TY - JOUR AB - To understand star formation in galaxies, we investigate the star formation rate (SFR) surface density (ΣSFR) profiles for galaxies, based on a well-defined sample of 976 star-forming MaNGA galaxies. We find that the typical ΣSFR profiles within 1.5Re of normal SF galaxies can be well described by an exponential function for different stellar mass intervals, while the sSFR profile shows positive gradients, especially for more massive SF galaxies. This is due to the more pronounced central cores or bulges rather than the onset of a `quenching' process. While galaxies that lie significantly above (or below) the star formation main sequence (SFMS) show overall an elevation (or suppression) of ΣSFR at all radii, this central elevation (or suppression) is more pronounced in more massive galaxies. The degree of central enhancement and suppression is quite symmetric, suggesting that both the elevation and suppression of star formation are following the same physical processes. Furthermore, we find that the dispersion in ΣSFR within and across the population is found to be tightly correlated with the inferred gas depletion time, whether based on the stellar surface mass density or the orbital dynamical time. This suggests that we are seeing the response of a simple gas-regulator system to variations in the accretion rate. This is explored using a heuristic model that can quantitatively explain the dependence of σ(ΣSFR) on gas depletion timescale. Variations in accretion rate are progressively more damped out in regions of low star-formation efficiency leading to a reduced amplitude of variations in star-formation. AU - Wang, Enci AU - Lilly, Simon J. AU - Pezzulli, Gabriele AU - Matthee, Jorryt J ID - 11517 IS - 2 JF - The Astrophysical Journal KW - Space and Planetary Science KW - Astronomy and Astrophysics SN - 0004-637X TI - On the elevation and suppression of star formation within galaxies VL - 877 ER - TY - JOUR AB - We investigate the clustering and halo properties of ∼5000 Ly α-selected emission-line galaxies (LAEs) from the Slicing COSMOS 4K (SC4K) and from archival NB497 imaging of SA22 split in 15 discrete redshift slices between z ∼ 2.5 and 6. We measure clustering lengths of r0 ∼ 3–6 h−1 Mpc and typical halo masses of ∼1011 M⊙ for our narrowband-selected LAEs with typical LLy α ∼ 1042–43 erg s−1. The intermediate-band-selected LAEs are observed to have r0 ∼ 3.5–15 h−1 Mpc with typical halo masses of ∼1011–12 M⊙ and typical LLy α ∼ 1043–43.6 erg s−1. We find a strong, redshift-independent correlation between halo mass and Ly α luminosity normalized by the characteristic Ly α luminosity, L⋆(z). The faintest LAEs (L ∼ 0.1 L⋆(z)) typically identified by deep narrowband surveys are found in 1010 M⊙ haloes and the brightest LAEs (L ∼ 7 L⋆(z)) are found in ∼5 × 1012 M⊙ haloes. A dependency on the rest-frame 1500 Å UV luminosity, MUV, is also observed where the halo masses increase from 1011 to 1013 M⊙ for MUV ∼ −19 to −23.5 mag. Halo mass is also observed to increase from 109.8 to 1012 M⊙ for dust-corrected UV star formation rates from ∼0.6 to 10 M⊙ yr−1 and continues to increase up to 1013 M⊙ in halo mass, where the majority of those sources are active galactic nuclei. All the trends we observe are found to be redshift independent. Our results reveal that LAEs are the likely progenitors of a wide range of galaxies depending on their luminosity, from dwarf-like, to Milky Way-type, to bright cluster galaxies. LAEs therefore provide unique insight into the early formation and evolution of the galaxies we observe in the local Universe. AU - Khostovan, A A AU - Sobral, D AU - Mobasher, B AU - Matthee, Jorryt J AU - Cochrane, R K AU - Chartab, N AU - Jafariyazani, M AU - Paulino-Afonso, A AU - Santos, S AU - Calhau, J ID - 11535 IS - 1 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: evolution KW - galaxies: haloes KW - galaxies: high-redshift KW - galaxies: star formation KW - cosmology: observations KW - large-scale structure of Universe SN - 0035-8711 TI - The clustering of typical Ly α emitters from z ∼ 2.5–6: Host halo masses depend on Ly α and UV luminosities VL - 489 ER - TY - JOUR AB - We present new Hubble Space Telescope (HST)/WFC3 observations and re-analyse VLT data to unveil the continuum, variability, and rest-frame ultraviolet (UV) lines of the multiple UV clumps of the most luminous Lyα emitter at z = 6.6, CR7 (COSMOS Redshift 7). Our re-reduced, flux-calibrated X-SHOOTER spectra of CR7 reveal an He II emission line in observations obtained along the major axis of Lyα emission with the best seeing conditions. He II is spatially offset by ≈+0.8 arcsec from the peak of Lyα emission, and it is found towards clump B. Our WFC3 grism spectra detects the UV continuum of CR7’s clump A, yielding a power law with β=−2.5+0.6−0.7 and MUV=−21.87+0.25−0.20⁠. No significant variability is found for any of the UV clumps on their own, but there is tentative (≈2.2 σ) brightening of CR7 in F110W as a whole from 2012 to 2017. HST grism data fail to robustly detect rest-frame UV lines in any of the clumps, implying fluxes ≲2×10−17 erg s−1 cm−2 (3σ). We perform CLOUDY modelling to constrain the metallicity and the ionizing nature of CR7. CR7 seems to be actively forming stars without any clear active galactic nucleus activity in clump A, consistent with a metallicity of ∼0.05–0.2 Z⊙. Component C or an interclump component between B and C may host a high ionization source. Our results highlight the need for spatially resolved information to study the formation and assembly of early galaxies. AU - Sobral, David AU - Matthee, Jorryt J AU - Brammer, Gabriel AU - Ferrara, Andrea AU - Alegre, Lara AU - Röttgering, Huub AU - Schaerer, Daniel AU - Mobasher, Bahram AU - Darvish, Behnam ID - 11541 IS - 2 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: evolution KW - galaxies: high-redshift KW - galaxies: ISM KW - cosmology: observations KW - dark ages KW - reionization KW - first stars KW - early Universe SN - 0035-8711 TI - On the nature and physical conditions of the luminous Ly α emitter CR7 and its rest-frame UV components VL - 482 ER - TY - JOUR AB - Observations have revealed that the star formation rate (SFR) and stellar mass (Mstar) of star-forming galaxies follow a tight relation known as the galaxy main sequence. However, what physical information is encoded in this relation is under debate. Here, we use the EAGLE cosmological hydrodynamical simulation to study the mass dependence, evolution, and origin of scatter in the SFR–Mstar relation. At z = 0, we find that the scatter decreases slightly with stellar mass from 0.35 dex at Mstar ≈ 109 M⊙ to 0.30 dex at Mstar ≳ 1010.5 M⊙. The scatter decreases from z = 0 to z = 5 by 0.05 dex at Mstar ≳ 1010 M⊙ and by 0.15 dex for lower masses. We show that the scatter at z = 0.1 originates from a combination of fluctuations on short time-scales (ranging from 0.2–2 Gyr) that are presumably associated with self-regulation from cooling, star formation, and outflows, but is dominated by long time-scale (∼10 Gyr) variations related to differences in halo formation times. Shorter time-scale fluctuations are relatively more important for lower mass galaxies. At high masses, differences in black hole formation efficiency cause additional scatter, but also diminish the scatter caused by different halo formation times. While individual galaxies cross the main sequence multiple times during their evolution, they fluctuate around tracks associated with their halo properties, i.e. galaxies above/below the main sequence at z = 0.1 tend to have been above/below the main sequence for ≫1 Gyr. AU - Matthee, Jorryt J AU - Schaye, Joop ID - 11540 IS - 1 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics : galaxies: evolution KW - galaxies: formation KW - galaxies: star formation KW - cosmology: theory SN - 0035-8711 TI - The origin of scatter in the star formation rate–stellar mass relation VL - 484 ER - TY - JOUR AB - We present the discovery of HD 221416 b, the first transiting planet identified by the Transiting Exoplanet Survey Satellite (TESS) for which asteroseismology of the host star is possible. HD 221416 b (HIP 116158, TOI-197) is a bright (V = 8.2 mag), spectroscopically classified subgiant that oscillates with an average frequency of about 430 μHz and displays a clear signature of mixed modes. The oscillation amplitude confirms that the redder TESS bandpass compared to Kepler has a small effect on the oscillations, supporting the expected yield of thousands of solar-like oscillators with TESS 2 minute cadence observations. Asteroseismic modeling yields a robust determination of the host star radius (R⋆ = 2.943 ± 0.064 R⊙), mass (M⋆ = 1.212 ± 0.074 M⊙), and age (4.9 ± 1.1 Gyr), and demonstrates that it has just started ascending the red-giant branch. Combining asteroseismology with transit modeling and radial-velocity observations, we show that the planet is a "hot Saturn" (Rp = 9.17 ± 0.33 R⊕) with an orbital period of ∼14.3 days, irradiance of F = 343 ± 24 F⊕, and moderate mass (Mp = 60.5 ± 5.7 M⊕) and density (ρp = 0.431 ± 0.062 g cm−3). The properties of HD 221416 b show that the host-star metallicity–planet mass correlation found in sub-Saturns (4–8 R⊕) does not extend to larger radii, indicating that planets in the transition between sub-Saturns and Jupiters follow a relatively narrow range of densities. With a density measured to ∼15%, HD 221416 b is one of the best characterized Saturn-size planets to date, augmenting the small number of known transiting planets around evolved stars and demonstrating the power of TESS to characterize exoplanets and their host stars using asteroseismology. AU - Huber, Daniel AU - Chaplin, William J. AU - Chontos, Ashley AU - Kjeldsen, Hans AU - Christensen-Dalsgaard, Jørgen AU - Bedding, Timothy R. AU - Ball, Warrick AU - Brahm, Rafael AU - Espinoza, Nestor AU - Henning, Thomas AU - Jordán, Andrés AU - Sarkis, Paula AU - Knudstrup, Emil AU - Albrecht, Simon AU - Grundahl, Frank AU - Andersen, Mads Fredslund AU - Pallé, Pere L. AU - Crossfield, Ian AU - Fulton, Benjamin AU - Howard, Andrew W. AU - Isaacson, Howard T. AU - Weiss, Lauren M. AU - Handberg, Rasmus AU - Lund, Mikkel N. AU - Serenelli, Aldo M. AU - Rørsted Mosumgaard, Jakob AU - Stokholm, Amalie AU - Bieryla, Allyson AU - Buchhave, Lars A. AU - Latham, David W. AU - Quinn, Samuel N. AU - Gaidos, Eric AU - Hirano, Teruyuki AU - Ricker, George R. AU - Vanderspek, Roland K. AU - Seager, Sara AU - Jenkins, Jon M. AU - Winn, Joshua N. AU - Antia, H. M. AU - Appourchaux, Thierry AU - Basu, Sarbani AU - Bell, Keaton J. AU - Benomar, Othman AU - Bonanno, Alfio AU - Buzasi, Derek L. AU - Campante, Tiago L. AU - Çelik Orhan, Z. AU - Corsaro, Enrico AU - Cunha, Margarida S. AU - Davies, Guy R. AU - Deheuvels, Sebastien AU - Grunblatt, Samuel K. AU - Hasanzadeh, Amir AU - Di Mauro, Maria Pia AU - A. García, Rafael AU - Gaulme, Patrick AU - Girardi, Léo AU - Guzik, Joyce A. AU - Hon, Marc AU - Jiang, Chen AU - Kallinger, Thomas AU - Kawaler, Steven D. AU - Kuszlewicz, James S. AU - Lebreton, Yveline AU - Li, Tanda AU - Lucas, Miles AU - Lundkvist, Mia S. AU - Mann, Andrew W. AU - Mathis, Stéphane AU - Mathur, Savita AU - Mazumdar, Anwesh AU - Metcalfe, Travis S. AU - Miglio, Andrea AU - F. G. Monteiro, Mário J. P. AU - Mosser, Benoit AU - Noll, Anthony AU - Nsamba, Benard AU - Joel Ong, Jia Mian AU - Örtel, S. AU - Pereira, Filipe AU - Ranadive, Pritesh AU - Régulo, Clara AU - Rodrigues, Thaíse S. AU - Roxburgh, Ian W. AU - Aguirre, Victor Silva AU - Smalley, Barry AU - Schofield, Mathew AU - Sousa, Sérgio G. AU - Stassun, Keivan G. AU - Stello, Dennis AU - Tayar, Jamie AU - White, Timothy R. AU - Verma, Kuldeep AU - Vrard, Mathieu AU - Yıldız, M. AU - Baker, David AU - Bazot, Michaël AU - Beichmann, Charles AU - Bergmann, Christoph AU - Bugnet, Lisa Annabelle AU - Cale, Bryson AU - Carlino, Roberto AU - Cartwright, Scott M. AU - Christiansen, Jessie L. AU - Ciardi, David R. AU - Creevey, Orlagh AU - Dittmann, Jason A. AU - Nascimento, Jose-Dias Do AU - Eylen, Vincent Van AU - Fürész, Gabor AU - Gagné, Jonathan AU - Gao, Peter AU - Gazeas, Kosmas AU - Giddens, Frank AU - Hall, Oliver J. AU - Hekker, Saskia AU - Ireland, Michael J. AU - Latouf, Natasha AU - LeBrun, Danny AU - Levine, Alan M. AU - Matzko, William AU - Natinsky, Eva AU - Page, Emma AU - Plavchan, Peter AU - Mansouri-Samani, Masoud AU - McCauliff, Sean AU - Mullally, Susan E. AU - Orenstein, Brendan AU - Soto, Aylin Garcia AU - Paegert, Martin AU - van Saders, Jennifer L. AU - Schnaible, Chloe AU - Soderblom, David R. AU - Szabó, Róbert AU - Tanner, Angelle AU - Tinney, C. G. AU - Teske, Johanna AU - Thomas, Alexandra AU - Trampedach, Regner AU - Wright, Duncan AU - Yuan, Thomas T. AU - Zohrabi, Farzaneh ID - 11616 IS - 6 JF - The Astronomical Journal KW - Space and Planetary Science KW - Astronomy and Astrophysics SN - 0004-6256 TI - A hot Saturn orbiting an oscillating late subgiant discovered by TESS VL - 157 ER - TY - JOUR AB - Over 2,000 stars were observed for 1 month with a high enough cadence in order to look for acoustic modes during the survey phase of the Kepler mission. Solar-like oscillations have been detected in about 540 stars. The question of why no oscillations were detected in the remaining stars is still open. Previous works explained the non-detection of modes with the high level of magnetic activity of the stars. However, the sample of stars studied contained some classical pulsators and red giants that could have biased the results. In this work, we revisit this analysis on a cleaner sample of main-sequence solar-like stars that consists of 1,014 stars. First we compute the predicted amplitude of the modes of that sample and for the stars with detected oscillation and compare it to the noise at high frequency in the power spectrum. We find that the stars with detected modes have an amplitude to noise ratio larger than 0.94. We measure reliable rotation periods and the associated photometric magnetic index for 684 stars out of the full sample and in particular for 323 stars where the amplitude of the modes is predicted to be high enough to be detected. We find that among these 323 stars 32% of them have a level of magnetic activity larger than the Sun during its maximum activity, explaining the non-detection of acoustic modes. Interestingly, magnetic activity cannot be the primary reason responsible for the absence of detectable modes in the remaining 68% of the stars without acoustic modes detected and with reliable rotation periods. Thus, we investigate metallicity, inclination angle of the rotation axis, and binarity as possible causes of low mode amplitudes. Using spectroscopic observations for a subsample, we find that a low metallicity could be the reason for suppressed modes. No clear correlation with binarity nor inclination is found. We also derive the lower limit for our photometric activity index (of 20–30 ppm) below which rotation and magnetic activity are not detected. Finally, with our analysis we conclude that stars with a photometric activity index larger than 2,000 ppm have 98.3% probability of not having oscillations detected. AU - Mathur, Savita AU - García, Rafael A. AU - Bugnet, Lisa Annabelle AU - Santos, Ângela R.G. AU - Santiago, Netsha AU - Beck, Paul G. ID - 11613 JF - Frontiers in Astronomy and Space Sciences KW - Astronomy and Astrophysics TI - Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler VL - 6 ER - TY - JOUR AB - The recently published Kepler mission Data Release 25 (DR25) reported on ∼197 000 targets observed during the mission. Despite this, no wide search for red giants showing solar-like oscillations have been made across all stars observed in Kepler’s long-cadence mode. In this work, we perform this task using custom apertures on the Kepler pixel files and detect oscillations in 21 914 stars, representing the largest sample of solar-like oscillating stars to date. We measure their frequency at maximum power, νmax, down to νmax≃4μHz and obtain log (g) estimates with a typical uncertainty below 0.05 dex, which is superior to typical measurements from spectroscopy. Additionally, the νmax distribution of our detections show good agreement with results from a simulated model of the Milky Way, with a ratio of observed to predicted stars of 0.992 for stars with 10<νmax<270μHz. Among our red giant detections, we find 909 to be dwarf/subgiant stars whose flux signal is polluted by a neighbouring giant as a result of using larger photometric apertures than those used by the NASA Kepler science processing pipeline. We further find that only 293 of the polluting giants are known Kepler targets. The remainder comprises over 600 newly identified oscillating red giants, with many expected to belong to the Galactic halo, serendipitously falling within the Kepler pixel files of targeted stars. AU - Hon, Marc AU - Stello, Dennis AU - García, Rafael A AU - Mathur, Savita AU - Sharma, Sanjib AU - Colman, Isabel L AU - Bugnet, Lisa Annabelle ID - 11615 IS - 4 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - asteroseismology KW - methods: data analysis KW - techniques: image processing KW - stars: oscillations KW - stars: statistics SN - 0035-8711 TI - A search for red giant solar-like oscillations in all Kepler data VL - 485 ER - TY - JOUR AB - The NASA Transiting Exoplanet Survey Satellite (TESS) is about to provide full-frame images of almost the entire sky. The amount of stellar data to be analysed represents hundreds of millions stars, which is several orders of magnitude more than the number of stars observed by the Convection, Rotation and planetary Transits satellite (CoRoT), and NASA Kepler and K2 missions. We aim at automatically classifying the newly observed stars with near real-time algorithms to better guide the subsequent detailed studies. In this paper, we present a classification algorithm built to recognise solar-like pulsators among classical pulsators. This algorithm relies on the global amount of power contained in the power spectral density (PSD), also known as the flicker in spectral power density (FliPer). Because each type of pulsating star has a characteristic background or pulsation pattern, the shape of the PSD at different frequencies can be used to characterise the type of pulsating star. The FliPer classifier (FliPerClass) uses different FliPer parameters along with the effective temperature as input parameters to feed a ML algorithm in order to automatically classify the pulsating stars observed by TESS. Using noisy TESS-simulated data from the TESS Asteroseismic Science Consortium (TASC), we classify pulsators with a 98% accuracy. Among them, solar-like pulsating stars are recognised with a 99% accuracy, which is of great interest for a further seismic analysis of these stars, which are like our Sun. Similar results are obtained when we trained our classifier and applied it to 27-day subsets of real Kepler data. FliPerClass is part of the large TASC classification pipeline developed by the TESS Data for Asteroseismology (T’DA) classification working group. AU - Bugnet, Lisa Annabelle AU - García, R. A. AU - Mathur, S. AU - Davies, G. R. AU - Hall, O. J. AU - Lund, M. N. AU - Rendle, B. M. ID - 11614 JF - Astronomy & Astrophysics KW - Space and Planetary Science KW - Astronomy and Astrophysics SN - 0004-6361 TI - FliPerClass: In search of solar-like pulsators among TESS targets VL - 624 ER - TY - JOUR AB - Brightness variations due to dark spots on the stellar surface encode information about stellar surface rotation and magnetic activity. In this work, we analyze the Kepler long-cadence data of 26,521 main-sequence stars of spectral types M and K in order to measure their surface rotation and photometric activity level. Rotation-period estimates are obtained by the combination of a wavelet analysis and autocorrelation function of the light curves. Reliable rotation estimates are determined by comparing the results from the different rotation diagnostics and four data sets. We also measure the photometric activity proxy Sph using the amplitude of the flux variations on an appropriate timescale. We report rotation periods and photometric activity proxies for about 60% of the sample, including 4431 targets for which McQuillan et al. did not report a rotation period. For the common targets with rotation estimates in this study and in McQuillan et al., our rotation periods agree within 99%. In this work, we also identify potential polluters, such as misclassified red giants and classical pulsator candidates. Within the parameter range we study, there is a mild tendency for hotter stars to have shorter rotation periods. The photometric activity proxy spans a wider range of values with increasing effective temperature. The rotation period and photometric activity proxy are also related, with Sph being larger for fast rotators. Similar to McQuillan et al., we find a bimodal distribution of rotation periods. AU - Santos, A. R. G. AU - García, R. A. AU - Mathur, S. AU - Bugnet, Lisa Annabelle AU - van Saders, J. L. AU - Metcalfe, T. S. AU - Simonian, G. V. A. AU - Pinsonneault, M. H. ID - 11623 IS - 1 JF - The Astrophysical Journal Supplement Series KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - methods: data analysis KW - stars: activity KW - stars: low-mass KW - stars: rotation KW - starspots KW - techniques: photometric SN - 0067-0049 TI - Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars VL - 244 ER - TY - GEN AB - For a solar-like star, the surface rotation evolves with time, allowing in principle to estimate the age of a star from its surface rotation period. Here we are interested in measuring surface rotation periods of solar-like stars observed by the NASA mission Kepler. Different methods have been developed to track rotation signals in Kepler photometric light curves: time-frequency analysis based on wavelet techniques, autocorrelation and composite spectrum. We use the learning abilities of random forest classifiers to take decisions during two crucial steps of the analysis. First, given some input parameters, we discriminate the considered Kepler targets between rotating MS stars, non-rotating MS stars, red giants, binaries and pulsators. We then use a second classifier only on the MS rotating targets to decide the best data analysis treatment. AU - Breton, S. N. AU - Bugnet, Lisa Annabelle AU - Santos, A. R. G. AU - Saux, A. Le AU - Mathur, S. AU - Palle, P. L. AU - Garcia, R. A. ID - 11627 KW - asteroseismology KW - rotation KW - solar-like stars KW - kepler KW - machine learning KW - random forest T2 - arXiv TI - Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques ER - TY - GEN AB - The second mission of NASA’s Kepler satellite, K2, has collected hundreds of thousands of lightcurves for stars close to the ecliptic plane. This new sample could increase the number of known pulsating stars and then improve our understanding of those stars. For the moment only a few stars have been properly classified and published. In this work, we present a method to automaticly classify K2 pulsating stars using a Machine Learning technique called Random Forest. The objective is to sort out the stars in four classes: red giant (RG), main-sequence Solar-like stars (SL), classical pulsators (PULS) and Other. To do this we use the effective temperatures and the luminosities of the stars as well as the FliPer features, that measures the amount of power contained in the power spectral density. The classifier now retrieves the right classification for more than 80% of the stars. AU - Saux, A. Le AU - Bugnet, Lisa Annabelle AU - Mathur, S. AU - Breton, S. N. AU - Garcia, R. A. ID - 11630 KW - asteroseismology - methods KW - data analysis - thecniques KW - machine learning - stars KW - oscillations T2 - arXiv TI - Automatic classification of K2 pulsating stars using machine learning techniques ER - TY - CONF AB - The diameter, radius and eccentricities are natural graph parameters. While these problems have been studied extensively, there are no known dynamic algorithms for them beyond the ones that follow from trivial recomputation after each update or from solving dynamic All-Pairs Shortest Paths (APSP), which is very computationally intensive. This is the situation for dynamic approximation algorithms as well, and even if only edge insertions or edge deletions need to be supported. This paper provides a comprehensive study of the dynamic approximation of Diameter, Radius and Eccentricities, providing both conditional lower bounds, and new algorithms whose bounds are optimal under popular hypotheses in fine-grained complexity. Some of the highlights include: - Under popular hardness hypotheses, there can be no significantly better fully dynamic approximation algorithms than recomputing the answer after each update, or maintaining full APSP. - Nearly optimal partially dynamic (incremental/decremental) algorithms can be achieved via efficient reductions to (incremental/decremental) maintenance of Single-Source Shortest Paths. For instance, a nearly (3/2+epsilon)-approximation to Diameter in directed or undirected n-vertex, m-edge graphs can be maintained decrementally in total time m^{1+o(1)}sqrt{n}/epsilon^2. This nearly matches the static 3/2-approximation algorithm for the problem that is known to be conditionally optimal. AU - Ancona, Bertie AU - Henzinger, Monika H AU - Roditty, Liam AU - Williams, Virginia Vassilevska AU - Wein, Nicole ID - 11826 SN - 1868-8969 T2 - 46th International Colloquium on Automata, Languages, and Programming TI - Algorithms and hardness for diameter in dynamic graphs VL - 132 ER - TY - CONF AB - Modern networked systems are increasingly reconfigurable, enabling demand-aware infrastructures whose resources can be adjusted according to the workload they currently serve. Such dynamic adjustments can be exploited to improve network utilization and hence performance, by moving frequently interacting communication partners closer, e.g., collocating them in the same server or datacenter. However, dynamically changing the embedding of workloads is algorithmically challenging: communication patterns are often not known ahead of time, but must be learned. During the learning process, overheads related to unnecessary moves (i.e., re-embeddings) should be minimized. This paper studies a fundamental model which captures the tradeoff between the benefits and costs of dynamically collocating communication partners on l servers, in an online manner. Our main contribution is a distributed online algorithm which is asymptotically almost optimal, i.e., almost matches the lower bound (also derived in this paper) on the competitive ratio of any (distributed or centralized) online algorithm. AU - Henzinger, Monika H AU - Neumann, Stefan AU - Schmid, Stefan ID - 11850 SN - 978-1-4503-6678-6 T2 - SIGMETRICS'19: International Conference on Measurement and Modeling of Computer Systems TI - Efficient distributed workload (re-)embedding ER - TY - CHAP AB - This paper serves as a user guide to the Vienna graph clustering framework. We review our general memetic algorithm, VieClus, to tackle the graph clustering problem. A key component of our contribution are natural recombine operators that employ ensemble clusterings as well as multi-level techniques. Lastly, we combine these techniques with a scalable communication protocol, producing a system that is able to compute high-quality solutions in a short amount of time. After giving a description of the algorithms employed, we establish the connection of the graph clustering problem to protein–protein interaction networks and moreover give a description on how the software can be used, what file formats are expected, and how this can be used to find functional groups in protein–protein interaction networks. AU - Biedermann, Sonja AU - Henzinger, Monika H AU - Schulz, Christian AU - Schuster, Bernhard ED - Canzar, Stefan ED - Rojas Ringeling, Francisca ID - 11847 SN - 1064-3745 T2 - Protein-Protein Interaction Networks TI - Vienna Graph Clustering VL - 2074 ER - TY - CONF AB - We present a deterministic dynamic algorithm for maintaining a (1+ε)f-approximate minimum cost set cover with O(f log(Cn)/ε^2) amortized update time, when the input set system is undergoing element insertions and deletions. Here, n denotes the number of elements, each element appears in at most f sets, and the cost of each set lies in the range [1/C, 1]. Our result, together with that of Gupta~et~al.~[STOC'17], implies that there is a deterministic algorithm for this problem with O(f log(Cn)) amortized update time and O(min(log n, f)) -approximation ratio, which nearly matches the polynomial-time hardness of approximation for minimum set cover in the static setting. Our update time is only O(log (Cn)) away from a trivial lower bound. Prior to our work, the previous best approximation ratio guaranteed by deterministic algorithms was O(f^2), which was due to Bhattacharya~et~al.~[ICALP`15]. In contrast, the only result that guaranteed O(f) -approximation was obtained very recently by Abboud~et~al.~[STOC`19], who designed a dynamic algorithm with (1+ε)f-approximation ratio and O(f^2 log n/ε) amortized update time. Besides the extra O(f) factor in the update time compared to our and Gupta~et~al.'s results, the Abboud~et~al.~algorithm is randomized, and works only when the adversary is oblivious and the sets are unweighted (each set has the same cost). We achieve our result via the primal-dual approach, by maintaining a fractional packing solution as a dual certificate. This approach was pursued previously by Bhattacharya~et~al.~and Gupta~et~al., but not in the recent paper by Abboud~et~al. Unlike previous primal-dual algorithms that try to satisfy some local constraints for individual sets at all time, our algorithm basically waits until the dual solution changes significantly globally, and fixes the solution only where the fix is needed. AU - Bhattacharya, Sayan AU - Henzinger, Monika H AU - Nanongkai, Danupon ID - 11853 SN - 2575-8454 T2 - 60th Annual Symposium on Foundations of Computer Science TI - A new deterministic algorithm for dynamic set cover ER - TY - CONF AB - The minimum cut problem for an undirected edge-weighted graph asks us to divide its set of nodes into two blocks while minimizing the weighted sum of the cut edges. In this paper, we engineer the fastest known exact algorithm for the problem. State-of-the-art algorithms like the algorithm of Padberg and Rinaldi or the algorithm of Nagamochi, Ono and Ibaraki identify edges that can be contracted to reduce the graph size such that at least one minimum cut is maintained in the contracted graph. Our algorithm achieves improvements in running time over these algorithms by a multitude of techniques. First, we use a recently developed fast and parallel inexact minimum cut algorithm to obtain a better bound for the problem. Afterwards, we use reductions that depend on this bound to reduce the size of the graph much faster than previously possible. We use improved data structures to further lower the running time of our algorithm. Additionally, we parallelize the contraction routines of Nagamochi et al. . Overall, we arrive at a system that significantly outperforms the fastest state-of-the-art solvers for the exact minimum cut problem. AU - Henzinger, Monika H AU - Noe, Alexander AU - Schulz, Christian ID - 11851 SN - 978-1-7281-1247-3 T2 - 33rd International Parallel and Distributed Processing Symposium TI - Shared-memory exact minimum cuts ER - TY - CONF AB - We present the first sublinear-time algorithm that can compute the edge connectivity λ of a network exactly on distributed message-passing networks (the CONGEST model), as long as the network contains no multi-edge. We present the first sublinear-time algorithm for a distributed message-passing network sto compute its edge connectivity λ exactly in the CONGEST model, as long as there are no parallel edges. Our algorithm takes Õ(n1−1/353D1/353+n1−1/706) time to compute λ and a cut of cardinality λ with high probability, where n and D are the number of nodes and the diameter of the network, respectively, and Õ hides polylogarithmic factors. This running time is sublinear in n (i.e. Õ(n1−є)) whenever D is. Previous sublinear-time distributed algorithms can solve this problem either (i) exactly only when λ=O(n1/8−є) [Thurimella PODC’95; Pritchard, Thurimella, ACM Trans. Algorithms’11; Nanongkai, Su, DISC’14] or (ii) approximately [Ghaffari, Kuhn, DISC’13; Nanongkai, Su, DISC’14]. To achieve this we develop and combine several new techniques. First, we design the first distributed algorithm that can compute a k-edge connectivity certificate for any k=O(n1−є) in time Õ(√nk+D). The previous sublinear-time algorithm can do so only when k=o(√n) [Thurimella PODC’95]. In fact, our algorithm can be turned into the first parallel algorithm with polylogarithmic depth and near-linear work. Previous near-linear work algorithms are essentially sequential and previous polylogarithmic-depth algorithms require Ω(mk) work in the worst case (e.g. [Karger, Motwani, STOC’93]). Second, we show that by combining the recent distributed expander decomposition technique of [Chang, Pettie, Zhang, SODA’19] with techniques from the sequential deterministic edge connectivity algorithm of [Kawarabayashi, Thorup, STOC’15], we can decompose the network into a sublinear number of clusters with small average diameter and without any mincut separating a cluster (except the “trivial” ones). This leads to a simplification of the Kawarabayashi-Thorup framework (except that we are randomized while they are deterministic). This might make this framework more useful in other models of computation. Finally, by extending the tree packing technique from [Karger STOC’96], we can find the minimum cut in time proportional to the number of components. As a byproduct of this technique, we obtain an Õ(n)-time algorithm for computing exact minimum cut for weighted graphs. AU - Daga, Mohit AU - Henzinger, Monika H AU - Nanongkai, Danupon AU - Saranurak, Thatchaphol ID - 11865 SN - 0737-8017 T2 - Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing TI - Distributed edge connectivity in sublinear time ER - TY - CONF AB - Many dynamic graph algorithms have an amortized update time, rather than a stronger worst-case guarantee. But amortized data structures are not suitable for real-time systems, where each individual operation has to be executed quickly. For this reason, there exist many recent randomized results that aim to provide a guarantee stronger than amortized expected. The strongest possible guarantee for a randomized algorithm is that it is always correct (Las Vegas), and has high-probability worst-case update time, which gives a bound on the time for each individual operation that holds with high probability. In this paper we present the first polylogarithmic high-probability worst-case time bounds for the dynamic spanner and the dynamic maximal matching problem. 1. For dynamic spanner, the only known o(n) worst-case bounds were O(n3/4) high-probability worst-case update time for maintaining a 3-spanner, and O(n5/9) for maintaining a 5-spanner. We give a O(1)k log3(n) high-probability worst-case time bound for maintaining a (2k – 1)-spanner, which yields the first worst-case polylog update time for all constant k. (All the results above maintain the optimal tradeoff of stretch 2k – 1 and Õ(n1+1/k) edges.) 2. For dynamic maximal matching, or dynamic 2-approximate maximum matching, no algorithm with o(n) worst-case time bound was known and we present an algorithm with O(log5 (n)) high-probability worst-case time; similar worst-case bounds existed only for maintaining a matching that was (2 + ∊)-approximate, and hence not maximal. Our results are achieved using a new approach for converting amortized guarantees to worst-case ones for randomized data structures by going through a third type of guarantee, which is a middle ground between the two above: an algorithm is said to have worst-case expected update time α if for every update σ, the expected time to process σ is at most α. Although stronger than amortized expected, the worst-case expected guarantee does not resolve the fundamental problem of amortization: a worst-case expected update time of O(1) still allows for the possibility that every 1/f(n) updates requires Θ(f(n)) time to process, for arbitrarily high f(n). In this paper we present a black-box reduction that converts any data structure with worst-case expected update time into one with a high-probability worst-case update time: the query time remains the same, while the update time increases by a factor of O(log2(n)). Thus we achieve our results in two steps: (1) First we show how to convert existing dynamic graph algorithms with amortized expected polylogarithmic running times into algorithms with worst-case expected polylogarithmic running times. (2) Then we use our black-box reduction to achieve the polylogarithmic high-probability worst-case time bound. All our algorithms are Las-Vegas-type algorithms. AU - Bernstein, Aaron AU - Forster, Sebastian AU - Henzinger, Monika H ID - 11871 T2 - 30th Annual ACM-SIAM Symposium on Discrete Algorithms TI - A deamortization approach for dynamic spanner and dynamic maximal matching ER - TY - JOUR AB - We build upon the recent papers by Weinstein and Yu (FOCS'16), Larsen (FOCS'12), and Clifford et al. (FOCS'15) to present a general framework that gives amortized lower bounds on the update and query times of dynamic data structures. Using our framework, we present two concrete results. (1) For the dynamic polynomial evaluation problem, where the polynomial is defined over a finite field of size n1+Ω(1) and has degree n, any dynamic data structure must either have an amortized update time of Ω((lgn/lglgn)2) or an amortized query time of Ω((lgn/lglgn)2). (2) For the dynamic online matrix vector multiplication problem, where we get an n×n matrix whose entires are drawn from a finite field of size nΘ(1), any dynamic data structure must either have an amortized update time of Ω((lgn/lglgn)2) or an amortized query time of Ω(n⋅(lgn/lglgn)2). For these two problems, the previous works by Larsen (FOCS'12) and Clifford et al. (FOCS'15) gave the same lower bounds, but only for worst case update and query times. Our bounds match the highest unconditional lower bounds known till date for any dynamic problem in the cell-probe model. AU - Bhattacharya, Sayan AU - Henzinger, Monika H AU - Neumann, Stefan ID - 11898 JF - Theoretical Computer Science SN - 0304-3975 TI - New amortized cell-probe lower bounds for dynamic problems VL - 779 ER - TY - JOUR AB - Cross-coupling reactions mediated by dual nickel/photocatalysis are synthetically attractive but rely mainly on expensive, non-recyclable noble-metal complexes as photocatalysts. Heterogeneous semiconductors, which are commonly used for artificial photosynthesis and wastewater treatment, are a sustainable alternative. Graphitic carbon nitrides, a class of metal-free polymers that can be easily prepared from bulk chemicals, are heterogeneous semiconductors with high potential for photocatalytic organic transformations. Here, we demonstrate that graphitic carbon nitrides in combination with nickel catalysis can induce selective C−O cross-couplings of carboxylic acids with aryl halides, yielding the respective aryl esters in excellent yield and selectivity. The heterogeneous organic photocatalyst exhibits a broad substrate scope, is able to harvest green light, and can be recycled multiple times. In situ FTIR was used to track the reaction progress to study this transformation at different irradiation wavelengths and reaction scales. AU - Pieber, Bartholomäus AU - Malik, Jamal A. AU - Cavedon, Cristian AU - Gisbertz, Sebastian AU - Savateev, Aleksandr AU - Cruz, Daniel AU - Heil, Tobias AU - Zhang, Guigang AU - Seeberger, Peter H. ID - 11957 IS - 28 JF - Angewandte Chemie International Edition SN - 1433-7851 TI - Semi‐heterogeneous dual nickel/photocatalysis using carbon nitrides: Esterification of carboxylic acids with aryl halides VL - 58 ER - TY - JOUR AB - Differentially protected galactosamine building blocks are key components for the synthesis of human and bacterial oligosaccharides. The azidophenylselenylation of 3,4,6-tri-O-acetyl-d-galactal provides straightforward access to the corresponding 2-nitrogenated glycoside. Poor reproducibility and the use of azides that lead to the formation of potentially explosive and toxic species limit the scalability of this reaction and render it a bottleneck for carbohydrate synthesis. Here, we present a method for the safe, efficient, and reliable azidophenylselenylation of 3,4,6-tri-O-acetyl-d-galactal at room temperature, using continuous flow chemistry. Careful analysis of the transformation resulted in reaction conditions that produce minimal side products while the reaction time was reduced drastically when compared to batch reactions. The flow setup is readily scalable to process 5 mmol of galactal in 3 h, producing 1.2 mmol/h of product. AU - Guberman, Mónica AU - Pieber, Bartholomäus AU - Seeberger, Peter H. ID - 11984 IS - 12 JF - Organic Process Research and Development SN - 1083-6160 TI - Safe and scalable continuous flow azidophenylselenylation of galactal to prepare galactosamine building blocks VL - 23 ER - TY - JOUR AB - A carbon nitride material can be combined with homogeneous nickel catalysts for light-mediated cross-couplings of aryl bromides with alcohols under mild conditions. The metal-free heterogeneous semiconductor is fully recyclable and couples a broad range of electron-poor aryl bromides with primary and secondary alcohols as well as water. The application for intramolecular reactions and the synthesis of active pharmaceutical ingredients was demonstrated. The catalytic protocol is applicable for the coupling of aryl iodides with thiols as well. AU - Cavedon, Cristian AU - Madani, Amiera AU - Seeberger, Peter H. AU - Pieber, Bartholomäus ID - 11982 IS - 13 JF - Organic Letters SN - 1523-7060 TI - Semiheterogeneous dual nickel/photocatalytic (thio)etherification using carbon nitrides VL - 21 ER - TY - JOUR AB - Upper and lower bounds, of the expected order of magnitude, are obtained for the number of rational points of bounded height on any quartic del Pezzo surface over ℚ that contains a conic defined over ℚ . AU - Browning, Timothy D AU - Sofos, Efthymios ID - 170 IS - 3-4 JF - Mathematische Annalen TI - Counting rational points on quartic del Pezzo surfaces with a rational conic VL - 373 ER - TY - JOUR AU - Kalinin, Nikita AU - Shkolnikov, Mikhail ID - 441 IS - 3 JF - European Journal of Mathematics SN - 2199-675X TI - Tropical formulae for summation over a part of SL(2,Z) VL - 5 ER - TY - CHAP AB - The transcription coactivator, Yes-associated protein (YAP), which is a nuclear effector of the Hippo signaling pathway, has been shown to be a mechano-transducer. By using mutant fish and human 3D spheroids, we have recently demonstrated that YAP is also a mechano-effector. YAP functions in three-dimensional (3D) morphogenesis of organ and global body shape by controlling actomyosin-mediated tissue tension. In this chapter, we present a platform that links the findings in fish embryos with human cells. The protocols for analyzing tissue tension-mediated global body shape/organ morphogenesis in vivo and ex vivo using medaka fish embryos and in vitro using human cell spheroids represent useful tools for unraveling the molecular mechanisms by which YAP functions in regulating global body/organ morphogenesis. AU - Asaoka, Yoichi AU - Morita, Hitoshi AU - Furumoto, Hiroko AU - Heisenberg, Carl-Philipp J AU - Furutani-Seiki, Makoto ED - Hergovich, Alexander ID - 5793 SN - 978-1-4939-8909-6 T2 - The hippo pathway TI - Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids VL - 1893 ER - TY - JOUR AB - Cryptographic security is usually defined as a guarantee that holds except when a bad event with negligible probability occurs, and nothing is guaranteed in that bad case. However, in settings where such failure can happen with substantial probability, one needs to provide guarantees even for the bad case. A typical example is where a (possibly weak) password is used instead of a secure cryptographic key to protect a session, the bad event being that the adversary correctly guesses the password. In a situation with multiple such sessions, a per-session guarantee is desired: any session for which the password has not been guessed remains secure, independently of whether other sessions have been compromised. A new formalism for stating such gracefully degrading security guarantees is introduced and applied to analyze the examples of password-based message authentication and password-based encryption. While a natural per-message guarantee is achieved for authentication, the situation of password-based encryption is more delicate: a per-session confidentiality guarantee only holds against attackers for which the distribution of password-guessing effort over the sessions is known in advance. In contrast, for more general attackers without such a restriction, a strong, composable notion of security cannot be achieved. AU - Demay, Gregory AU - Gazi, Peter AU - Maurer, Ueli AU - Tackmann, Bjorn ID - 5887 IS - 1 JF - Journal of Computer Security SN - 0926227X TI - Per-session security: Password-based cryptography revisited VL - 27 ER - TY - CONF AB - We propose a new non-orthogonal basis to express the 3D Euclidean space in terms of a regular grid. Every grid point, each represented by integer 3-coordinates, corresponds to rhombic dodecahedron centroid. Rhombic dodecahedron is a space filling polyhedron which represents the close packing of spheres in 3D space and the Voronoi structures of the face centered cubic (FCC) lattice. In order to illustrate the interest of the new coordinate system, we propose the characterization of 3D digital plane with its topological features, such as the interrelation between the thickness of the digital plane and the separability constraint we aim to obtain. A characterization of a 3D digital sphere with relevant topological features is proposed as well with the help of a 48 symmetry that comes with the new coordinate system. AU - Biswas, Ranita AU - Largeteau-Skapin, Gaëlle AU - Zrour, Rita AU - Andres, Eric ID - 6163 SN - 0302-9743 T2 - 21st IAPR International Conference on Discrete Geometry for Computer Imagery TI - Rhombic dodecahedron grid—coordinate system and 3D digital object definitions VL - 11414 ER - TY - JOUR AB - We give non-degeneracy criteria for Riemannian simplices based on simplices in spaces of constant sectional curvature. It extends previous work on Riemannian simplices, where we developed Riemannian simplices with respect to Euclidean reference simplices. The criteria we give in this article are in terms of quality measures for spaces of constant curvature that we develop here. We see that simplices in spaces that have nearly constant curvature, are already non-degenerate under very weak quality demands. This is of importance because it allows for sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute) curvature. AU - Dyer, Ramsay AU - Vegter, Gert AU - Wintraecken, Mathijs ID - 6515 IS - 1 JF - Journal of Computational Geometry SN - 1920-180X TI - Simplices modelled on spaces of constant curvature VL - 10 ER - TY - CONF AB - We construct a verifiable delay function (VDF) by showing how the Rivest-Shamir-Wagner time-lock puzzle can be made publicly verifiable. Concretely, we give a statistically sound public-coin protocol to prove that a tuple (N,x,T,y) satisfies y=x2T (mod N) where the prover doesn’t know the factorization of N and its running time is dominated by solving the puzzle, that is, compute x2T, which is conjectured to require T sequential squarings. To get a VDF we make this protocol non-interactive using the Fiat-Shamir heuristic.The motivation for this work comes from the Chia blockchain design, which uses a VDF as akey ingredient. For typical parameters (T≤2 40, N= 2048), our proofs are of size around 10K B, verification cost around three RSA exponentiations and computing the proof is 8000 times faster than solving the puzzle even without any parallelism. AU - Pietrzak, Krzysztof Z ID - 6528 SN - 1868-8969 T2 - 10th Innovations in Theoretical Computer Science Conference TI - Simple verifiable delay functions VL - 124 ER - TY - CONF AB - In this paper, we address the problem of synthesizing periodic switching controllers for stabilizing a family of linear systems. Our broad approach consists of constructing a finite game graph based on the family of linear systems such that every winning strategy on the game graph corresponds to a stabilizing switching controller for the family of linear systems. The construction of a (finite) game graph, the synthesis of a winning strategy and the extraction of a stabilizing controller are all computationally feasible. We illustrate our method on an example. AU - Kundu, Atreyee AU - Garcia Soto, Miriam AU - Prabhakar, Pavithra ID - 6565 SN - 978-153866246-5 T2 - 5th Indian Control Conference Proceedings TI - Formal synthesis of stabilizing controllers for periodically controlled linear switched systems ER - TY - CONF AB - Fejes Tóth [5] and Schneider [9] studied approximations of smooth convex hypersurfaces in Euclidean space by piecewise flat triangular meshes with a given number of vertices on the hypersurface that are optimal with respect to Hausdorff distance. They proved that this Hausdorff distance decreases inversely proportional with m 2/(d−1), where m is the number of vertices and d is the dimension of Euclidean space. Moreover the pro-portionality constant can be expressed in terms of the Gaussian curvature, an intrinsic quantity. In this short note, we prove the extrinsic nature of this constant for manifolds of sufficiently high codimension. We do so by constructing an family of isometric embeddings of the flat torus in Euclidean space. AU - Vegter, Gert AU - Wintraecken, Mathijs ID - 6628 T2 - The 31st Canadian Conference in Computational Geometry TI - The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds ER - TY - CONF AB - Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context. AU - Edelsbrunner, Herbert AU - Virk, Ziga AU - Wagner, Hubert ID - 6648 SN - 9783959771047 T2 - 35th International Symposium on Computational Geometry TI - Topological data analysis in information space VL - 129 ER - TY - JOUR AB - Chemical labeling of proteins with synthetic molecular probes offers the possibility to probe the functions of proteins of interest in living cells. However, the methods for covalently labeling targeted proteins using complementary peptide tag-probe pairs are still limited, irrespective of the versatility of such pairs in biological research. Herein, we report the new CysHis tag-Ni(II) probe pair for the specific covalent labeling of proteins. A broad-range evaluation of the reactivity profiles of the probe and the CysHis peptide tag afforded a tag-probe pair with an optimized and high labeling selectivity and reactivity. In particular, the labeling specificity of this pair was notably improved compared to the previously reported one. This pair was successfully utilized for the fluorescence imaging of membrane proteins on the surfaces of living cells, demonstrating its potential utility in biological research. AU - Zenmyo, Naoki AU - Tokumaru, Hiroki AU - Uchinomiya, Shohei AU - Fuchida, Hirokazu AU - Tabata, Shigekazu AU - Hamachi, Itaru AU - Shigemoto, Ryuichi AU - Ojida, Akio ID - 6659 IS - 5 JF - Bulletin of the Chemical Society of Japan SN - 00092673 TI - Optimized reaction pair of the CysHis tag and Ni(II)-NTA probe for highly selective chemical labeling of membrane proteins VL - 92 ER - TY - JOUR AB - In phase retrieval, we want to recover an unknown signal 𝑥∈ℂ𝑑 from n quadratic measurements of the form 𝑦𝑖=|⟨𝑎𝑖,𝑥⟩|2+𝑤𝑖, where 𝑎𝑖∈ℂ𝑑 are known sensing vectors and 𝑤𝑖 is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n needed to produce an estimator 𝑥^(𝑦) that is positively correlated with the signal 𝑥? We consider the case of Gaussian vectors 𝑎𝑎𝑖. We prove that—in the high-dimensional limit—a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For 𝑛≤𝑑−𝑜(𝑑), no estimator can do significantly better than random and achieve a strictly positive correlation. For 𝑛≥𝑑+𝑜(𝑑), a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theoretic arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper bound and lower bound generalize beyond phase retrieval to measurements 𝑦𝑖 produced according to a generalized linear model. As a by-product of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm. AU - Mondelli, Marco AU - Montanari, Andrea ID - 6662 IS - 3 JF - Foundations of Computational Mathematics TI - Fundamental limits of weak recovery with applications to phase retrieval VL - 19 ER - TY - JOUR AB - The construction of anisotropic triangulations is desirable for various applications, such as the numerical solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram. This structure has been implemented and was shown to lead to good triangulations in $\mathbb{R}^2$ and on surfaces embedded in $\mathbb{R}^3$ as detailed in our experimental companion paper. In this paper, we study theoretical aspects of our structure. Given a finite set of points $\mathcal{P}$ in a domain $\Omega$ equipped with a Riemannian metric, we compare the discrete Riemannian Voronoi diagram of $\mathcal{P}$ to its Riemannian Voronoi diagram. Both diagrams have dual structures called the discrete Riemannian Delaunay and the Riemannian Delaunay complex. We provide conditions that guarantee that these dual structures are identical. It then follows from previous results that the discrete Riemannian Delaunay complex can be embedded in $\Omega$ under sufficient conditions, leading to an anisotropic triangulation with curved simplices. Furthermore, we show that, under similar conditions, the simplices of this triangulation can be straightened. AU - Boissonnat, Jean-Daniel AU - Rouxel-Labbé, Mael AU - Wintraecken, Mathijs ID - 6672 IS - 3 JF - SIAM Journal on Computing SN - 0097-5397 TI - Anisotropic triangulations via discrete Riemannian Voronoi diagrams VL - 48 ER - TY - CONF AB - A Valued Constraint Satisfaction Problem (VCSP) provides a common framework that can express a wide range of discrete optimization problems. A VCSP instance is given by a finite set of variables, a finite domain of labels, and an objective function to be minimized. This function is represented as a sum of terms where each term depends on a subset of the variables. To obtain different classes of optimization problems, one can restrict all terms to come from a fixed set Γ of cost functions, called a language. Recent breakthrough results have established a complete complexity classification of such classes with respect to language Γ: if all cost functions in Γ satisfy a certain algebraic condition then all Γ-instances can be solved in polynomial time, otherwise the problem is NP-hard. Unfortunately, testing this condition for a given language Γ is known to be NP-hard. We thus study exponential algorithms for this meta-problem. We show that the tractability condition of a finite-valued language Γ can be tested in O(3‾√3|D|⋅poly(size(Γ))) time, where D is the domain of Γ and poly(⋅) is some fixed polynomial. We also obtain a matching lower bound under the Strong Exponential Time Hypothesis (SETH). More precisely, we prove that for any constant δ<1 there is no O(3‾√3δ|D|) algorithm, assuming that SETH holds. AU - Kolmogorov, Vladimir ID - 6725 SN - 1868-8969 T2 - 46th International Colloquium on Automata, Languages and Programming TI - Testing the complexity of a valued CSP language VL - 132 ER - TY - CHAP AB - Randomness is an essential part of any secure cryptosystem, but many constructions rely on distributions that are not uniform. This is particularly true for lattice based cryptosystems, which more often than not make use of discrete Gaussian distributions over the integers. For practical purposes it is crucial to evaluate the impact that approximation errors have on the security of a scheme to provide the best possible trade-off between security and performance. Recent years have seen surprising results allowing to use relatively low precision while maintaining high levels of security. A key insight in these results is that sampling a distribution with low relative error can provide very strong security guarantees. Since floating point numbers provide guarantees on the relative approximation error, they seem a suitable tool in this setting, but it is not obvious which sampling algorithms can actually profit from them. While previous works have shown that inversion sampling can be adapted to provide a low relative error (Pöppelmann et al., CHES 2014; Prest, ASIACRYPT 2017), other works have called into question if this is possible for other sampling techniques (Zheng et al., Eprint report 2018/309). In this work, we consider all sampling algorithms that are popular in the cryptographic setting and analyze the relationship of floating point precision and the resulting relative error. We show that all of the algorithms either natively achieve a low relative error or can be adapted to do so. AU - Walter, Michael ED - Buchmann, J ED - Nitaj, A ED - Rachidi, T ID - 6726 SN - 0302-9743 T2 - Progress in Cryptology – AFRICACRYPT 2019 TI - Sampling the integers with low relative error VL - 11627 ER - TY - JOUR AB - Consider the problem of constructing a polar code of block length N for a given transmission channel W. Previous approaches require one to compute the reliability of the N synthetic channels and then use only those that are sufficiently reliable. However, we know from two independent works by Schürch and by Bardet et al. that the synthetic channels are partially ordered with respect to degradation. Hence, it is natural to ask whether the partial order can be exploited to reduce the computational burden of the construction problem. We show that, if we take advantage of the partial order, we can construct a polar code by computing the reliability of roughly a fraction 1/ log 3/2 N of the synthetic channels. In particular, we prove that N/ log 3/2 N is a lower bound on the number of synthetic channels to be considered and such a bound is tight up to a multiplicative factor log log N. This set of roughly N/ log 3/2 N synthetic channels is universal, in the sense that it allows one to construct polar codes for any W, and it can be identified by solving a maximum matching problem on a bipartite graph. Our proof technique consists of reducing the construction problem to the problem of computing the maximum cardinality of an antichain for a suitable partially ordered set. As such, this method is general, and it can be used to further improve the complexity of the construction problem, in case a refined partial order on the synthetic channels of polar codes is discovered. AU - Mondelli, Marco AU - Hassani, Hamed AU - Urbanke, Rudiger ID - 6663 IS - 5 JF - IEEE TI - Construction of polar codes with sublinear complexity VL - 65 ER - TY - CONF AB - We establish connections between the problem of learning a two-layer neural network and tensor decomposition. We consider a model with feature vectors x∈ℝd, r hidden units with weights {wi}1≤i≤r and output y∈ℝ, i.e., y=∑ri=1σ(w𝖳ix), with activation functions given by low-degree polynomials. In particular, if σ(x)=a0+a1x+a3x3, we prove that no polynomial-time learning algorithm can outperform the trivial predictor that assigns to each example the response variable 𝔼(y), when d3/2≪r≪d2. Our conclusion holds for a `natural data distribution', namely standard Gaussian feature vectors x, and output distributed according to a two-layer neural network with random isotropic weights, and under a certain complexity-theoretic assumption on tensor decomposition. Roughly speaking, we assume that no polynomial-time algorithm can substantially outperform current methods for tensor decomposition based on the sum-of-squares hierarchy. We also prove generalizations of this statement for higher degree polynomial activations, and non-random weight vectors. Remarkably, several existing algorithms for learning two-layer networks with rigorous guarantees are based on tensor decomposition. Our results support the idea that this is indeed the core computational difficulty in learning such networks, under the stated generative model for the data. As a side result, we show that under this model learning the network requires accurate learning of its weights, a property that does not hold in a more general setting. AU - Mondelli, Marco AU - Montanari, Andrea ID - 6747 T2 - Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics TI - On the connection between learning two-layers neural networks and tensor decomposition VL - 89 ER - TY - JOUR AB - Polar codes have gained extensive attention during the past few years and recently they have been selected for the next generation of wireless communications standards (5G). Successive-cancellation-based (SC-based) decoders, such as SC list (SCL) and SC flip (SCF), provide a reasonable error performance for polar codes at the cost of low decoding speed. Fast SC-based decoders, such as Fast-SSC, Fast-SSCL, and Fast-SSCF, identify the special constituent codes in a polar code graph off-line, produce a list of operations, store the list in memory, and feed the list to the decoder to decode the constituent codes in order efficiently, thus increasing the decoding speed. However, the list of operations is dependent on the code rate and as the rate changes, a new list is produced, making fast SC-based decoders not rate-flexible. In this paper, we propose a completely rate-flexible fast SC-based decoder by creating the list of operations directly in hardware, with low implementation complexity. We further propose a hardware architecture implementing the proposed method and show that the area occupation of the rate-flexible fast SC-based decoder in this paper is only 38% of the total area of the memory-based base-line decoder when 5G code rates are supported. AU - Hashemi, Seyyed Ali AU - Condo, Carlo AU - Mondelli, Marco AU - Gross, Warren J ID - 6750 IS - 22 JF - IEEE Transactions on Signal Processing SN - 1053587X TI - Rate-flexible fast polar decoders VL - 67 ER - TY - JOUR AB - We consider the graph class Grounded-L corresponding to graphs that admit an intersection representation by L-shaped curves, where additionally the topmost points of each curve are assumed to belong to a common horizontal line. We prove that Grounded-L graphs admit an equivalent characterisation in terms of vertex ordering with forbidden patterns. We also compare this class to related intersection classes, such as the grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or the outer-1-string graphs. We give constructions showing that these classes are all distinct and satisfy only trivial or previously known inclusions. AU - Jelínek, Vít AU - Töpfer, Martin ID - 6759 IS - 3 JF - Electronic Journal of Combinatorics TI - On grounded L-graphs and their relatives VL - 26 ER - TY - CONF AB - In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the qualitative winner or quantitative payoff of the game. In bidding games, in each turn, we hold an auction between the two players to determine which player moves the token. Bidding games have largely been studied with concrete bidding mechanisms that are variants of a first-price auction: in each turn both players simultaneously submit bids, the higher bidder moves the token, and pays his bid to the lower bidder in Richman bidding, to the bank in poorman bidding, and in taxman bidding, the bid is split between the other player and the bank according to a predefined constant factor. Bidding games are deterministic games. They have an intriguing connection with a fragment of stochastic games called randomturn games. We study, for the first time, a combination of bidding games with probabilistic behavior; namely, we study bidding games that are played on Markov decision processes, where the players bid for the right to choose the next action, which determines the probability distribution according to which the next vertex is chosen. We study parity and meanpayoff bidding games on MDPs and extend results from the deterministic bidding setting to the probabilistic one. AU - Avni, Guy AU - Henzinger, Thomas A AU - Ibsen-Jensen, Rasmus AU - Novotny, Petr ID - 6822 SN - 0302-9743 T2 - Proceedings of the 13th International Conference of Reachability Problems TI - Bidding games on Markov decision processes VL - 11674 ER - TY - CONF AB - The fundamental model-checking problem, given as input a model and a specification, asks for the algorithmic verification of whether the model satisfies the specification. Two classical models for reactive systems are graphs and Markov decision processes (MDPs). A basic specification formalism in the verification of reactive systems is the strong fairness (aka Streett) objective, where given different types of requests and corresponding grants, the requirement is that for each type, if the request event happens infinitely often, then the corresponding grant event must also happen infinitely often. All omega-regular objectives can be expressed as Streett objectives and hence they are canonical in verification. Consider graphs/MDPs with n vertices, m edges, and a Streett objectives with k pairs, and let b denote the size of the description of the Streett objective for the sets of requests and grants. The current best-known algorithm for the problem requires time O(min(n^2, m sqrt{m log n}) + b log n). In this work we present randomized near-linear time algorithms, with expected running time O~(m + b), where the O~ notation hides poly-log factors. Our randomized algorithms are near-linear in the size of the input, and hence optimal up to poly-log factors. AU - Chatterjee, Krishnendu AU - Dvorák, Wolfgang AU - Henzinger, Monika H AU - Svozil, Alexander ID - 6887 T2 - Leibniz International Proceedings in Informatics TI - Near-linear time algorithms for Streett objectives in graphs and MDPs VL - 140 ER - TY - CONF AB - In this paper, we design novel liquid time-constant recurrent neural networks for robotic control, inspired by the brain of the nematode, C. elegans. In the worm's nervous system, neurons communicate through nonlinear time-varying synaptic links established amongst them by their particular wiring structure. This property enables neurons to express liquid time-constants dynamics and therefore allows the network to originate complex behaviors with a small number of neurons. We identify neuron-pair communication motifs as design operators and use them to configure compact neuronal network structures to govern sequential robotic tasks. The networks are systematically designed to map the environmental observations to motor actions, by their hierarchical topology from sensory neurons, through recurrently-wired interneurons, to motor neurons. The networks are then parametrized in a supervised-learning scheme by a search-based algorithm. We demonstrate that obtained networks realize interpretable dynamics. We evaluate their performance in controlling mobile and arm robots, and compare their attributes to other artificial neural network-based control agents. Finally, we experimentally show their superior resilience to environmental noise, compared to the existing machine learning-based methods. AU - Lechner, Mathias AU - Hasani, Ramin AU - Zimmer, Manuel AU - Henzinger, Thomas A AU - Grosu, Radu ID - 6888 SN - 9781538660270 T2 - Proceedings - IEEE International Conference on Robotics and Automation TI - Designing worm-inspired neural networks for interpretable robotic control VL - 2019-May ER - TY - CONF AB - In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner of the game. Such games are central in formal methods since they model the interaction between a non-terminating system and its environment. In bidding games the players bid for the right to move the token: in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Bidding games are known to have a clean and elegant mathematical structure that relies on the ability of the players to submit arbitrarily small bids. Many applications, however, require a fixed granularity for the bids, which can represent, for example, the monetary value expressed in cents. We study, for the first time, the combination of discrete-bidding and infinite-duration games. Our most important result proves that these games form a large determined subclass of concurrent games, where determinacy is the strong property that there always exists exactly one player who can guarantee winning the game. In particular, we show that, in contrast to non-discrete bidding games, the mechanism with which tied bids are resolved plays an important role in discrete-bidding games. We study several natural tie-breaking mechanisms and show that, while some do not admit determinacy, most natural mechanisms imply determinacy for every pair of initial budgets. AU - Aghajohari, Milad AU - Avni, Guy AU - Henzinger, Thomas A ID - 6886 TI - Determinacy in discrete-bidding infinite-duration games VL - 140 ER - TY - CONF AB - A vector addition system with states (VASS) consists of a finite set of states and counters. A configuration is a state and a value for each counter; a transition changes the state and each counter is incremented, decremented, or left unchanged. While qualitative properties such as state and configuration reachability have been studied for VASS, we consider the long-run average cost of infinite computations of VASS. The cost of a configuration is for each state, a linear combination of the counter values. In the special case of uniform cost functions, the linear combination is the same for all states. The (regular) long-run emptiness problem is, given a VASS, a cost function, and a threshold value, if there is a (lasso-shaped) computation such that the long-run average value of the cost function does not exceed the threshold. For uniform cost functions, we show that the regular long-run emptiness problem is (a) decidable in polynomial time for integer-valued VASS, and (b) decidable but nonelementarily hard for natural-valued VASS (i.e., nonnegative counters). For general cost functions, we show that the problem is (c) NP-complete for integer-valued VASS, and (d) undecidable for natural-valued VASS. Our most interesting result is for (c) integer-valued VASS with general cost functions, where we establish a connection between the regular long-run emptiness problem and quadratic Diophantine inequalities. The general (nonregular) long-run emptiness problem is equally hard as the regular problem in all cases except (c), where it remains open. AU - Chatterjee, Krishnendu AU - Henzinger, Thomas A AU - Otop, Jan ID - 6885 TI - Long-run average behavior of vector addition systems with states VL - 140 ER - TY - CONF AB - We study Markov decision processes and turn-based stochastic games with parity conditions. There are three qualitative winning criteria, namely, sure winning, which requires all paths to satisfy the condition, almost-sure winning, which requires the condition to be satisfied with probability 1, and limit-sure winning, which requires the condition to be satisfied with probability arbitrarily close to 1. We study the combination of two of these criteria for parity conditions, e.g., there are two parity conditions one of which must be won surely, and the other almost-surely. The problem has been studied recently by Berthon et al. for MDPs with combination of sure and almost-sure winning, under infinite-memory strategies, and the problem has been established to be in NP cap co-NP. Even in MDPs there is a difference between finite-memory and infinite-memory strategies. Our main results for combination of sure and almost-sure winning are as follows: (a) we show that for MDPs with finite-memory strategies the problem is in NP cap co-NP; (b) we show that for turn-based stochastic games the problem is co-NP-complete, both for finite-memory and infinite-memory strategies; and (c) we present algorithmic results for the finite-memory case, both for MDPs and turn-based stochastic games, by reduction to non-stochastic parity games. In addition we show that all the above complexity results also carry over to combination of sure and limit-sure winning, and results for all other combinations can be derived from existing results in the literature. Thus we present a complete picture for the study of combinations of two qualitative winning criteria for parity conditions in MDPs and turn-based stochastic games. AU - Chatterjee, Krishnendu AU - Piterman, Nir ID - 6889 TI - Combinations of Qualitative Winning for Stochastic Parity Games VL - 140 ER - TY - CONF AB - Consider a distributed system with n processors out of which f can be Byzantine faulty. In the approximate agreement task, each processor i receives an input value xi and has to decide on an output value yi such that 1. the output values are in the convex hull of the non-faulty processors’ input values, 2. the output values are within distance d of each other. Classically, the values are assumed to be from an m-dimensional Euclidean space, where m ≥ 1. In this work, we study the task in a discrete setting, where input values with some structure expressible as a graph. Namely, the input values are vertices of a finite graph G and the goal is to output vertices that are within distance d of each other in G, but still remain in the graph-induced convex hull of the input values. For d = 0, the task reduces to consensus and cannot be solved with a deterministic algorithm in an asynchronous system even with a single crash fault. For any d ≥ 1, we show that the task is solvable in asynchronous systems when G is chordal and n > (ω + 1)f, where ω is the clique number of G. In addition, we give the first Byzantine-tolerant algorithm for a variant of lattice agreement. For synchronous systems, we show tight resilience bounds for the exact variants of these and related tasks over a large class of combinatorial structures. AU - Nowak, Thomas AU - Rybicki, Joel ID - 6931 KW - consensus KW - approximate agreement KW - Byzantine faults KW - chordal graphs KW - lattice agreement T2 - 33rd International Symposium on Distributed Computing TI - Byzantine approximate agreement on graphs VL - 146 ER - TY - CONF AB - In this paper, we introduce a novel method to interpret recurrent neural networks (RNNs), particularly long short-term memory networks (LSTMs) at the cellular level. We propose a systematic pipeline for interpreting individual hidden state dynamics within the network using response characterization methods. The ranked contribution of individual cells to the network's output is computed by analyzing a set of interpretable metrics of their decoupled step and sinusoidal responses. As a result, our method is able to uniquely identify neurons with insightful dynamics, quantify relationships between dynamical properties and test accuracy through ablation analysis, and interpret the impact of network capacity on a network's dynamical distribution. Finally, we demonstrate the generalizability and scalability of our method by evaluating a series of different benchmark sequential datasets. AU - Hasani, Ramin AU - Amini, Alexander AU - Lechner, Mathias AU - Naser, Felix AU - Grosu, Radu AU - Rus, Daniela ID - 6985 SN - 9781728119854 T2 - Proceedings of the International Joint Conference on Neural Networks TI - Response characterization for auditing cell dynamics in long short-term memory networks ER - TY - JOUR AB - We consider the primitive relay channel, where the source sends a message to the relay and to the destination, and the relay helps the communication by transmitting an additional message to the destination via a separate channel. Two well-known coding techniques have been introduced for this setting: decode-and-forward and compress-and-forward. In decode-and-forward, the relay completely decodes the message and sends some information to the destination; in compress-and-forward, the relay does not decode, and it sends a compressed version of the received signal to the destination using Wyner–Ziv coding. In this paper, we present a novel coding paradigm that provides an improved achievable rate for the primitive relay channel. The idea is to combine compress-and-forward and decode-and-forward via a chaining construction. We transmit over pairs of blocks: in the first block, we use compress-and-forward; and, in the second block, we use decode-and-forward. More specifically, in the first block, the relay does not decode, it compresses the received signal via Wyner–Ziv, and it sends only part of the compression to the destination. In the second block, the relay completely decodes the message, it sends some information to the destination, and it also sends the remaining part of the compression coming from the first block. By doing so, we are able to strictly outperform both compress-and-forward and decode-and-forward. Note that the proposed coding scheme can be implemented with polar codes. As such, it has the typical attractive properties of polar coding schemes, namely, quasi-linear encoding and decoding complexity, and error probability that decays at super-polynomial speed. As a running example, we take into account the special case of the erasure relay channel, and we provide a comparison between the rates achievable by our proposed scheme and the existing upper and lower bounds. AU - Mondelli, Marco AU - Hassani, S. Hamed AU - Urbanke, Rüdiger ID - 7007 IS - 10 JF - Algorithms SN - 1999-4893 TI - A new coding paradigm for the primitive relay channel VL - 12 ER -