
ID - 1400
TI - The subclonal evolution of cancer
ER -
TY - CONF
AB - We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in twosample hypothesis testing on synthetic as well as real-world data.
AU - Kwitt, Roland
AU - Huber, Stefan
AU - Niethammer, Marc
AU - Lin, Weili
AU - Bauer, Ulrich
ID - 1424
TI - Statistical topological data analysis-A kernel perspective
VL - 28
ER -
TY - CONF
AB - In this work we aim at extending the theoretical foundations of lifelong learning. Previous work analyzing this scenario is based on the assumption that learning tasks are sampled i.i.d. from a task environment or limited to strongly constrained data distributions. Instead, we study two scenarios when lifelong learning is possible, even though the observed tasks do not form an i.i.d. sample: first, when they are sampled from the same environment, but possibly with dependencies, and second, when the task environment is allowed to change over time in a consistent way. In the first case we prove a PAC-Bayesian theorem that can be seen as a direct generalization of the analogous previous result for the i.i.d. case. For the second scenario we propose to learn an inductive bias in form of a transfer procedure. We present a generalization bound and show on a toy example how it can be used to identify a beneficial transfer algorithm.
AU - Pentina, Anastasia
AU - Lampert, Christoph
ID - 1425
TI - Lifelong learning with non-i.i.d. tasks
VL - 2015
ER -
TY - CONF
AB - Evolutionary algorithms (EAs) form a popular optimisation paradigm inspired by natural evolution. In recent years the field of evolutionary computation has developed a rigorous analytical theory to analyse their runtime on many illustrative problems. Here we apply this theory to a simple model of natural evolution. In the Strong Selection Weak Mutation (SSWM) evolutionary regime the time between occurrence of new mutations is much longer than the time it takes for a new beneficial mutation to take over the population. In this situation, the population only contains copies of one genotype and evolution can be modelled as a (1+1)-type process where the probability of accepting a new genotype (improvements or worsenings) depends on the change in fitness. We present an initial runtime analysis of SSWM, quantifying its performance for various parameters and investigating differences to the (1+1) EA. We show that SSWM can have a moderate advantage over the (1+1) EA at crossing fitness valleys and study an example where SSWM outperforms the (1+1) EA by taking advantage of information on the fitness gradient.
AU - Paixao, Tiago
AU - Sudholt, Dirk
AU - Heredia, Jorge
AU - Trubenova, Barbora
ID - 1430
T2 - Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
TI - First steps towards a runtime comparison of natural and artificial evolution
ER -
TY - GEN
AB - In this paper we survey geometric and arithmetic techniques to study the cohomology of semiprojective hyperkähler manifolds including toric hyperkähler varieties, Nakajima quiver varieties and moduli spaces of Higgs bundles on Riemann surfaces. The resulting formulae for their Poincaré polynomials are combinatorial and representation theoretical in nature. In particular we will look at their Betti numbers and will establish some results and state some expectations on their asymptotic shape.
AU - Tamas Hausel
AU - Rodríguez Villegas, Fernando
ID - 1473
IS - 370
T2 - Asterisque
TI - Cohomology of large semiprojective hyperkähler varieties
VL - 2015
ER -
TY - CONF
AB - Cryptographic access control offers selective access to encrypted data via a combination of key management and functionality-rich cryptographic schemes, such as attribute-based encryption. Using this approach, publicly available meta-data may inadvertently leak information on the access policy that is enforced by cryptography, which renders cryptographic access control unusable in settings where this information is highly sensitive. We begin to address this problem by presenting rigorous definitions for policy privacy in cryptographic access control. For concreteness we set our results in the model of Role-Based Access Control (RBAC), where we identify and formalize several different flavors of privacy, however, our framework should serve as inspiration for other models of access control. Based on our insights we propose a new system which significantly improves on the privacy properties of state-of-the-art constructions. Our design is based on a novel type of privacy-preserving attribute-based encryption, which we introduce and show how to instantiate. We present our results in the context of a cryptographic RBAC system by Ferrara et al. (CSF'13), which uses cryptography to control read access to files, while write access is still delegated to trusted monitors. We give an extension of the construction that permits cryptographic control over write access. Our construction assumes that key management uses out-of-band channels between the policy enforcer and the users but eliminates completely the need for monitoring read/write access to the data.
AU - Ferrara, Anna
AU - Fuchsbauer, Georg
AU - Liu, Bin
AU - Warinschi, Bogdan
ID - 1474
TI - Policy privacy in cryptographic access control
ER -
TY - CONF
AB - Simple board games, like Tic-Tac-Toe and CONNECT-4, play an important role not only in the development of mathematical and logical skills, but also in the emotional and social development. In this paper, we address the problem of generating targeted starting positions for such games. This can facilitate new approaches for bringing novice players to mastery, and also leads to discovery of interesting game variants. We present an approach that generates starting states of varying hardness levels for player 1 in a two-player board game, given rules of the board game, the desired number of steps required for player 1 to win, and the expertise levels of the two players. Our approach leverages symbolic methods and iterative simulation to efficiently search the extremely large state space. We present experimental results that include discovery of states of varying hardness levels for several simple grid-based board games. The presence of such states for standard game variants like 4×4 Tic-Tac-Toe opens up new games to be played that have never been played as the default start state is heavily biased.
AU - Ahmed, Umair
AU - Chatterjee, Krishnendu
AU - Gulwani, Sumit
ID - 1481
T2 - Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
TI - Automatic generation of alternative starting positions for simple traditional board games
VL - 2
ER -
TY - CONF
AB - Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes.
AU - Reininghaus, Jan
AU - Huber, Stefan
AU - Bauer, Ulrich
AU - Kwitt, Roland
ID - 1483
TI - A stable multi-scale kernel for topological machine learning
ER -
TY - CONF
AB - Motivated by biological questions, we study configurations of equal-sized disks in the Euclidean plane that neither pack nor cover. Measuring the quality by the probability that a random point lies in exactly one disk, we show that the regular hexagonal grid gives the maximum among lattice configurations.
AU - Edelsbrunner, Herbert
AU - Iglesias Ham, Mabel
AU - Kurlin, Vitaliy
ID - 1495
T2 - Proceedings of the 27th Canadian Conference on Computational Geometry
TI - Relaxed disk packing
VL - 2015-August
ER -
TY - JOUR
AB - Detecting allelic biases from high-throughput sequencing data requires an approach that maximises sensitivity while minimizing false positives. Here, we present Allelome.PRO, an automated user-friendly bioinformatics pipeline, which uses high-throughput sequencing data from reciprocal crosses of two genetically distinct mouse strains to detect allele-specific expression and chromatin modifications. Allelome.PRO extends approaches used in previous studies that exclusively analyzed imprinted expression to give a complete picture of the ‘allelome’ by automatically categorising the allelic expression of all genes in a given cell type into imprinted, strain-biased, biallelic or non-informative. Allelome.PRO offers increased sensitivity to analyze lowly expressed transcripts, together with a robust false discovery rate empirically calculated from variation in the sequencing data. We used RNA-seq data from mouse embryonic fibroblasts from F1 reciprocal crosses to determine a biologically relevant allelic ratio cutoff, and define for the first time an entire allelome. Furthermore, we show that Allelome.PRO detects differential enrichment of H3K4me3 over promoters from ChIP-seq data validating the RNA-seq results. This approach can be easily extended to analyze histone marks of active enhancers, or transcription factor binding sites and therefore provides a powerful tool to identify candidate cis regulatory elements genome wide.
AU - Andergassen, Daniel
AU - Dotter, Christoph
AU - Kulinski, Tomasz
AU - Guenzl, Philipp
AU - Bammer, Philipp
AU - Barlow, Denise
AU - Pauler, Florian
AU - Hudson, Quanah
ID - 1497
IS - 21
JF - Nucleic Acids Research
TI - Allelome.PRO, a pipeline to define allele-specific genomic features from high-throughput sequencing data
VL - 43
ER -
TY - CONF
AB - Fault-tolerant distributed algorithms play an important role in many critical/high-availability applications. These algorithms are notoriously difficult to implement correctly, due to asynchronous communication and the occurrence of faults, such as the network dropping messages or computers crashing. Nonetheless there is surprisingly little language and verification support to build distributed systems based on fault-tolerant algorithms. In this paper, we present some of the challenges that a designer has to overcome to implement a fault-tolerant distributed system. Then we review different models that have been proposed to reason about distributed algorithms and sketch how such a model can form the basis for a domain-specific programming language. Adopting a high-level programming model can simplify the programmer's life and make the code amenable to automated verification, while still compiling to efficiently executable code. We conclude by summarizing the current status of an ongoing language design and implementation project that is based on this idea.
AU - Dragoi, Cezara
AU - Henzinger, Thomas A
AU - Zufferey, Damien
ID - 1498
SN - 978-3-939897-80-4
TI - The need for language support for fault-tolerant distributed systems
VL - 32
ER -
TY - CONF
AB - We consider weighted automata with both positive and negative integer weights on edges and
study the problem of synchronization using adaptive strategies that may only observe whether
the current weight-level is negative or nonnegative. We show that the synchronization problem is decidable in polynomial time for deterministic weighted automata.
AU - Kretinsky, Jan
AU - Larsen, Kim
AU - Laursen, Simon
AU - Srba, Jiří
ID - 1499
TI - Polynomial time decidability of weighted synchronization under partial observability
VL - 42
ER -
TY - GEN
AB - In this poster, we present methods for randomly generating hybrid automata with affine differential equations, invariants, guards, and assignments. Selecting an arbitrary affine function from the set of all affine functions results in a low likelihood of generating hybrid automata with diverse and interesting behaviors, as there are an uncountable number of elements in the set of all affine functions. Instead, we partition the set of all affine functions into potentially interesting classes and randomly select elements from these classes. For example, we partition the set of all affine differential equations by using restrictions on eigenvalues such as those that yield stable, unstable, etc. equilibrium points. We partition the components describing discrete behavior (guards, assignments, and invariants) to allow either time-dependent or state-dependent switching, and in particular provide the ability to generate subclasses of piecewise-affine hybrid automata. Our preliminary experimental results with a prototype tool called HyRG (Hybrid Random Generator) illustrate the feasibility of this generation method to automatically create standard hybrid automaton examples like the bouncing ball and thermostat.
AU - Nguyen, Luan V
AU - Christian Schilling
AU - Sergiy Bogomolov
AU - Johnson, Taylor T
ID - 1500
T2 - HSCC: Hybrid Systems - Computation and Control
TI - Poster: HyRG: A random generation tool for affine hybrid automata
ER -
TY - JOUR
AB - We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability. We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph algorithms with quadratic complexity to compute the simulation relation. We present an automated technique for assume-guarantee style reasoning for compositional analysis of two-player games by giving a counterexample guided abstraction-refinement approach to compute our new simulation relation. We show a tight link between two-player games and MDPs, and as a consequence the results for games are lifted to MDPs with qualitative properties. We have implemented our algorithms and show that the compositional analysis leads to significant improvements.
AU - Chatterjee, Krishnendu
AU - Chmelik, Martin
AU - Daca, Przemyslaw
ID - 1501
IS - 2
JF - Formal Methods in System Design
TI - CEGAR for compositional analysis of qualitative properties in Markov decision processes
VL - 47
ER -
TY - CONF
AB - We extend the theory of input-output conformance with operators for merge and quotient. The former is useful when testing against multiple requirements or views. The latter can be used to generate tests for patches of an already tested system. Both operators can combine systems with different action alphabets, which is usually the case when constructing complex systems and specifications from parts, for instance different views as well as newly defined functionality of a~previous version of the system.
AU - Beneš, Nikola
AU - Daca, Przemyslaw
AU - Henzinger, Thomas A
AU - Kretinsky, Jan
AU - Nickovic, Dejan
ID - 1502
SN - 978-1-4503-3471-6
TI - Complete composition operators for IOCO-testing theory
ER -
TY - JOUR
AB - A Herman-Avila-Bochi type formula is obtained for the average sum of the top d Lyapunov exponents over a one-parameter family of double-struck G-cocycles, where double-struck G is the group that leaves a certain, non-degenerate Hermitian form of signature (c, d) invariant. The generic example of such a group is the pseudo-unitary group U(c, d) or, in the case c = d, the Hermitian-symplectic group HSp(2d) which naturally appears for cocycles related to Schrödinger operators. In the case d = 1, the formula for HSp(2d) cocycles reduces to the Herman-Avila-Bochi formula for SL(2, ℝ) cocycles.
AU - Sadel, Christian
ID - 1503
IS - 5
JF - Ergodic Theory and Dynamical Systems
TI - A Herman-Avila-Bochi formula for higher-dimensional pseudo-unitary and Hermitian-symplectic-cocycles
VL - 35
ER -
TY - JOUR
AB - Let Q = (Q1, . . . , Qn) be a random vector drawn from the uniform distribution on the set of all n! permutations of {1, 2, . . . , n}. Let Z = (Z1, . . . , Zn), where Zj is the mean zero variance one random variable obtained by centralizing and normalizing Qj , j = 1, . . . , n. Assume that Xi , i = 1, . . . ,p are i.i.d. copies of 1/√ p Z and X = Xp,n is the p × n random matrix with Xi as its ith row. Then Sn = XX is called the p × n Spearman's rank correlation matrix which can be regarded as a high dimensional extension of the classical nonparametric statistic Spearman's rank correlation coefficient between two independent random variables. In this paper, we establish a CLT for the linear spectral statistics of this nonparametric random matrix model in the scenario of high dimension, namely, p = p(n) and p/n→c ∈ (0,∞) as n→∞.We propose a novel evaluation scheme to estimate the core quantity in Anderson and Zeitouni's cumulant method in [Ann. Statist. 36 (2008) 2553-2576] to bypass the so-called joint cumulant summability. In addition, we raise a two-step comparison approach to obtain the explicit formulae for the mean and covariance functions in the CLT. Relying on this CLT, we then construct a distribution-free statistic to test complete independence for components of random vectors. Owing to the nonparametric property, we can use this test on generally distributed random variables including the heavy-tailed ones.
AU - Bao, Zhigang
AU - Lin, Liang
AU - Pan, Guangming
AU - Zhou, Wang
ID - 1504
IS - 6
JF - Annals of Statistics
TI - Spectral statistics of large dimensional spearman s rank correlation matrix and its application
VL - 43
ER -
TY - JOUR
AB - This paper is aimed at deriving the universality of the largest eigenvalue of a class of high-dimensional real or complex sample covariance matrices of the form W N =Σ 1/2XX∗Σ 1/2 . Here, X = (xij )M,N is an M× N random matrix with independent entries xij , 1 ≤ i M,≤ 1 ≤ j ≤ N such that Exij = 0, E|xij |2 = 1/N . On dimensionality, we assume that M = M(N) and N/M → d ε (0, ∞) as N ∞→. For a class of general deterministic positive-definite M × M matrices Σ , under some additional assumptions on the distribution of xij 's, we show that the limiting behavior of the largest eigenvalue of W N is universal, via pursuing a Green function comparison strategy raised in [Probab. Theory Related Fields 154 (2012) 341-407, Adv. Math. 229 (2012) 1435-1515] by Erd″os, Yau and Yin for Wigner matrices and extended by Pillai and Yin [Ann. Appl. Probab. 24 (2014) 935-1001] to sample covariance matrices in the null case (&Epsi = I ). Consequently, in the standard complex case (Ex2 ij = 0), combing this universality property and the results known for Gaussian matrices obtained by El Karoui in [Ann. Probab. 35 (2007) 663-714] (nonsingular case) and Onatski in [Ann. Appl. Probab. 18 (2008) 470-490] (singular case), we show that after an appropriate normalization the largest eigenvalue of W N converges weakly to the type 2 Tracy-Widom distribution TW2 . Moreover, in the real case, we show that whenΣ is spiked with a fixed number of subcritical spikes, the type 1 Tracy-Widom limit TW1 holds for the normalized largest eigenvalue of W N , which extends a result of Féral and Péché in [J. Math. Phys. 50 (2009) 073302] to the scenario of nondiagonal Σ and more generally distributed X . In summary, we establish the Tracy-Widom type universality for the largest eigenvalue of generally distributed sample covariance matrices under quite light assumptions on &Sigma . Applications of these limiting results to statistical signal detection and structure recognition of separable covariance matrices are also discussed.
AU - Bao, Zhigang
AU - Pan, Guangming
AU - Zhou, Wang
ID - 1505
IS - 1
JF - Annals of Statistics
TI - Universality for the largest eigenvalue of sample covariance matrices with general population
VL - 43
ER -
TY - JOUR
AB - Consider the square random matrix An = (aij)n,n, where {aij:= a(n)ij , i, j = 1, . . . , n} is a collection of independent real random variables with means zero and variances one. Under the additional moment condition supn max1≤i,j ≤n Ea4ij <∞, we prove Girko's logarithmic law of det An in the sense that as n→∞ log | detAn| ? (1/2) log(n-1)! d/→√(1/2) log n N(0, 1).
AU - Bao, Zhigang
AU - Pan, Guangming
AU - Zhou, Wang
ID - 1506
IS - 3
JF - Bernoulli
TI - The logarithmic law of random determinant
VL - 21
ER -
TY - JOUR
AB - We consider generalized Wigner ensembles and general β-ensembles with analytic potentials for any β ≥ 1. The recent universality results in particular assert that the local averages of consecutive eigenvalue gaps in the bulk of the spectrum are universal in the sense that they coincide with those of the corresponding Gaussian β-ensembles. In this article, we show that local averaging is not necessary for this result, i.e. we prove that the single gap distributions in the bulk are universal. In fact, with an additional step, our result can be extended to any C4(ℝ) potential.
AU - Erdös, László
AU - Yau, Horng
ID - 1508
IS - 8
JF - Journal of the European Mathematical Society
TI - Gap universality of generalized Wigner and β ensembles
VL - 17
ER -