TY - JOUR AB - The aim of this short paper is to offer a complete characterization of all (not necessarily surjective) isometric embeddings of the Wasserstein space Wp(X), where S is a countable discrete metric space and 0> r eff and show that these systems obey universal scaling laws different from neutral particles. An accurate description of these states requires both the Coulomb-modified scattering length and the effective range unless the Coulomb interaction is very weak (D -> ). Our findings are relevant for bound states whose spatial extent is significantly larger than the range of the attractive potential. These states enjoy universality – their character is independent of the shape of the short-range potential. AU - Schmickler, C.H. AU - Hammer, H.-W. AU - Volosniev, Artem ID - 6955 JF - Physics Letters B SN - 0370-2693 TI - Universal physics of bound states of a few charged particles VL - 798 ER - TY - JOUR AB - Activity-dependent bulk endocytosis generates synaptic vesicles (SVs) during intense neuronal activity via a two-step process. First, bulk endosomes are formed direct from the plasma membrane from which SVs are then generated. SV generation from bulk endosomes requires the efflux of previously accumulated calcium and activation of the protein phosphatase calcineurin. However, it is still unknown how calcineurin mediates SV generation. We addressed this question using a series of acute interventions that decoupled the generation of SVs from bulk endosomes in rat primary neuronal culture. This was achieved by either disruption of protein–protein interactions via delivery of competitive peptides, or inhibition of enzyme activity by known inhibitors. SV generation was monitored using either a morphological horseradish peroxidase assay or an optical assay that monitors the replenishment of the reserve SV pool. We found that SV generation was inhibited by, (i) peptides that disrupt calcineurin interactions, (ii) an inhibitor of dynamin I GTPase activity and (iii) peptides that disrupt the phosphorylation-dependent dynamin I–syndapin I interaction. Peptides that disrupted syndapin I interactions with eps15 homology domain-containing proteins had no effect. This revealed that (i) calcineurin must be localized at bulk endosomes to mediate its effect, (ii) dynamin I GTPase activity is essential for SV fission and (iii) the calcineurin-dependent interaction between dynamin I and syndapin I is essential for SV generation. We therefore propose that a calcineurin-dependent dephosphorylation cascade that requires both dynamin I GTPase and syndapin I lipid-deforming activity is essential for SV generation from bulk endosomes. AU - Cheung, Giselle T AU - Cousin, Michael A. ID - 7005 IS - 5 JF - Journal of Neurochemistry SN - 0022-3042 TI - Synaptic vesicle generation from activity‐dependent bulk endosomes requires a dephosphorylation‐dependent dynamin–syndapin interaction VL - 151 ER - TY - JOUR AB - The main contributions of this paper are the proposition and the convergence analysis of a class of inertial projection-type algorithm for solving variational inequality problems in real Hilbert spaces where the underline operator is monotone and uniformly continuous. We carry out a unified analysis of the proposed method under very mild assumptions. In particular, weak convergence of the generated sequence is established and nonasymptotic O(1 / n) rate of convergence is established, where n denotes the iteration counter. We also present some experimental results to illustrate the profits gained by introducing the inertial extrapolation steps. AU - Shehu, Yekini AU - Iyiola, Olaniyi S. AU - Li, Xiao-Huan AU - Dong, Qiao-Li ID - 7000 IS - 4 JF - Computational and Applied Mathematics SN - 2238-3603 TI - Convergence analysis of projection method for variational inequalities VL - 38 ER - TY - JOUR AB - Cell migration is essential for physiological processes as diverse as development, immune defence and wound healing. It is also a hallmark of cancer malignancy. Thousands of publications have elucidated detailed molecular and biophysical mechanisms of cultured cells migrating on flat, 2D substrates of glass and plastic. However, much less is known about how cells successfully navigate the complex 3D environments of living tissues. In these more complex, native environments, cells use multiple modes of migration, including mesenchymal, amoeboid, lobopodial and collective, and these are governed by the local extracellular microenvironment, specific modalities of Rho GTPase signalling and non- muscle myosin contractility. Migration through 3D environments is challenging because it requires the cell to squeeze through complex or dense extracellular structures. Doing so requires specific cellular adaptations to mechanical features of the extracellular matrix (ECM) or its remodelling. In addition, besides navigating through diverse ECM environments and overcoming extracellular barriers, cells often interact with neighbouring cells and tissues through physical and signalling interactions. Accordingly, cells need to call on an impressively wide diversity of mechanisms to meet these challenges. This Review examines how cells use both classical and novel mechanisms of locomotion as they traverse challenging 3D matrices and cellular environments. It focuses on principles rather than details of migratory mechanisms and draws comparisons between 1D, 2D and 3D migration. AU - Yamada, KM AU - Sixt, Michael K ID - 7009 IS - 12 JF - Nature Reviews Molecular Cell Biology SN - 1471-0072 TI - Mechanisms of 3D cell migration VL - 20 ER - TY - JOUR AB - Platelets are central players in thrombosis and hemostasis but are increasingly recognized as key components of the immune system. They shape ensuing immune responses by recruiting leukocytes, and support the development of adaptive immunity. Recent data shed new light on the complex role of platelets in immunity. Here, we summarize experimental and clinical data on the role of platelets in host defense against bacteria. Platelets bind, contain, and kill bacteria directly; however, platelet proinflammatory effector functions and cross-talk with the coagulation system, can also result in damage to the host (e.g., acute lung injury and sepsis). Novel clinical insights support this dichotomy: platelet inhibition/thrombocytopenia can be either harmful or protective, depending on pathophysiological context. Clinical studies are currently addressing this aspect in greater depth. AU - Nicolai, Leo AU - Gärtner, Florian R AU - Massberg, Steffen ID - 6988 IS - 10 JF - Trends in Immunology SN - 1471-4906 TI - Platelets in host defense: Experimental and clinical insights VL - 40 ER - TY - JOUR AB - Multiple Importance Sampling (MIS) is a key technique for achieving robustness of Monte Carlo estimators in computer graphics and other fields. We derive optimal weighting functions for MIS that provably minimize the variance of an MIS estimator, given a set of sampling techniques. We show that the resulting variance reduction over the balance heuristic can be higher than predicted by the variance bounds derived by Veach and Guibas, who assumed only non-negative weights in their proof. We theoretically analyze the variance of the optimal MIS weights and show the relation to the variance of the balance heuristic. Furthermore, we establish a connection between the new weighting functions and control variates as previously applied to mixture sampling. We apply the new optimal weights to integration problems in light transport and show that they allow for new design considerations when choosing the appropriate sampling techniques for a given integration problem. AU - Kondapaneni, Ivo AU - Vevoda, Petr AU - Grittmann, Pascal AU - Skrivan, Tomas AU - Slusallek, Philipp AU - Křivánek, Jaroslav ID - 7002 IS - 4 JF - ACM Transactions on Graphics SN - 0730-0301 TI - Optimal multiple importance sampling VL - 38 ER - TY - JOUR AB - In pipes and channels, the onset of turbulence is initially dominated by localizedtransients, which lead to sustained turbulence through their collective dynamics. In thepresent work, we study numerically the localized turbulence in pipe flow and elucidate astate space structure that gives rise to transient chaos. Starting from the basin boundaryseparating laminar and turbulent flow, we identify transverse homoclinic orbits, thepresence of which necessitates a homoclinic tangle and chaos. A direct consequence ofthe homoclinic tangle is the fractal nature of the laminar-turbulent boundary, which wasconjectured in various earlier studies. By mapping the transverse intersections between thestable and unstable manifold of a periodic orbit, we identify the gateways that promote anescape from turbulence. AU - Budanur, Nazmi B AU - Dogra, Akshunna AU - Hof, Björn ID - 6978 IS - 10 JF - Physical Review Fluids TI - Geometry of transient chaos in streamwise-localized pipe flow turbulence VL - 4 ER - TY - JOUR AB - Effective design of combination therapies requires understanding the changes in cell physiology that result from drug interactions. Here, we show that the genome-wide transcriptional response to combinations of two drugs, measured at a rigorously controlled growth rate, can predict higher-order antagonism with a third drug in Saccharomyces cerevisiae. Using isogrowth profiling, over 90% of the variation in cellular response can be decomposed into three principal components (PCs) that have clear biological interpretations. We demonstrate that the third PC captures emergent transcriptional programs that are dependent on both drugs and can predict antagonism with a third drug targeting the emergent pathway. We further show that emergent gene expression patterns are most pronounced at a drug ratio where the drug interaction is strongest, providing a guideline for future measurements. Our results provide a readily applicable recipe for uncovering emergent responses in other systems and for higher-order drug combinations. A record of this paper’s transparent peer review process is included in the Supplemental Information. AU - Lukacisin, Martin AU - Bollenbach, Tobias ID - 7026 IS - 5 JF - Cell Systems SN - 2405-4712 TI - Emergent gene expression responses to drug combinations predict higher-order drug interactions VL - 9 ER - TY - JOUR AB - We find a graph of genus 5 and its drawing on the orientable surface of genus 4 with every pair of independent edges crossing an even number of times. This shows that the strong Hanani–Tutte theorem cannot be extended to the orientable surface of genus 4. As a base step in the construction we use a counterexample to an extension of the unified Hanani–Tutte theorem on the torus. AU - Fulek, Radoslav AU - Kynčl, Jan ID - 7034 IS - 6 JF - Combinatorica SN - 0209-9683 TI - Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4 VL - 39 ER - TY - CONF AB - Optical frequency combs (OFCs) are light sources whose spectra consists of equally spaced frequency lines in the optical domain [1]. They have great potential for improving high-capacity data transfer, all-optical atomic clocks, spectroscopy, and high-precision measurements [2]. AU - Rueda Sanchez, Alfredo R AU - Sedlmeir, Florian AU - Leuchs, Gerd AU - Kuamri, Madhuri AU - Schwefel, Harald G. L. ID - 7032 SN - 9781728104690 T2 - 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference TI - Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators ER - TY - JOUR AB - BAX, a member of the BCL2 gene family, controls the committed step of the intrinsic apoptotic program. Mitochondrial fragmentation is a commonly observed feature of apoptosis, which occurs through the process of mitochondrial fission. BAX has consistently been associated with mitochondrial fission, yet how BAX participates in the process of mitochondrial fragmentation during apoptosis remains to be tested. Time-lapse imaging of BAX recruitment and mitochondrial fragmentation demonstrates that rapid mitochondrial fragmentation during apoptosis occurs after the complete recruitment of BAX to the mitochondrial outer membrane (MOM). The requirement of a fully functioning BAX protein for the fission process was demonstrated further in BAX/BAK-deficient HCT116 cells expressing a P168A mutant of BAX. The mutant performed fusion to restore the mitochondrial network. but was not demonstrably recruited to the MOM after apoptosis induction. Under these conditions, mitochondrial fragmentation was blocked. Additionally, we show that loss of the fission protein, dynamin-like protein 1 (DRP1), does not temporally affect the initiation time or rate of BAX recruitment, but does reduce the final level of BAX recruited to the MOM during the late phase of BAX recruitment. These correlative observations suggest a model where late-stage BAX oligomers play a functional part of the mitochondrial fragmentation machinery in apoptotic cells. AU - Maes, Margaret E AU - Grosser, J. A. AU - Fehrman, R. L. AU - Schlamp, C. L. AU - Nickells, R. W. ID - 7095 JF - Scientific Reports TI - Completion of BAX recruitment correlates with mitochondrial fission during apoptosis VL - 9 ER - TY - JOUR AB - Early endosomes, also called sorting endosomes, are known to mature into late endosomesvia the Rab5-mediated endolysosomal trafficking pathway. Thus, early endosome existence isthought to be maintained by the continual fusion of transport vesicles from the plasmamembrane and thetrans-Golgi network (TGN). Here we show instead that endocytosis isdispensable and post-Golgi vesicle transport is crucial for the formation of endosomes andthe subsequent endolysosomal traffic regulated by yeast Rab5 Vps21p. Fittingly, all threeproteins required for endosomal nucleotide exchange on Vps21p arefirst recruited to theTGN before transport to the endosome, namely the GEF Vps9p and the epsin-relatedadaptors Ent3/5p. The TGN recruitment of these components is distinctly controlled, withVps9p appearing to require the Arf1p GTPase, and the Rab11s, Ypt31p/32p. These resultsprovide a different view of endosome formation and identify the TGN as a critical location forregulating progress through the endolysosomal trafficking pathway. AU - Nagano, Makoto AU - Toshima, Junko Y. AU - Siekhaus, Daria E AU - Toshima, Jiro ID - 7097 IS - 1 JF - Communications Biology SN - 2399-3642 TI - Rab5-mediated endosome formation is regulated at the trans-Golgi network VL - 2 ER - TY - JOUR AU - Kasugai, Yu AU - Vogel, Elisabeth AU - Hörtnagl, Heide AU - Schönherr, Sabine AU - Paradiso, Enrica AU - Hauschild, Markus AU - Göbel, Georg AU - Milenkovic, Ivan AU - Peterschmitt, Yvan AU - Tasan, Ramon AU - Sperk, Günther AU - Shigemoto, Ryuichi AU - Sieghart, Werner AU - Singewald, Nicolas AU - Lüthi, Andreas AU - Ferraguti, Francesco ID - 7099 IS - 4 JF - Neuron SN - 0896-6273 TI - Structural and functional remodeling of amygdala GABAergic synapses in associative fear learning VL - 104 ER - TY - JOUR AB - During corticogenesis, distinct subtypes of neurons are sequentially born from ventricular zone progenitors. How these cells are molecularly temporally patterned is poorly understood. We used single-cell RNA sequencing at high temporal resolution to trace the lineage of the molecular identities of successive generations of apical progenitors (APs) and their daughter neurons in mouse embryos. We identified a core set of evolutionarily conserved, temporally patterned genes that drive APs from internally driven to more exteroceptive states. We found that the Polycomb repressor complex 2 (PRC2) epigenetically regulates AP temporal progression. Embryonic age–dependent AP molecular states are transmitted to their progeny as successive ground states, onto which essentially conserved early postmitotic differentiation programs are applied, and are complemented by later-occurring environment-dependent signals. Thus, epigenetically regulated temporal molecular birthmarks present in progenitors act in their postmitotic progeny to seed adult neuronal diversity. AU - Telley, L AU - Agirman, G AU - Prados, J AU - Amberg, Nicole AU - Fièvre, S AU - Oberst, P AU - Bartolini, G AU - Vitali, I AU - Cadilhac, C AU - Hippenmeyer, Simon AU - Nguyen, L AU - Dayer, A AU - Jabaudon, D ID - 6455 IS - 6440 JF - Science SN - 0036-8075 TI - Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex VL - 364 ER - TY - JOUR AB - The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals allow exquisite surface engineering. This provides additional means to modulate the nanomaterial characteristics and particularly its electronic transport properties. For instance, inorganic surface ligands can be used to tune the type and concentration of majority carriers or to modify the electronic band structure. Herein, we report the thermoelectric properties of SnTe nanocomposites obtained from the consolidation of surface-engineered SnTe nanocrystals into macroscopic pellets. A CdSe-based ligand is selected to (i) converge the light and heavy bands through partial Cd alloying and (ii) generate CdSe nanoinclusions as a secondary phase within the SnTe matrix, thereby reducing the thermal conductivity. These SnTe-CdSe nanocomposites possess thermoelectric figures of merit of up to 1.3 at 850 K, which is, to the best of our knowledge, the highest thermoelectric figure of merit reported for solution-processed SnTe. AU - Ibáñez, Maria AU - Hasler, Roger AU - Genç, Aziz AU - Liu, Yu AU - Kuster, Beatrice AU - Schuster, Maximilian AU - Dobrozhan, Oleksandr AU - Cadavid, Doris AU - Arbiol, Jordi AU - Cabot, Andreu AU - Kovalenko, Maksym V. ID - 6586 IS - 20 JF - Journal of the American Chemical Society SN - 0002-7863 TI - Ligand-mediated band engineering in bottom-up assembled SnTe nanocomposites for thermoelectric energy conversion VL - 141 ER - TY - JOUR AB - We propose a scaling theory for the many-body localization (MBL) phase transition in one dimension, building on the idea that it proceeds via a “quantum avalanche.” We argue that the critical properties can be captured at a coarse-grained level by a Kosterlitz-Thouless (KT) renormalization group (RG) flow. On phenomenological grounds, we identify the scaling variables as the density of thermal regions and the length scale that controls the decay of typical matrix elements. Within this KT picture, the MBL phase is a line of fixed points that terminates at the delocalization transition. We discuss two possible scenarios distinguished by the distribution of rare, fractal thermal inclusions within the MBL phase. In the first scenario, these regions have a stretched exponential distribution in the MBL phase. In the second scenario, the near-critical MBL phase hosts rare thermal regions that are power-law-distributed in size. This points to the existence of a second transition within the MBL phase, at which these power laws change to the stretched exponential form expected at strong disorder. We numerically simulate two different phenomenological RGs previously proposed to describe the MBL transition. Both RGs display a universal power-law length distribution of thermal regions at the transition with a critical exponent αc=2, and continuously varying exponents in the MBL phase consistent with the KT picture. AU - Dumitrescu, Philipp T. AU - Goremykina, Anna AU - Parameswaran, Siddharth A. AU - Serbyn, Maksym AU - Vasseur, Romain ID - 6174 IS - 9 JF - Physical Review B SN - 2469-9950 TI - Kosterlitz-Thouless scaling at many-body localization phase transitions VL - 99 ER - TY - JOUR AB - Plants have a remarkable capacity to adjust their growth and development to elevated ambient temperatures. Increased elongation growth of roots, hypocotyls and petioles in warm temperatures are hallmarks of seedling thermomorphogenesis. In the last decade, significant progress has been made to identify the molecular signaling components regulating these growth responses. Increased ambient temperature utilizes diverse components of the light sensing and signal transduction network to trigger growth adjustments. However, it remains unknown whether temperature sensing and responses are universal processes that occur uniformly in all plant organs. Alternatively, temperature sensing may be confined to specific tissues or organs, which would require a systemic signal that mediates responses in distal parts of the plant. Here we show that Arabidopsis (Arabidopsis thaliana) seedlings show organ-specific transcriptome responses to elevated temperatures, and that thermomorphogenesis involves both autonomous and organ-interdependent temperature sensing and signaling. Seedling roots can sense and respond to temperature in a shoot-independent manner, whereas shoot temperature responses require both local and systemic processes. The induction of cell elongation in hypocotyls requires temperature sensing in cotyledons, followed by generation of a mobile auxin signal. Subsequently, auxin travels to the hypocotyl where it triggers local brassinosteroid-induced cell elongation in seedling stems, which depends upon a distinct, permissive temperature sensor in the hypocotyl. AU - Bellstaedt, Julia AU - Trenner, Jana AU - Lippmann, Rebecca AU - Poeschl, Yvonne AU - Zhang, Xixi AU - Friml, Jiří AU - Quint, Marcel AU - Delker, Carolin ID - 6366 IS - 2 JF - Plant Physiology SN - 0032-0889 TI - A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls VL - 180 ER -