TY - JOUR AB - Differentially protected galactosamine building blocks are key components for the synthesis of human and bacterial oligosaccharides. The azidophenylselenylation of 3,4,6-tri-O-acetyl-d-galactal provides straightforward access to the corresponding 2-nitrogenated glycoside. Poor reproducibility and the use of azides that lead to the formation of potentially explosive and toxic species limit the scalability of this reaction and render it a bottleneck for carbohydrate synthesis. Here, we present a method for the safe, efficient, and reliable azidophenylselenylation of 3,4,6-tri-O-acetyl-d-galactal at room temperature, using continuous flow chemistry. Careful analysis of the transformation resulted in reaction conditions that produce minimal side products while the reaction time was reduced drastically when compared to batch reactions. The flow setup is readily scalable to process 5 mmol of galactal in 3 h, producing 1.2 mmol/h of product. AU - Guberman, Mónica AU - Pieber, Bartholomäus AU - Seeberger, Peter H. ID - 11984 IS - 12 JF - Organic Process Research and Development SN - 1083-6160 TI - Safe and scalable continuous flow azidophenylselenylation of galactal to prepare galactosamine building blocks VL - 23 ER - TY - JOUR AB - A carbon nitride material can be combined with homogeneous nickel catalysts for light-mediated cross-couplings of aryl bromides with alcohols under mild conditions. The metal-free heterogeneous semiconductor is fully recyclable and couples a broad range of electron-poor aryl bromides with primary and secondary alcohols as well as water. The application for intramolecular reactions and the synthesis of active pharmaceutical ingredients was demonstrated. The catalytic protocol is applicable for the coupling of aryl iodides with thiols as well. AU - Cavedon, Cristian AU - Madani, Amiera AU - Seeberger, Peter H. AU - Pieber, Bartholomäus ID - 11982 IS - 13 JF - Organic Letters SN - 1523-7060 TI - Semiheterogeneous dual nickel/photocatalytic (thio)etherification using carbon nitrides VL - 21 ER - TY - JOUR AB - Upper and lower bounds, of the expected order of magnitude, are obtained for the number of rational points of bounded height on any quartic del Pezzo surface over ℚ that contains a conic defined over ℚ . AU - Browning, Timothy D AU - Sofos, Efthymios ID - 170 IS - 3-4 JF - Mathematische Annalen TI - Counting rational points on quartic del Pezzo surfaces with a rational conic VL - 373 ER - TY - JOUR AU - Kalinin, Nikita AU - Shkolnikov, Mikhail ID - 441 IS - 3 JF - European Journal of Mathematics SN - 2199-675X TI - Tropical formulae for summation over a part of SL(2,Z) VL - 5 ER - TY - CHAP AB - The transcription coactivator, Yes-associated protein (YAP), which is a nuclear effector of the Hippo signaling pathway, has been shown to be a mechano-transducer. By using mutant fish and human 3D spheroids, we have recently demonstrated that YAP is also a mechano-effector. YAP functions in three-dimensional (3D) morphogenesis of organ and global body shape by controlling actomyosin-mediated tissue tension. In this chapter, we present a platform that links the findings in fish embryos with human cells. The protocols for analyzing tissue tension-mediated global body shape/organ morphogenesis in vivo and ex vivo using medaka fish embryos and in vitro using human cell spheroids represent useful tools for unraveling the molecular mechanisms by which YAP functions in regulating global body/organ morphogenesis. AU - Asaoka, Yoichi AU - Morita, Hitoshi AU - Furumoto, Hiroko AU - Heisenberg, Carl-Philipp J AU - Furutani-Seiki, Makoto ED - Hergovich, Alexander ID - 5793 SN - 978-1-4939-8909-6 T2 - The hippo pathway TI - Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids VL - 1893 ER - TY - JOUR AB - Cryptographic security is usually defined as a guarantee that holds except when a bad event with negligible probability occurs, and nothing is guaranteed in that bad case. However, in settings where such failure can happen with substantial probability, one needs to provide guarantees even for the bad case. A typical example is where a (possibly weak) password is used instead of a secure cryptographic key to protect a session, the bad event being that the adversary correctly guesses the password. In a situation with multiple such sessions, a per-session guarantee is desired: any session for which the password has not been guessed remains secure, independently of whether other sessions have been compromised. A new formalism for stating such gracefully degrading security guarantees is introduced and applied to analyze the examples of password-based message authentication and password-based encryption. While a natural per-message guarantee is achieved for authentication, the situation of password-based encryption is more delicate: a per-session confidentiality guarantee only holds against attackers for which the distribution of password-guessing effort over the sessions is known in advance. In contrast, for more general attackers without such a restriction, a strong, composable notion of security cannot be achieved. AU - Demay, Gregory AU - Gazi, Peter AU - Maurer, Ueli AU - Tackmann, Bjorn ID - 5887 IS - 1 JF - Journal of Computer Security SN - 0926227X TI - Per-session security: Password-based cryptography revisited VL - 27 ER - TY - CONF AB - We propose a new non-orthogonal basis to express the 3D Euclidean space in terms of a regular grid. Every grid point, each represented by integer 3-coordinates, corresponds to rhombic dodecahedron centroid. Rhombic dodecahedron is a space filling polyhedron which represents the close packing of spheres in 3D space and the Voronoi structures of the face centered cubic (FCC) lattice. In order to illustrate the interest of the new coordinate system, we propose the characterization of 3D digital plane with its topological features, such as the interrelation between the thickness of the digital plane and the separability constraint we aim to obtain. A characterization of a 3D digital sphere with relevant topological features is proposed as well with the help of a 48 symmetry that comes with the new coordinate system. AU - Biswas, Ranita AU - Largeteau-Skapin, Gaëlle AU - Zrour, Rita AU - Andres, Eric ID - 6163 SN - 0302-9743 T2 - 21st IAPR International Conference on Discrete Geometry for Computer Imagery TI - Rhombic dodecahedron grid—coordinate system and 3D digital object definitions VL - 11414 ER - TY - JOUR AB - We give non-degeneracy criteria for Riemannian simplices based on simplices in spaces of constant sectional curvature. It extends previous work on Riemannian simplices, where we developed Riemannian simplices with respect to Euclidean reference simplices. The criteria we give in this article are in terms of quality measures for spaces of constant curvature that we develop here. We see that simplices in spaces that have nearly constant curvature, are already non-degenerate under very weak quality demands. This is of importance because it allows for sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute) curvature. AU - Dyer, Ramsay AU - Vegter, Gert AU - Wintraecken, Mathijs ID - 6515 IS - 1 JF - Journal of Computational Geometry SN - 1920-180X TI - Simplices modelled on spaces of constant curvature VL - 10 ER - TY - CONF AB - We construct a verifiable delay function (VDF) by showing how the Rivest-Shamir-Wagner time-lock puzzle can be made publicly verifiable. Concretely, we give a statistically sound public-coin protocol to prove that a tuple (N,x,T,y) satisfies y=x2T (mod N) where the prover doesn’t know the factorization of N and its running time is dominated by solving the puzzle, that is, compute x2T, which is conjectured to require T sequential squarings. To get a VDF we make this protocol non-interactive using the Fiat-Shamir heuristic.The motivation for this work comes from the Chia blockchain design, which uses a VDF as akey ingredient. For typical parameters (T≤2 40, N= 2048), our proofs are of size around 10K B, verification cost around three RSA exponentiations and computing the proof is 8000 times faster than solving the puzzle even without any parallelism. AU - Pietrzak, Krzysztof Z ID - 6528 SN - 1868-8969 T2 - 10th Innovations in Theoretical Computer Science Conference TI - Simple verifiable delay functions VL - 124 ER - TY - CONF AB - In this paper, we address the problem of synthesizing periodic switching controllers for stabilizing a family of linear systems. Our broad approach consists of constructing a finite game graph based on the family of linear systems such that every winning strategy on the game graph corresponds to a stabilizing switching controller for the family of linear systems. The construction of a (finite) game graph, the synthesis of a winning strategy and the extraction of a stabilizing controller are all computationally feasible. We illustrate our method on an example. AU - Kundu, Atreyee AU - Garcia Soto, Miriam AU - Prabhakar, Pavithra ID - 6565 SN - 978-153866246-5 T2 - 5th Indian Control Conference Proceedings TI - Formal synthesis of stabilizing controllers for periodically controlled linear switched systems ER - TY - CONF AB - Fejes Tóth [5] and Schneider [9] studied approximations of smooth convex hypersurfaces in Euclidean space by piecewise flat triangular meshes with a given number of vertices on the hypersurface that are optimal with respect to Hausdorff distance. They proved that this Hausdorff distance decreases inversely proportional with m 2/(d−1), where m is the number of vertices and d is the dimension of Euclidean space. Moreover the pro-portionality constant can be expressed in terms of the Gaussian curvature, an intrinsic quantity. In this short note, we prove the extrinsic nature of this constant for manifolds of sufficiently high codimension. We do so by constructing an family of isometric embeddings of the flat torus in Euclidean space. AU - Vegter, Gert AU - Wintraecken, Mathijs ID - 6628 T2 - The 31st Canadian Conference in Computational Geometry TI - The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds ER - TY - CONF AB - Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context. AU - Edelsbrunner, Herbert AU - Virk, Ziga AU - Wagner, Hubert ID - 6648 SN - 9783959771047 T2 - 35th International Symposium on Computational Geometry TI - Topological data analysis in information space VL - 129 ER - TY - JOUR AB - Chemical labeling of proteins with synthetic molecular probes offers the possibility to probe the functions of proteins of interest in living cells. However, the methods for covalently labeling targeted proteins using complementary peptide tag-probe pairs are still limited, irrespective of the versatility of such pairs in biological research. Herein, we report the new CysHis tag-Ni(II) probe pair for the specific covalent labeling of proteins. A broad-range evaluation of the reactivity profiles of the probe and the CysHis peptide tag afforded a tag-probe pair with an optimized and high labeling selectivity and reactivity. In particular, the labeling specificity of this pair was notably improved compared to the previously reported one. This pair was successfully utilized for the fluorescence imaging of membrane proteins on the surfaces of living cells, demonstrating its potential utility in biological research. AU - Zenmyo, Naoki AU - Tokumaru, Hiroki AU - Uchinomiya, Shohei AU - Fuchida, Hirokazu AU - Tabata, Shigekazu AU - Hamachi, Itaru AU - Shigemoto, Ryuichi AU - Ojida, Akio ID - 6659 IS - 5 JF - Bulletin of the Chemical Society of Japan SN - 00092673 TI - Optimized reaction pair of the CysHis tag and Ni(II)-NTA probe for highly selective chemical labeling of membrane proteins VL - 92 ER - TY - JOUR AB - In phase retrieval, we want to recover an unknown signal 𝑥∈ℂ𝑑 from n quadratic measurements of the form 𝑦𝑖=|⟨𝑎𝑖,𝑥⟩|2+𝑤𝑖, where 𝑎𝑖∈ℂ𝑑 are known sensing vectors and 𝑤𝑖 is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n needed to produce an estimator 𝑥^(𝑦) that is positively correlated with the signal 𝑥? We consider the case of Gaussian vectors 𝑎𝑎𝑖. We prove that—in the high-dimensional limit—a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For 𝑛≤𝑑−𝑜(𝑑), no estimator can do significantly better than random and achieve a strictly positive correlation. For 𝑛≥𝑑+𝑜(𝑑), a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theoretic arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper bound and lower bound generalize beyond phase retrieval to measurements 𝑦𝑖 produced according to a generalized linear model. As a by-product of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm. AU - Mondelli, Marco AU - Montanari, Andrea ID - 6662 IS - 3 JF - Foundations of Computational Mathematics TI - Fundamental limits of weak recovery with applications to phase retrieval VL - 19 ER - TY - JOUR AB - The construction of anisotropic triangulations is desirable for various applications, such as the numerical solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram. This structure has been implemented and was shown to lead to good triangulations in $\mathbb{R}^2$ and on surfaces embedded in $\mathbb{R}^3$ as detailed in our experimental companion paper. In this paper, we study theoretical aspects of our structure. Given a finite set of points $\mathcal{P}$ in a domain $\Omega$ equipped with a Riemannian metric, we compare the discrete Riemannian Voronoi diagram of $\mathcal{P}$ to its Riemannian Voronoi diagram. Both diagrams have dual structures called the discrete Riemannian Delaunay and the Riemannian Delaunay complex. We provide conditions that guarantee that these dual structures are identical. It then follows from previous results that the discrete Riemannian Delaunay complex can be embedded in $\Omega$ under sufficient conditions, leading to an anisotropic triangulation with curved simplices. Furthermore, we show that, under similar conditions, the simplices of this triangulation can be straightened. AU - Boissonnat, Jean-Daniel AU - Rouxel-Labbé, Mael AU - Wintraecken, Mathijs ID - 6672 IS - 3 JF - SIAM Journal on Computing SN - 0097-5397 TI - Anisotropic triangulations via discrete Riemannian Voronoi diagrams VL - 48 ER - TY - CONF AB - A Valued Constraint Satisfaction Problem (VCSP) provides a common framework that can express a wide range of discrete optimization problems. A VCSP instance is given by a finite set of variables, a finite domain of labels, and an objective function to be minimized. This function is represented as a sum of terms where each term depends on a subset of the variables. To obtain different classes of optimization problems, one can restrict all terms to come from a fixed set Γ of cost functions, called a language. Recent breakthrough results have established a complete complexity classification of such classes with respect to language Γ: if all cost functions in Γ satisfy a certain algebraic condition then all Γ-instances can be solved in polynomial time, otherwise the problem is NP-hard. Unfortunately, testing this condition for a given language Γ is known to be NP-hard. We thus study exponential algorithms for this meta-problem. We show that the tractability condition of a finite-valued language Γ can be tested in O(3‾√3|D|⋅poly(size(Γ))) time, where D is the domain of Γ and poly(⋅) is some fixed polynomial. We also obtain a matching lower bound under the Strong Exponential Time Hypothesis (SETH). More precisely, we prove that for any constant δ<1 there is no O(3‾√3δ|D|) algorithm, assuming that SETH holds. AU - Kolmogorov, Vladimir ID - 6725 SN - 1868-8969 T2 - 46th International Colloquium on Automata, Languages and Programming TI - Testing the complexity of a valued CSP language VL - 132 ER - TY - CHAP AB - Randomness is an essential part of any secure cryptosystem, but many constructions rely on distributions that are not uniform. This is particularly true for lattice based cryptosystems, which more often than not make use of discrete Gaussian distributions over the integers. For practical purposes it is crucial to evaluate the impact that approximation errors have on the security of a scheme to provide the best possible trade-off between security and performance. Recent years have seen surprising results allowing to use relatively low precision while maintaining high levels of security. A key insight in these results is that sampling a distribution with low relative error can provide very strong security guarantees. Since floating point numbers provide guarantees on the relative approximation error, they seem a suitable tool in this setting, but it is not obvious which sampling algorithms can actually profit from them. While previous works have shown that inversion sampling can be adapted to provide a low relative error (Pöppelmann et al., CHES 2014; Prest, ASIACRYPT 2017), other works have called into question if this is possible for other sampling techniques (Zheng et al., Eprint report 2018/309). In this work, we consider all sampling algorithms that are popular in the cryptographic setting and analyze the relationship of floating point precision and the resulting relative error. We show that all of the algorithms either natively achieve a low relative error or can be adapted to do so. AU - Walter, Michael ED - Buchmann, J ED - Nitaj, A ED - Rachidi, T ID - 6726 SN - 0302-9743 T2 - Progress in Cryptology – AFRICACRYPT 2019 TI - Sampling the integers with low relative error VL - 11627 ER - TY - JOUR AB - Consider the problem of constructing a polar code of block length N for a given transmission channel W. Previous approaches require one to compute the reliability of the N synthetic channels and then use only those that are sufficiently reliable. However, we know from two independent works by Schürch and by Bardet et al. that the synthetic channels are partially ordered with respect to degradation. Hence, it is natural to ask whether the partial order can be exploited to reduce the computational burden of the construction problem. We show that, if we take advantage of the partial order, we can construct a polar code by computing the reliability of roughly a fraction 1/ log 3/2 N of the synthetic channels. In particular, we prove that N/ log 3/2 N is a lower bound on the number of synthetic channels to be considered and such a bound is tight up to a multiplicative factor log log N. This set of roughly N/ log 3/2 N synthetic channels is universal, in the sense that it allows one to construct polar codes for any W, and it can be identified by solving a maximum matching problem on a bipartite graph. Our proof technique consists of reducing the construction problem to the problem of computing the maximum cardinality of an antichain for a suitable partially ordered set. As such, this method is general, and it can be used to further improve the complexity of the construction problem, in case a refined partial order on the synthetic channels of polar codes is discovered. AU - Mondelli, Marco AU - Hassani, Hamed AU - Urbanke, Rudiger ID - 6663 IS - 5 JF - IEEE TI - Construction of polar codes with sublinear complexity VL - 65 ER - TY - CONF AB - We establish connections between the problem of learning a two-layer neural network and tensor decomposition. We consider a model with feature vectors x∈ℝd, r hidden units with weights {wi}1≤i≤r and output y∈ℝ, i.e., y=∑ri=1σ(w𝖳ix), with activation functions given by low-degree polynomials. In particular, if σ(x)=a0+a1x+a3x3, we prove that no polynomial-time learning algorithm can outperform the trivial predictor that assigns to each example the response variable 𝔼(y), when d3/2≪r≪d2. Our conclusion holds for a `natural data distribution', namely standard Gaussian feature vectors x, and output distributed according to a two-layer neural network with random isotropic weights, and under a certain complexity-theoretic assumption on tensor decomposition. Roughly speaking, we assume that no polynomial-time algorithm can substantially outperform current methods for tensor decomposition based on the sum-of-squares hierarchy. We also prove generalizations of this statement for higher degree polynomial activations, and non-random weight vectors. Remarkably, several existing algorithms for learning two-layer networks with rigorous guarantees are based on tensor decomposition. Our results support the idea that this is indeed the core computational difficulty in learning such networks, under the stated generative model for the data. As a side result, we show that under this model learning the network requires accurate learning of its weights, a property that does not hold in a more general setting. AU - Mondelli, Marco AU - Montanari, Andrea ID - 6747 T2 - Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics TI - On the connection between learning two-layers neural networks and tensor decomposition VL - 89 ER - TY - JOUR AB - Polar codes have gained extensive attention during the past few years and recently they have been selected for the next generation of wireless communications standards (5G). Successive-cancellation-based (SC-based) decoders, such as SC list (SCL) and SC flip (SCF), provide a reasonable error performance for polar codes at the cost of low decoding speed. Fast SC-based decoders, such as Fast-SSC, Fast-SSCL, and Fast-SSCF, identify the special constituent codes in a polar code graph off-line, produce a list of operations, store the list in memory, and feed the list to the decoder to decode the constituent codes in order efficiently, thus increasing the decoding speed. However, the list of operations is dependent on the code rate and as the rate changes, a new list is produced, making fast SC-based decoders not rate-flexible. In this paper, we propose a completely rate-flexible fast SC-based decoder by creating the list of operations directly in hardware, with low implementation complexity. We further propose a hardware architecture implementing the proposed method and show that the area occupation of the rate-flexible fast SC-based decoder in this paper is only 38% of the total area of the memory-based base-line decoder when 5G code rates are supported. AU - Hashemi, Seyyed Ali AU - Condo, Carlo AU - Mondelli, Marco AU - Gross, Warren J ID - 6750 IS - 22 JF - IEEE Transactions on Signal Processing SN - 1053587X TI - Rate-flexible fast polar decoders VL - 67 ER - TY - JOUR AB - We consider the graph class Grounded-L corresponding to graphs that admit an intersection representation by L-shaped curves, where additionally the topmost points of each curve are assumed to belong to a common horizontal line. We prove that Grounded-L graphs admit an equivalent characterisation in terms of vertex ordering with forbidden patterns. We also compare this class to related intersection classes, such as the grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or the outer-1-string graphs. We give constructions showing that these classes are all distinct and satisfy only trivial or previously known inclusions. AU - Jelínek, Vít AU - Töpfer, Martin ID - 6759 IS - 3 JF - Electronic Journal of Combinatorics TI - On grounded L-graphs and their relatives VL - 26 ER - TY - CONF AB - In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the qualitative winner or quantitative payoff of the game. In bidding games, in each turn, we hold an auction between the two players to determine which player moves the token. Bidding games have largely been studied with concrete bidding mechanisms that are variants of a first-price auction: in each turn both players simultaneously submit bids, the higher bidder moves the token, and pays his bid to the lower bidder in Richman bidding, to the bank in poorman bidding, and in taxman bidding, the bid is split between the other player and the bank according to a predefined constant factor. Bidding games are deterministic games. They have an intriguing connection with a fragment of stochastic games called randomturn games. We study, for the first time, a combination of bidding games with probabilistic behavior; namely, we study bidding games that are played on Markov decision processes, where the players bid for the right to choose the next action, which determines the probability distribution according to which the next vertex is chosen. We study parity and meanpayoff bidding games on MDPs and extend results from the deterministic bidding setting to the probabilistic one. AU - Avni, Guy AU - Henzinger, Thomas A AU - Ibsen-Jensen, Rasmus AU - Novotny, Petr ID - 6822 SN - 0302-9743 T2 - Proceedings of the 13th International Conference of Reachability Problems TI - Bidding games on Markov decision processes VL - 11674 ER - TY - CONF AB - The fundamental model-checking problem, given as input a model and a specification, asks for the algorithmic verification of whether the model satisfies the specification. Two classical models for reactive systems are graphs and Markov decision processes (MDPs). A basic specification formalism in the verification of reactive systems is the strong fairness (aka Streett) objective, where given different types of requests and corresponding grants, the requirement is that for each type, if the request event happens infinitely often, then the corresponding grant event must also happen infinitely often. All omega-regular objectives can be expressed as Streett objectives and hence they are canonical in verification. Consider graphs/MDPs with n vertices, m edges, and a Streett objectives with k pairs, and let b denote the size of the description of the Streett objective for the sets of requests and grants. The current best-known algorithm for the problem requires time O(min(n^2, m sqrt{m log n}) + b log n). In this work we present randomized near-linear time algorithms, with expected running time O~(m + b), where the O~ notation hides poly-log factors. Our randomized algorithms are near-linear in the size of the input, and hence optimal up to poly-log factors. AU - Chatterjee, Krishnendu AU - Dvorák, Wolfgang AU - Henzinger, Monika H AU - Svozil, Alexander ID - 6887 T2 - Leibniz International Proceedings in Informatics TI - Near-linear time algorithms for Streett objectives in graphs and MDPs VL - 140 ER - TY - CONF AB - In this paper, we design novel liquid time-constant recurrent neural networks for robotic control, inspired by the brain of the nematode, C. elegans. In the worm's nervous system, neurons communicate through nonlinear time-varying synaptic links established amongst them by their particular wiring structure. This property enables neurons to express liquid time-constants dynamics and therefore allows the network to originate complex behaviors with a small number of neurons. We identify neuron-pair communication motifs as design operators and use them to configure compact neuronal network structures to govern sequential robotic tasks. The networks are systematically designed to map the environmental observations to motor actions, by their hierarchical topology from sensory neurons, through recurrently-wired interneurons, to motor neurons. The networks are then parametrized in a supervised-learning scheme by a search-based algorithm. We demonstrate that obtained networks realize interpretable dynamics. We evaluate their performance in controlling mobile and arm robots, and compare their attributes to other artificial neural network-based control agents. Finally, we experimentally show their superior resilience to environmental noise, compared to the existing machine learning-based methods. AU - Lechner, Mathias AU - Hasani, Ramin AU - Zimmer, Manuel AU - Henzinger, Thomas A AU - Grosu, Radu ID - 6888 SN - 9781538660270 T2 - Proceedings - IEEE International Conference on Robotics and Automation TI - Designing worm-inspired neural networks for interpretable robotic control VL - 2019-May ER - TY - CONF AB - In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner of the game. Such games are central in formal methods since they model the interaction between a non-terminating system and its environment. In bidding games the players bid for the right to move the token: in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Bidding games are known to have a clean and elegant mathematical structure that relies on the ability of the players to submit arbitrarily small bids. Many applications, however, require a fixed granularity for the bids, which can represent, for example, the monetary value expressed in cents. We study, for the first time, the combination of discrete-bidding and infinite-duration games. Our most important result proves that these games form a large determined subclass of concurrent games, where determinacy is the strong property that there always exists exactly one player who can guarantee winning the game. In particular, we show that, in contrast to non-discrete bidding games, the mechanism with which tied bids are resolved plays an important role in discrete-bidding games. We study several natural tie-breaking mechanisms and show that, while some do not admit determinacy, most natural mechanisms imply determinacy for every pair of initial budgets. AU - Aghajohari, Milad AU - Avni, Guy AU - Henzinger, Thomas A ID - 6886 TI - Determinacy in discrete-bidding infinite-duration games VL - 140 ER - TY - CONF AB - A vector addition system with states (VASS) consists of a finite set of states and counters. A configuration is a state and a value for each counter; a transition changes the state and each counter is incremented, decremented, or left unchanged. While qualitative properties such as state and configuration reachability have been studied for VASS, we consider the long-run average cost of infinite computations of VASS. The cost of a configuration is for each state, a linear combination of the counter values. In the special case of uniform cost functions, the linear combination is the same for all states. The (regular) long-run emptiness problem is, given a VASS, a cost function, and a threshold value, if there is a (lasso-shaped) computation such that the long-run average value of the cost function does not exceed the threshold. For uniform cost functions, we show that the regular long-run emptiness problem is (a) decidable in polynomial time for integer-valued VASS, and (b) decidable but nonelementarily hard for natural-valued VASS (i.e., nonnegative counters). For general cost functions, we show that the problem is (c) NP-complete for integer-valued VASS, and (d) undecidable for natural-valued VASS. Our most interesting result is for (c) integer-valued VASS with general cost functions, where we establish a connection between the regular long-run emptiness problem and quadratic Diophantine inequalities. The general (nonregular) long-run emptiness problem is equally hard as the regular problem in all cases except (c), where it remains open. AU - Chatterjee, Krishnendu AU - Henzinger, Thomas A AU - Otop, Jan ID - 6885 TI - Long-run average behavior of vector addition systems with states VL - 140 ER - TY - CONF AB - We study Markov decision processes and turn-based stochastic games with parity conditions. There are three qualitative winning criteria, namely, sure winning, which requires all paths to satisfy the condition, almost-sure winning, which requires the condition to be satisfied with probability 1, and limit-sure winning, which requires the condition to be satisfied with probability arbitrarily close to 1. We study the combination of two of these criteria for parity conditions, e.g., there are two parity conditions one of which must be won surely, and the other almost-surely. The problem has been studied recently by Berthon et al. for MDPs with combination of sure and almost-sure winning, under infinite-memory strategies, and the problem has been established to be in NP cap co-NP. Even in MDPs there is a difference between finite-memory and infinite-memory strategies. Our main results for combination of sure and almost-sure winning are as follows: (a) we show that for MDPs with finite-memory strategies the problem is in NP cap co-NP; (b) we show that for turn-based stochastic games the problem is co-NP-complete, both for finite-memory and infinite-memory strategies; and (c) we present algorithmic results for the finite-memory case, both for MDPs and turn-based stochastic games, by reduction to non-stochastic parity games. In addition we show that all the above complexity results also carry over to combination of sure and limit-sure winning, and results for all other combinations can be derived from existing results in the literature. Thus we present a complete picture for the study of combinations of two qualitative winning criteria for parity conditions in MDPs and turn-based stochastic games. AU - Chatterjee, Krishnendu AU - Piterman, Nir ID - 6889 TI - Combinations of Qualitative Winning for Stochastic Parity Games VL - 140 ER - TY - CONF AB - Consider a distributed system with n processors out of which f can be Byzantine faulty. In the approximate agreement task, each processor i receives an input value xi and has to decide on an output value yi such that 1. the output values are in the convex hull of the non-faulty processors’ input values, 2. the output values are within distance d of each other. Classically, the values are assumed to be from an m-dimensional Euclidean space, where m ≥ 1. In this work, we study the task in a discrete setting, where input values with some structure expressible as a graph. Namely, the input values are vertices of a finite graph G and the goal is to output vertices that are within distance d of each other in G, but still remain in the graph-induced convex hull of the input values. For d = 0, the task reduces to consensus and cannot be solved with a deterministic algorithm in an asynchronous system even with a single crash fault. For any d ≥ 1, we show that the task is solvable in asynchronous systems when G is chordal and n > (ω + 1)f, where ω is the clique number of G. In addition, we give the first Byzantine-tolerant algorithm for a variant of lattice agreement. For synchronous systems, we show tight resilience bounds for the exact variants of these and related tasks over a large class of combinatorial structures. AU - Nowak, Thomas AU - Rybicki, Joel ID - 6931 KW - consensus KW - approximate agreement KW - Byzantine faults KW - chordal graphs KW - lattice agreement T2 - 33rd International Symposium on Distributed Computing TI - Byzantine approximate agreement on graphs VL - 146 ER - TY - CONF AB - In this paper, we introduce a novel method to interpret recurrent neural networks (RNNs), particularly long short-term memory networks (LSTMs) at the cellular level. We propose a systematic pipeline for interpreting individual hidden state dynamics within the network using response characterization methods. The ranked contribution of individual cells to the network's output is computed by analyzing a set of interpretable metrics of their decoupled step and sinusoidal responses. As a result, our method is able to uniquely identify neurons with insightful dynamics, quantify relationships between dynamical properties and test accuracy through ablation analysis, and interpret the impact of network capacity on a network's dynamical distribution. Finally, we demonstrate the generalizability and scalability of our method by evaluating a series of different benchmark sequential datasets. AU - Hasani, Ramin AU - Amini, Alexander AU - Lechner, Mathias AU - Naser, Felix AU - Grosu, Radu AU - Rus, Daniela ID - 6985 SN - 9781728119854 T2 - Proceedings of the International Joint Conference on Neural Networks TI - Response characterization for auditing cell dynamics in long short-term memory networks ER - TY - JOUR AB - We consider the primitive relay channel, where the source sends a message to the relay and to the destination, and the relay helps the communication by transmitting an additional message to the destination via a separate channel. Two well-known coding techniques have been introduced for this setting: decode-and-forward and compress-and-forward. In decode-and-forward, the relay completely decodes the message and sends some information to the destination; in compress-and-forward, the relay does not decode, and it sends a compressed version of the received signal to the destination using Wyner–Ziv coding. In this paper, we present a novel coding paradigm that provides an improved achievable rate for the primitive relay channel. The idea is to combine compress-and-forward and decode-and-forward via a chaining construction. We transmit over pairs of blocks: in the first block, we use compress-and-forward; and, in the second block, we use decode-and-forward. More specifically, in the first block, the relay does not decode, it compresses the received signal via Wyner–Ziv, and it sends only part of the compression to the destination. In the second block, the relay completely decodes the message, it sends some information to the destination, and it also sends the remaining part of the compression coming from the first block. By doing so, we are able to strictly outperform both compress-and-forward and decode-and-forward. Note that the proposed coding scheme can be implemented with polar codes. As such, it has the typical attractive properties of polar coding schemes, namely, quasi-linear encoding and decoding complexity, and error probability that decays at super-polynomial speed. As a running example, we take into account the special case of the erasure relay channel, and we provide a comparison between the rates achievable by our proposed scheme and the existing upper and lower bounds. AU - Mondelli, Marco AU - Hassani, S. Hamed AU - Urbanke, Rüdiger ID - 7007 IS - 10 JF - Algorithms SN - 1999-4893 TI - A new coding paradigm for the primitive relay channel VL - 12 ER - TY - CONF AB - The aim of this short note is to expound one particular issue that was discussed during the talk [10] given at the symposium ”Researches on isometries as preserver problems and related topics” at Kyoto RIMS. That is, the role of Dirac masses by describing the isometry group of various metric spaces of probability measures. This article is of survey character, and it does not contain any essentially new results.From an isometric point of view, in some cases, metric spaces of measures are similar to C(K)-type function spaces. Similarity means here that their isometries are driven by some nice transformations of the underlying space. Of course, it depends on the particular choice of the metric how nice these transformations should be. Sometimes, as we will see, being a homeomorphism is enough to generate an isometry. But sometimes we need more: the transformation must preserve the underlying distance as well. Statements claiming that isometries in questions are necessarily induced by homeomorphisms are called Banach-Stone-type results, while results asserting that the underlying transformation is necessarily an isometry are termed as isometric rigidity results.As Dirac masses can be considered as building bricks of the set of all Borel measures, a natural question arises:Is it enough to understand how an isometry acts on the set of Dirac masses? Does this action extend uniquely to all measures?In what follows, we will thoroughly investigate this question. AU - Geher, Gyorgy Pal AU - Titkos, Tamas AU - Virosztek, Daniel ID - 7035 T2 - Kyoto RIMS Kôkyûroku TI - Dirac masses and isometric rigidity VL - 2125 ER - TY - JOUR AB - A recent class of topological nodal-line semimetals with the general formula MSiX (M = Zr, Hf and X = S, Se, Te) has attracted much experimental and theoretical interest due to their properties, particularly their large magnetoresistances and high carrier mobilities. The plateletlike nature of the MSiX crystals and their extremely low residual resistivities make measurements of the resistivity along the [001] direction extremely challenging. To accomplish such measurements, microstructures of single crystals were prepared using focused ion beam techniques. Microstructures prepared in this manner have very well-defined geometries and maintain their high crystal quality, verified by the observations of quantum oscillations. We present magnetoresistance and quantum oscillation data for currents applied along both [001] and [100] in ZrSiS and ZrSiSe, which are consistent with the nontrivial topology of the Dirac line-node, as determined by a measured π Berry phase. Surprisingly, we find that, despite the three dimensional nature of both the Fermi surfaces of ZrSiS and ZrSiSe, both the resistivity anisotropy under applied magnetic fields and the in-plane angular dependent magnetoresistance differ considerably between the two compounds. Finally, we discuss the role microstructuring can play in the study of these materials and our ability to make these microstructures free-standing. AU - Shirer, Kent R. AU - Modic, Kimberly A AU - Zimmerling, Tino AU - Bachmann, Maja D. AU - König, Markus AU - Moll, Philip J. W. AU - Schoop, Leslie AU - Mackenzie, Andrew P. ID - 7055 IS - 10 JF - APL Materials SN - 2166-532X TI - Out-of-plane transport in ZrSiS and ZrSiSe microstructures VL - 7 ER - TY - JOUR AB - We present a high magnetic field study of NbP—a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be “topologically trivial” due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B* (≈32 T), τ/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n = 0 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are “not quite” WSMs in zero magnetic field. AU - Modic, Kimberly A AU - Meng, Tobias AU - Ronning, Filip AU - Bauer, Eric D. AU - Moll, Philip J. W. AU - Ramshaw, B. J. ID - 7057 IS - 1 JF - Scientific Reports SN - 2045-2322 TI - Thermodynamic signatures of Weyl fermions in NbP VL - 9 ER - TY - JOUR AB - In the Ca1−x La x FeAs2 (1 1 2) family of pnictide superconductors, we have investigated a highly overdoped composition (x  =  0.56), prepared by a high-pressure, high-temperature synthesis. Magnetic measurements show an antiferromagnetic transition at T N  =  120 K, well above the one at lower doping (0.15  <  x  <  0.27). Below the onset of long-range magnetic order at T N, the electrical resistivity is strongly reduced and is dominated by electron–electron interactions, as evident from its temperature dependence. The Seebeck coefficient shows a clear metallic behavior as in narrow band conductors. The temperature dependence of the Hall coefficient and the violation of Kohler's rule agree with the multiband character of the material. No superconductivity was observed down to 1.8 K. The success of the high-pressure synthesis encourages further investigations of the so far only partially explored phase diagram in this family of Iron-based high temperature superconductors. AU - Martino, Edoardo AU - Bachmann, Maja D AU - Rossi, Lidia AU - Modic, Kimberly A AU - Zivkovic, Ivica AU - Rønnow, Henrik M AU - Moll, Philip J W AU - Akrap, Ana AU - Forró, László AU - Katrych, Sergiy ID - 7056 IS - 48 JF - Journal of Physics: Condensed Matter SN - 0953-8984 TI - Persistent antiferromagnetic order in heavily overdoped Ca1−x La x FeAs2 VL - 31 ER - TY - JOUR AB - Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches exist for spatially modulating their properties. In this study, we demonstrate disorder-free control, on the micrometer scale, over the superconducting state in samples of the heavy-fermion superconductor CeIrIn5. We pattern crystals by focused ion beam milling to tailor the boundary conditions for the elastic deformation upon thermal contraction during cooling. The resulting nonuniform strain fields induce complex patterns of superconductivity, owing to the strong dependence of the transition temperature on the strength and direction of strain. These results showcase a generic approach to manipulating electronic order on micrometer length scales in strongly correlated matter without compromising the cleanliness, stoichiometry, or mean free path. AU - Bachmann, Maja D. AU - Ferguson, G. M. AU - Theuss, Florian AU - Meng, Tobias AU - Putzke, Carsten AU - Helm, Toni AU - Shirer, K. R. AU - Li, You-Sheng AU - Modic, Kimberly A AU - Nicklas, Michael AU - König, Markus AU - Low, D. AU - Ghosh, Sayak AU - Mackenzie, Andrew P. AU - Arnold, Frank AU - Hassinger, Elena AU - McDonald, Ross D. AU - Winter, Laurel E. AU - Bauer, Eric D. AU - Ronning, Filip AU - Ramshaw, B. J. AU - Nowack, Katja C. AU - Moll, Philip J. W. ID - 7082 IS - 6462 JF - Science SN - 0036-8075 TI - Spatial control of heavy-fermion superconductivity in CeIrIn5 VL - 366 ER - TY - JOUR AB - Loss of functional cardiomyocytes is a major determinant of heart failure after myocardial infarction. Previous high throughput screening studies have identified a few microRNAs (miRNAs) that can induce cardiomyocyte proliferation and stimulate cardiac regeneration in mice. Here, we show that all of the most effective of these miRNAs activate nuclear localization of the master transcriptional cofactor Yes-associated protein (YAP) and induce expression of YAP-responsive genes. In particular, miR-199a-3p directly targets two mRNAs coding for proteins impinging on the Hippo pathway, the upstream YAP inhibitory kinase TAOK1, and the E3 ubiquitin ligase β-TrCP, which leads to YAP degradation. Several of the pro-proliferative miRNAs (including miR-199a-3p) also inhibit filamentous actin depolymerization by targeting Cofilin2, a process that by itself activates YAP nuclear translocation. Thus, activation of YAP and modulation of the actin cytoskeleton are major components of the pro-proliferative action of miR-199a-3p and other miRNAs that induce cardiomyocyte proliferation. AU - Torrini, Consuelo AU - Cubero, Ryan J AU - Dirkx, Ellen AU - Braga, Luca AU - Ali, Hashim AU - Prosdocimo, Giulia AU - Gutierrez, Maria Ines AU - Collesi, Chiara AU - Licastro, Danilo AU - Zentilin, Lorena AU - Mano, Miguel AU - Zacchigna, Serena AU - Vendruscolo, Michele AU - Marsili, Matteo AU - Samal, Areejit AU - Giacca, Mauro ID - 7128 IS - 9 JF - Cell Reports KW - cardiomyocyte KW - cell cycle KW - Cofilin2 KW - cytoskeleton KW - Hippo KW - microRNA KW - regeneration KW - YAP SN - 2211-1247 TI - Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation VL - 27 ER - TY - JOUR AB - We show that statistical criticality, i.e. the occurrence of power law frequency distributions, arises in samples that are maximally informative about the underlying generating process. In order to reach this conclusion, we first identify the frequency with which different outcomes occur in a sample, as the variable carrying useful information on the generative process. The entropy of the frequency, that we call relevance, provides an upper bound to the number of informative bits. This differs from the entropy of the data, that we take as a measure of resolution. Samples that maximise relevance at a given resolution—that we call maximally informative samples—exhibit statistical criticality. In particular, Zipf's law arises at the optimal trade-off between resolution (i.e. compression) and relevance. As a byproduct, we derive a bound of the maximal number of parameters that can be estimated from a dataset, in the absence of prior knowledge on the generative model. Furthermore, we relate criticality to the statistical properties of the representation of the data generating process. We show that, as a consequence of the concentration property of the asymptotic equipartition property, representations that are maximally informative about the data generating process are characterised by an exponential distribution of energy levels. This arises from a principle of minimal entropy, that is conjugate of the maximum entropy principle in statistical mechanics. This explains why statistical criticality requires no parameter fine tuning in maximally informative samples. AU - Cubero, Ryan J AU - Jo, Junghyo AU - Marsili, Matteo AU - Roudi, Yasser AU - Song, Juyong ID - 7130 IS - 6 JF - Journal of Statistical Mechanics: Theory and Experiment KW - optimization under uncertainty KW - source coding KW - large deviation SN - 1742-5468 TI - Statistical criticality arises in most informative representations VL - 2019 ER - TY - JOUR AB - In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n1−2/ω) round matrix multiplication algorithm, where ω<2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: 1. triangle and 4-cycle counting in O(n0.158) rounds, improving upon the O(n1/3) algorithm of Dolev et al. [DISC 2012], 2. a (1+o(1))-approximation of all-pairs shortest paths in O(n0.158) rounds, improving upon the O~(n1/2)-round (2+o(1))-approximation algorithm given by Nanongkai [STOC 2014], and 3. computing the girth in O(n0.158) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles. AU - Censor-Hillel, Keren AU - Kaski, Petteri AU - Korhonen, Janne AU - Lenzen, Christoph AU - Paz, Ami AU - Suomela, Jukka ID - 7150 IS - 6 JF - Distributed Computing SN - 0178-2770 TI - Algebraic methods in the congested clique VL - 32 ER - TY - BOOK AB - Wissen Sie, was sich hinter künstlicher Intelligenz und maschinellem Lernen verbirgt? Dieses Sachbuch erklärt Ihnen leicht verständlich und ohne komplizierte Formeln die grundlegenden Methoden und Vorgehensweisen des maschinellen Lernens. Mathematisches Vorwissen ist dafür nicht nötig. Kurzweilig und informativ illustriert Lisa, die Protagonistin des Buches, diese anhand von Alltagssituationen. Ein Buch für alle, die in Diskussionen über Chancen und Risiken der aktuellen Entwicklung der künstlichen Intelligenz und des maschinellen Lernens mit Faktenwissen punkten möchten. Auch für Schülerinnen und Schüler geeignet! ED - Kersting, Kristian ED - Lampert, Christoph ED - Rothkopf, Constantin ID - 7171 SN - 978-3-658-26762-9 TI - Wie Maschinen Lernen: Künstliche Intelligenz Verständlich Erklärt ER - TY - JOUR AB - Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its formation mechanism remains unclear. We show that disproportionation of superoxide, the product or intermediate on discharge and charge, to peroxide and oxygen is responsible for 1O2 formation. While the overall reaction is driven by the stability of peroxide and thus favored by stronger Lewis acidic cations such as Li+, the 1O2 fraction is enhanced by weak Lewis acids such as organic cations. Concurrently, the metal peroxide yield drops with increasing 1O2. The results explain a major parasitic pathway during cell cycling and the growing severity in K–, Na–, and Li–O2 cells based on the growing propensity for disproportionation. High capacities and rates with peroxides are now realized to require solution processes, which form peroxide or release O2via disproportionation. The results therefore establish the central dilemma that disproportionation is required for high capacity but also responsible for irreversible reactions. Highly reversible cell operation requires hence finding reaction routes that avoid disproportionation. AU - Mourad, Eléonore AU - Petit, Yann K. AU - Spezia, Riccardo AU - Samojlov, Aleksej AU - Summa, Francesco F. AU - Prehal, Christian AU - Leypold, Christian AU - Mahne, Nika AU - Slugovc, Christian AU - Fontaine, Olivier AU - Brutti, Sergio AU - Freunberger, Stefan Alexander ID - 7275 IS - 8 JF - Energy & Environmental Science SN - 1754-5692 TI - Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries VL - 12 ER - TY - JOUR AB - Non-aqueous lithium-oxygen batteries cycle by forming lithium peroxide during discharge and oxidizing it during recharge. The significant problem of oxidizing the solid insulating lithium peroxide can greatly be facilitated by incorporating redox mediators that shuttle electron-holes between the porous substrate and lithium peroxide. Redox mediator stability is thus key for energy efficiency, reversibility, and cycle life. However, the gradual deactivation of redox mediators during repeated cycling has not conclusively been explained. Here, we show that organic redox mediators are predominantly decomposed by singlet oxygen that forms during cycling. Their reaction with superoxide, previously assumed to mainly trigger their degradation, peroxide, and dioxygen, is orders of magnitude slower in comparison. The reduced form of the mediator is markedly more reactive towards singlet oxygen than the oxidized form, from which we derive reaction mechanisms supported by density functional theory calculations. Redox mediators must thus be designed for stability against singlet oxygen. AU - Kwak, Won-Jin AU - Kim, Hun AU - Petit, Yann K. AU - Leypold, Christian AU - Nguyen, Trung Thien AU - Mahne, Nika AU - Redfern, Paul AU - Curtiss, Larry A. AU - Jung, Hun-Gi AU - Borisov, Sergey M. AU - Freunberger, Stefan Alexander AU - Sun, Yang-Kook ID - 7280 JF - Nature Communications SN - 2041-1723 TI - Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen VL - 10 ER - TY - JOUR AB - Singlet oxygen (1O2) causes a major fraction of the parasitic chemistry during the cycling of non‐aqueous alkali metal‐O2 batteries and also contributes to interfacial reactivity of transition‐metal oxide intercalation compounds. We introduce DABCOnium, the mono alkylated form of 1,4‐diazabicyclo[2.2.2]octane (DABCO), as an efficient 1O2 quencher with an unusually high oxidative stability of ca. 4.2 V vs. Li/Li+. Previous quenchers are strongly Lewis basic amines with too low oxidative stability. DABCOnium is an ionic liquid, non‐volatile, highly soluble in the electrolyte, stable against superoxide and peroxide, and compatible with lithium metal. The electrochemical stability covers the required range for metal–O2 batteries and greatly reduces 1O2 related parasitic chemistry as demonstrated for the Li–O2 cell. AU - Petit, Yann K. AU - Leypold, Christian AU - Mahne, Nika AU - Mourad, Eléonore AU - Schafzahl, Lukas AU - Slugovc, Christian AU - Borisov, Sergey M. AU - Freunberger, Stefan Alexander ID - 7276 IS - 20 JF - Angewandte Chemie International Edition SN - 1433-7851 TI - DABCOnium: An efficient and high-voltage stable singlet oxygen quencher for metal-O2 cells VL - 58 ER - TY - JOUR AB - Li–O2 batteries are plagued by side reactions that cause poor rechargeability and efficiency. These reactions were recently revealed to be predominantly caused by singlet oxygen, which can be neutralized by chemical traps or physical quenchers. However, traps are irreversibly consumed and thus only active for a limited time, and so far identified quenchers lack oxidative stability to be suitable for typically required recharge potentials. Thus, reducing the charge potential within the stability limit of the quencher and/or finding more stable quenchers is required. Here, we show that dimethylphenazine as a redox mediator decreases the charge potential well within the stability limit of the quencher 1,4-diazabicyclo[2.2.2]octane. The quencher can thus mitigate the parasitic reactions without being oxidatively decomposed. At the same time the quencher protects the redox mediator from singlet oxygen attack. The mutual conservation of the redox mediator and the quencher is rational for stable and effective Li–O2 batteries. AU - Kwak, Won-Jin AU - Freunberger, Stefan Alexander AU - Kim, Hun AU - Park, Jiwon AU - Nguyen, Trung Thien AU - Jung, Hun-Gi AU - Byon, Hye Ryung AU - Sun, Yang-Kook ID - 7281 IS - 11 JF - ACS Catalysis SN - 2155-5435 TI - Mutual conservation of redox mediator and singlet oxygen quencher in Lithium–Oxygen batteries VL - 9 ER - TY - JOUR AB - Interphases that form on the anode surface of lithium-ion batteries are critical for performance and lifetime, but are poorly understood. Now, a decade-old misconception regarding a main component of the interphase has been revealed, which could potentially lead to improved devices. AU - Freunberger, Stefan Alexander ID - 7282 IS - 9 JF - Nature Chemistry SN - 1755-4330 TI - Interphase identity crisis VL - 11 ER - TY - JOUR AB - Potassium–air batteries, which suffer from oxygen cathode and potassium metal anode degradation, can be cycled thousands of times when an organic anode replaces the metal. AU - Petit, Yann K. AU - Freunberger, Stefan Alexander ID - 7283 IS - 4 JF - Nature Materials SN - 1476-1122 TI - Thousands of cycles VL - 18 ER - TY - JOUR AB - In this issue of Joule, Dongmin Im and coworkers from Samsung in South Korea describe a prototype lithium-O2 battery that reaches ∼700 Wh kg–1 and ∼600 Wh L–1 on the cell level. They cut all components to the minimum to reach this value. Difficulties filling the pores with discharge product and inhomogeneous cell utilization turn out to limit the achievable energy. Their work underlines the importance of reporting performance with respect to full cell weight and volume. AU - Prehal, Christian AU - Freunberger, Stefan Alexander ID - 7284 IS - 2 JF - Joule SN - 2542-4351 TI - Li-O2 cell-scale energy densities VL - 3 ER - TY - GEN AB - Telencephalic organoids generated from human pluripotent stem cells (hPSCs) are emerging as an effective system to study the distinct features of the developing human brain and the underlying causes of many neurological disorders. While progress in organoid technology has been steadily advancing, many challenges remain including rampant batch-to-batch and cell line-to-cell line variability and irreproducibility. Here, we demonstrate that a major contributor to successful cortical organoid production is the manner in which hPSCs are maintained prior to differentiation. Optimal results were achieved using fibroblast-feeder-supported hPSCs compared to feeder-independent cells, related to differences in their transcriptomic states. Feeder-supported hPSCs display elevated activation of diverse TGFβ superfamily signaling pathways and increased expression of genes associated with naïve pluripotency. We further identify combinations of TGFβ-related growth factors that are necessary and together sufficient to impart broad telencephalic organoid competency to feeder-free hPSCs and enable reproducible formation of brain structures suitable for disease modeling. AU - Watanabe, Momoko AU - Haney, Jillian R. AU - Vishlaghi, Neda AU - Turcios, Felix AU - Buth, Jessie E. AU - Gu, Wen AU - Collier, Amanda J. AU - Miranda, Osvaldo AU - Chen, Di AU - Sabri, Shan AU - Clark, Amander T. AU - Plath, Kathrin AU - Christofk, Heather R. AU - Gandal, Michael J. AU - Novitch, Bennett G. ID - 7358 T2 - bioRxiv TI - TGFβ superfamily signaling regulates the state of human stem cell pluripotency and competency to create telencephalic organoids ER - TY - CONF AB - The genus g(G) of a graph G is the minimum g such that G has an embedding on the orientable surface M_g of genus g. A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z_2-genus of a graph G, denoted by g_0(G), is the minimum g such that G has an independently even drawing on M_g. By a result of Battle, Harary, Kodama and Youngs from 1962, the graph genus is additive over 2-connected blocks. In 2013, Schaefer and Stefankovic proved that the Z_2-genus of a graph is additive over 2-connected blocks as well, and asked whether this result can be extended to so-called 2-amalgamations, as an analogue of results by Decker, Glover, Huneke, and Stahl for the genus. We give the following partial answer. If G=G_1 cup G_2, G_1 and G_2 intersect in two vertices u and v, and G-u-v has k connected components (among which we count the edge uv if present), then |g_0(G)-(g_0(G_1)+g_0(G_2))|<=k+1. For complete bipartite graphs K_{m,n}, with n >= m >= 3, we prove that g_0(K_{m,n})/g(K_{m,n})=1-O(1/n). Similar results are proved also for the Euler Z_2-genus. We express the Z_2-genus of a graph using the minimum rank of partial symmetric matrices over Z_2; a problem that might be of independent interest. AU - Fulek, Radoslav AU - Kyncl, Jan ID - 7401 SN - 1868-8969 T2 - 35th International Symposium on Computational Geometry (SoCG 2019) TI - Z_2-Genus of graphs and minimum rank of partial symmetric matrices VL - 129 ER - TY - CHAP AB - We illustrate the ingredients of the state-of-the-art of model-based approach for the formal design and verification of cyber-physical systems. To capture the interaction between a discrete controller and its continuously evolving environment, we use the formal models of timed and hybrid automata. We explain the steps of modeling and verification in the tools Uppaal and SpaceEx using a case study based on a dual-chamber implantable pacemaker monitoring a human heart. We show how to design a model as a composition of components, how to construct models at varying levels of detail, how to establish that one model is an abstraction of another, how to specify correctness requirements using temporal logic, and how to verify that a model satisfies a logical requirement. AU - Alur, Rajeev AU - Giacobbe, Mirco AU - Henzinger, Thomas A AU - Larsen, Kim G. AU - Mikučionis, Marius ED - Steffen, Bernhard ED - Woeginger, Gerhard ID - 7453 SN - 1611-3349 T2 - Computing and Software Science TI - Continuous-time models for system design and analysis VL - 10000 ER - TY - JOUR AB - We report the fabrication of BaTiO3-Ni magnetoelectric nanocomposites comprising of BaTiO3 nanotubes surrounded by Ni matrix. BaTiO3 nanotubes obtained from the hydrothermal transformation of TiO2 have both inner and outer surfaces, which facilitates greater magnetoelectric coupling with the surrounding Ni matrix. The magnetoelectric coupling was studied by measuring the piezoelectric behavior in the presence of an in-plane direct magnetic field. A higher magnetoelectric voltage coefficient of 110 mV/cm·Oe was obtained, because of better coupling between Ni and BaTiO3 through the walls of the nanotubes. Such nanocomposite developed directly on Ti substrate may lead to efficient fabrication of magnetoelectric devices. AU - Vadla, Samba Siva AU - Costanzo, Tommaso AU - John, Subish AU - Caruntu, Gabriel AU - Roy, Somnath C. ID - 7459 JF - Scripta Materialia SN - 1359-6462 TI - Local probing of magnetoelectric coupling in BaTiO3-Ni 1–3 composites VL - 159 ER -