TY - GEN
AB - Synchronous programs are easy to specify because the side effects of an operation are finished by the time the invocation of the operation returns to the caller. Asynchronous programs, on the other hand, are difficult to specify because there are side effects due to pending computation scheduled as a result of the invocation of an operation. They are also difficult to verify because of the large number of possible interleavings of concurrent asynchronous computation threads. We show that specifications and correctness proofs for asynchronous programs can be structured by introducing the fiction, for proof purposes, that intermediate, non-quiescent states of asynchronous operations can be ignored. Then, the task of specification becomes relatively simple and the task of verification can be naturally decomposed into smaller sub-tasks. The sub-tasks iteratively summarize, guided by the structure of an asynchronous program, the atomic effect of non-atomic operations and the synchronous effect of asynchronous operations. This structuring of specifications and proofs corresponds to the introduction of multiple layers of stepwise refinement for asynchronous programs. We present the first proof rule, called synchronization, to reduce asynchronous invocations on a lower layer to synchronous invocations on a higher layer. We implemented our proof method in CIVL and evaluated it on a collection of benchmark programs.
AU - Henzinger, Thomas A
AU - Kragl, Bernhard
AU - Qadeer, Shaz
ID - 6426
SN - 2664-1690
TI - Synchronizing the asynchronous
ER -
TY - JOUR
AB - It has been reported that nicotinamide-overload induces oxidative stress associated with insulin resistance, the key feature of type 2 diabetes mellitus (T2DM). This study aimed to investigate the effects of B vitamins in T2DM. Glucose tolerance tests (GTT) were carried out in adult Sprague-Dawley rats treated with or without cumulative doses of B vitamins. More specifically, insulin tolerance tests (ITT) were also carried out in adult Sprague-Dawley rats treated with or without cumulative doses of Vitamin B3. We found that cumulative Vitamin B1 and Vitamin B3 administration significantly increased the plasma H2O2 levels associated with high insulin levels. Only Vitamin B3 reduced muscular and hepatic glycogen contents. Cumulative administration of nicotinic acid, another form of Vitamin B3, also significantly increased plasma insulin level and H2O2 generation. Moreover, cumulative administration of nicotinic acid or nicotinamide impaired glucose metabolism. This study suggested that excess Vitamin B1 and Vitamin B3 caused oxidative stress and insulin resistance.
AU - Sun, Wuping
AU - Zhai, Ming-Zhu
AU - Zhou, Qian
AU - Qian, Chengrui
AU - Jiang, Changyu
ID - 643
IS - 4
JF - Chinese Journal of Physiology
SN - 03044920
TI - Effects of B vitamins overload on plasma insulin level and hydrogen peroxide generation in rats
VL - 60
ER -
TY - JOUR
AB - Cauchy problems with SPDEs on the whole space are localized to Cauchy problems on a ball of radius R. This localization reduces various kinds of spatial approximation schemes to finite dimensional problems. The error is shown to be exponentially small. As an application, a numerical scheme is presented which combines the localization and the space and time discretization, and thus is fully implementable.
AU - Gerencser, Mate
AU - Gyöngy, István
ID - 642
IS - 307
JF - Mathematics of Computation
SN - 00255718
TI - Localization errors in solving stochastic partial differential equations in the whole space
VL - 86
ER -
TY - JOUR
AB - RNA Polymerase II pauses and backtracks during transcription, with many consequences for gene expression and cellular physiology. Here, we show that the energy required to melt double-stranded nucleic acids in the transcription bubble predicts pausing in Saccharomyces cerevisiae far more accurately than nucleosome roadblocks do. In addition, the same energy difference also determines when the RNA polymerase backtracks instead of continuing to move forward. This data-driven model corroborates—in a genome wide and quantitative manner—previous evidence that sequence-dependent thermodynamic features of nucleic acids influence both transcriptional pausing and backtracking.
AU - Lukacisin, Martin
AU - Landon, Matthieu
AU - Jajoo, Rishi
ID - 1029
IS - 3
JF - PLoS One
SN - 19326203
TI - Sequence-specific thermodynamic properties of nucleic acids influence both transcriptional pausing and backtracking in yeast
VL - 12
ER -
TY - JOUR
AB - An instance of the valued constraint satisfaction problem (VCSP) is given by a finite set of variables, a finite domain of labels, and a sum of functions, each function depending on a subset of the variables. Each function can take finite values specifying costs of assignments of labels to its variables or the infinite value, which indicates an infeasible assignment. The goal is to find an assignment of labels to the variables that minimizes the sum. We study, assuming that P 6= NP, how the complexity of this very general problem depends on the set of functions allowed in the instances, the so-called constraint language. The case when all allowed functions take values in f0;1g corresponds to ordinary CSPs, where one deals only with the feasibility issue, and there is no optimization. This case is the subject of the algebraic CSP dichotomy conjecture predicting for which constraint languages CSPs are tractable (i.e., solvable in polynomial time) and for which they are NP-hard. The case when all allowed functions take only finite values corresponds to a finitevalued CSP, where the feasibility aspect is trivial and one deals only with the optimization issue. The complexity of finite-valued CSPs was fully classified by Thapper and Živný. An algebraic necessary condition for tractability of a general-valued CSP with a fixed constraint language was recently given by Kozik and Ochremiak. As our main result, we prove that if a constraint language satisfies this algebraic necessary condition, and the feasibility CSP (i.e., the problem of deciding whether a given instance has a feasible solution) corresponding to the VCSP with this language is tractable, then the VCSP is tractable. The algorithm is a simple combination of the assumed algorithm for the feasibility CSP and the standard LP relaxation. As a corollary, we obtain that a dichotomy for ordinary CSPs would imply a dichotomy for general-valued CSPs.
AU - Kolmogorov, Vladimir
AU - Krokhin, Andrei
AU - Rolinek, Michal
ID - 644
IS - 3
JF - SIAM Journal on Computing
TI - The complexity of general-valued CSPs
VL - 46
ER -
TY - CONF
AB - Markov decision processes (MDPs) are standard models for probabilistic systems with non-deterministic behaviours. Long-run average rewards provide a mathematically elegant formalism for expressing long term performance. Value iteration (VI) is one of the simplest and most efficient algorithmic approaches to MDPs with other properties, such as reachability objectives. Unfortunately, a naive extension of VI does not work for MDPs with long-run average rewards, as there is no known stopping criterion. In this work our contributions are threefold. (1) We refute a conjecture related to stopping criteria for MDPs with long-run average rewards. (2) We present two practical algorithms for MDPs with long-run average rewards based on VI. First, we show that a combination of applying VI locally for each maximal end-component (MEC) and VI for reachability objectives can provide approximation guarantees. Second, extending the above approach with a simulation-guided on-demand variant of VI, we present an anytime algorithm that is able to deal with very large models. (3) Finally, we present experimental results showing that our methods significantly outperform the standard approaches on several benchmarks.
AU - Ashok, Pranav
AU - Chatterjee, Krishnendu
AU - Daca, Przemyslaw
AU - Kretinsky, Jan
AU - Meggendorfer, Tobias
ED - Majumdar, Rupak
ED - Kunčak, Viktor
ID - 645
SN - 978-331963386-2
TI - Value iteration for long run average reward in markov decision processes
VL - 10426
ER -
TY - CONF
AB - We present a novel convex relaxation and a corresponding inference algorithm for the non-binary discrete tomography problem, that is, reconstructing discrete-valued images from few linear measurements. In contrast to state of the art approaches that split the problem into a continuous reconstruction problem for the linear measurement constraints and a discrete labeling problem to enforce discrete-valued reconstructions, we propose a joint formulation that addresses both problems simultaneously, resulting in a tighter convex relaxation. For this purpose a constrained graphical model is set up and evaluated using a novel relaxation optimized by dual decomposition. We evaluate our approach experimentally and show superior solutions both mathematically (tighter relaxation) and experimentally in comparison to previously proposed relaxations.
AU - Kuske, Jan
AU - Swoboda, Paul
AU - Petra, Stefanie
ED - Lauze, François
ED - Dong, Yiqiu
ED - Bjorholm Dahl, Anders
ID - 646
SN - 978-331958770-7
TI - A novel convex relaxation for non binary discrete tomography
VL - 10302
ER -
TY - CHAP
AB - We give a short overview on a recently developed notion of Ricci curvature for discrete spaces. This notion relies on geodesic convexity properties of the relative entropy along geodesics in the space of probability densities, for a metric which is similar to (but different from) the 2-Wasserstein metric. The theory can be considered as a discrete counterpart to the theory of Ricci curvature for geodesic measure spaces developed by Lott–Sturm–Villani.
AU - Maas, Jan
ED - Najman, Laurent
ED - Romon, Pascal
ID - 649
T2 - Modern Approaches to Discrete Curvature
TI - Entropic Ricci curvature for discrete spaces
VL - 2184
ER -
TY - CONF
AB - In this work we present a short and unified proof for the Strong and Weak Regularity Lemma, based on the cryptographic tech-nique called low-complexity approximations. In short, both problems reduce to a task of finding constructively an approximation for a certain target function under a class of distinguishers (test functions), where dis-tinguishers are combinations of simple rectangle-indicators. In our case these approximations can be learned by a simple iterative procedure, which yields a unified and simple proof, achieving for any graph with density d and any approximation parameter the partition size. The novelty in our proof is: (a) a simple approach which yields both strong and weaker variant, and (b) improvements when d = o(1). At an abstract level, our proof can be seen a refinement and simplification of the “analytic” proof given by Lovasz and Szegedy.
AU - Skórski, Maciej
ED - Jäger, Gerhard
ED - Steila, Silvia
ID - 650
SN - 03029743
TI - A cryptographic view of regularity lemmas: Simpler unified proofs and refined bounds
VL - 10185
ER -
TY - CONF
AB - Pseudoentropy has found a lot of important applications to cryptography and complexity theory. In this paper we focus on the foundational problem that has not been investigated so far, namely by how much pseudoentropy (the amount seen by computationally bounded attackers) diﬀers from its information-theoretic counterpart (seen by unbounded observers), given certain limits on attacker’s computational power? We provide the following answer for HILL pseudoentropy, which exhibits a threshold behavior around the size exponential in the entropy amount:– If the attacker size (s) and advantage () satisfy s (formula presented) where k is the claimed amount of pseudoentropy, then the pseudoentropy boils down to the information-theoretic smooth entropy. – If s (formula presented) then pseudoentropy could be arbitrarily bigger than the information-theoretic smooth entropy. Besides answering the posted question, we show an elegant application of our result to the complexity theory, namely that it implies the clas-sical result on the existence of functions hard to approximate (due to Pippenger). In our approach we utilize non-constructive techniques: the duality of linear programming and the probabilistic method.
AU - Skórski, Maciej
ED - Jäger, Gerhard
ED - Steila, Silvia
ID - 648
SN - 978-331955910-0
TI - On the complexity of breaking pseudoentropy
VL - 10185
ER -
TY - JOUR
AB - The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecology, sociology, and genetics, usually without testing its goodness-of-fit. Here, we propose an exact goodness-of-fit test for the finite-lattice Ising model. The theory of Markov bases has been developed in algebraic statistics for exact goodness-of-fit testing using a Monte Carlo approach. However, this beautiful theory has fallen short of its promise for applications, because finding a Markov basis is usually computationally intractable. We develop a Monte Carlo method for exact goodness-of-fit testing for the Ising model which avoids computing a Markov basis and also leads to a better connectivity of the Markov chain and hence to a faster convergence. We show how this method can be applied to analyze the spatial organization of receptors on the cell membrane.
AU - Martin Del Campo Sanchez, Abraham
AU - Cepeda Humerez, Sarah A
AU - Uhler, Caroline
ID - 2016
IS - 2
JF - Scandinavian Journal of Statistics
SN - 03036898
TI - Exact goodness-of-fit testing for the Ising model
VL - 44
ER -
TY - JOUR
AB - Human neurons transplanted into a mouse model for Alzheimer’s disease show human-specific vulnerability to β-amyloid plaques and may help to identify new therapeutic targets.
AU - Novarino, Gaia
ID - 656
IS - 381
JF - Science Translational Medicine
SN - 19466234
TI - Modeling Alzheimer's disease in mice with human neurons
VL - 9
ER -
TY - JOUR
AB - Plant organs are typically organized into three main tissue layers. The middle ground tissue layer comprises the majority of the plant body and serves a wide range of functions, including photosynthesis, selective nutrient uptake and storage, and gravity sensing. Ground tissue patterning and maintenance in Arabidopsis are controlled by a well-established gene network revolving around the key regulator SHORT-ROOT (SHR). In contrast, it is completely unknown how ground tissue identity is first specified from totipotent precursor cells in the embryo. The plant signaling molecule auxin, acting through AUXIN RESPONSE FACTOR (ARF) transcription factors, is critical for embryo patterning. The auxin effector ARF5/MONOPTEROS (MP) acts both cell-autonomously and noncell-autonomously to control embryonic vascular tissue formation and root initiation, respectively. Here we show that auxin response and ARF activity cell-autonomously control the asymmetric division of the first ground tissue cells. By identifying embryonic target genes, we show that MP transcriptionally initiates the ground tissue lineage and acts upstream of the regulatory network that controls ground tissue patterning and maintenance. Strikingly, whereas the SHR network depends on MP, this MP function is, at least in part, SHR independent. Our study therefore identifies auxin response as a regulator of ground tissue specification in the embryonic root, and reveals that ground tissue initiation and maintenance use different regulators and mechanisms. Moreover, our data provide a framework for the simultaneous formation of multiple cell types by the same transcriptional regulator.
AU - Möller, Barbara
AU - Ten Hove, Colette
AU - Xiang, Daoquan
AU - Williams, Nerys
AU - López, Lorena
AU - Yoshida, Saiko
AU - Smit, Margot
AU - Datla, Raju
AU - Weijers, Dolf
ID - 657
IS - 12
JF - PNAS
SN - 00278424
TI - Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo
VL - 114
ER -
TY - JOUR
AB - With the accelerated development of robot technologies, control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of specific objectives for the task at hand. While very successful in many applications, self-organized control schemes seem to be favored in large complex systems with unknown dynamics or which are difficult to model. Reasons are the expected scalability, robustness, and resilience of self-organizing systems. The paper presents a self-learning neurocontroller based on extrinsic differential plasticity introduced recently, applying it to an anthropomorphic musculoskeletal robot arm with attached objects of unknown physical dynamics. The central finding of the paper is the following effect: by the mere feedback through the internal dynamics of the object, the robot is learning to relate each of the objects with a very specific sensorimotor pattern. Specifically, an attached pendulum pilots the arm into a circular motion, a half-filled bottle produces axis oriented shaking behavior, a wheel is getting rotated, and wiping patterns emerge automatically in a table-plus-brush setting. By these object-specific dynamical patterns, the robot may be said to recognize the object's identity, or in other words, it discovers dynamical affordances of objects. Furthermore, when including hand coordinates obtained from a camera, a dedicated hand-eye coordination self-organizes spontaneously. These phenomena are discussed from a specific dynamical system perspective. Central is the dedicated working regime at the border to instability with its potentially infinite reservoir of (limit cycle) attractors "waiting" to be excited. Besides converging toward one of these attractors, variate behavior is also arising from a self-induced attractor morphing driven by the learning rule. We claim that experimental investigations with this anthropomorphic, self-learning robot not only generate interesting and potentially useful behaviors, but may also help to better understand what subjective human muscle feelings are, how they can be rooted in sensorimotor patterns, and how these concepts may feed back on robotics.
AU - Der, Ralf
AU - Martius, Georg S
ID - 658
IS - MAR
JF - Frontiers in Neurorobotics
SN - 16625218
TI - Self organized behavior generation for musculoskeletal robots
VL - 11
ER -
TY - JOUR
AB - Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching.
AU - Kage, Frieda
AU - Winterhoff, Moritz
AU - Dimchev, Vanessa
AU - Müller, Jan
AU - Thalheim, Tobias
AU - Freise, Anika
AU - Brühmann, Stefan
AU - Kollasser, Jana
AU - Block, Jennifer
AU - Dimchev, Georgi A
AU - Geyer, Matthias
AU - Schnittler, Hams
AU - Brakebusch, Cord
AU - Stradal, Theresia
AU - Carlier, Marie
AU - Sixt, Michael K
AU - Käs, Josef
AU - Faix, Jan
AU - Rottner, Klemens
ID - 659
JF - Nature Communications
SN - 20411723
TI - FMNL formins boost lamellipodial force generation
VL - 8
ER -
TY - JOUR
AB - Growing microtubules are protected from depolymerization by the presence of a GTP or GDP/Pi cap. End-binding proteins of the EB1 family bind to the stabilizing cap, allowing monitoring of its size in real time. The cap size has been shown to correlate with instantaneous microtubule stability. Here we have quantitatively characterized the properties of cap size fluctuations during steadystate growth and have developed a theory predicting their timescale and amplitude from the kinetics of microtubule growth and cap maturation. In contrast to growth speed fluctuations, cap size fluctuations show a characteristic timescale, which is defined by the lifetime of the cap sites. Growth fluctuations affect the amplitude of cap size fluctuations; however, cap size does not affect growth speed, indicating that microtubules are far from instability during most of their time of growth. Our theory provides the basis for a quantitative understanding of microtubule stability fluctuations during steady-state growth.
AU - Rickman, Jamie
AU - Düllberg, Christian F
AU - Cade, Nicholas
AU - Griffin, Lewis
AU - Surrey, Thomas
ID - 660
IS - 13
JF - PNAS
SN - 00278424
TI - Steady state EB cap size fluctuations are determined by stochastic microtubule growth and maturation
VL - 114
ER -
TY - JOUR
AB - Superhydrophobic surfaces reduce the frictional drag between water and solid materials, but this effect is often temporary. The realization of sustained drag reduction has applications for water vehicles and pipeline flows.
AU - Hof, Björn
ID - 651
IS - 7636
JF - Nature
SN - 00280836
TI - Fluid dynamics: Water flows out of touch
VL - 541
ER -
TY - CONF
AB - A (possibly degenerate) drawing of a graph G in the plane is approximable by an embedding if it can be turned into an embedding by an arbitrarily small perturbation. We show that testing, whether a drawing of a planar graph G in the plane is approximable by an embedding, can be carried out in polynomial time, if a desired embedding of G belongs to a fixed isotopy class, i.e., the rotation system (or equivalently the faces) of the embedding of G and the choice of outer face are fixed. In other words, we show that c-planarity with embedded pipes is tractable for graphs with fixed embeddings. To the best of our knowledge an analogous result was previously known essentially only when G is a cycle.
AU - Fulek, Radoslav
ID - 6517
TI - Embedding graphs into embedded graphs
VL - 92
ER -
TY - CONF
AB - Graph games with omega-regular winning conditions provide a mathematical framework to analyze a wide range of problems in the analysis of reactive systems and programs (such as the synthesis of reactive systems, program repair, and the verification of branching time properties). Parity conditions are canonical forms to specify omega-regular winning conditions. Graph games with parity conditions are equivalent to mu-calculus model checking, and thus a very important algorithmic problem. Symbolic algorithms are of great significance because they provide scalable algorithms for the analysis of large finite-state systems, as well as algorithms for the analysis of infinite-state systems with finite quotient. A set-based symbolic algorithm uses the basic set operations and the one-step predecessor operators. We consider graph games with n vertices and parity conditions with c priorities (equivalently, a mu-calculus formula with c alternations of least and greatest fixed points). While many explicit algorithms exist for graph games with parity conditions, for set-based symbolic algorithms there are only two algorithms (notice that we use space to refer to the number of sets stored by a symbolic algorithm): (a) the basic algorithm that requires O(n^c) symbolic operations and linear space; and (b) an improved algorithm that requires O(n^{c/2+1}) symbolic operations but also O(n^{c/2+1}) space (i.e., exponential space). In this work we present two set-based symbolic algorithms for parity games: (a) our first algorithm requires O(n^{c/2+1}) symbolic operations and only requires linear space; and (b) developing on our first algorithm, we present an algorithm that requires O(n^{c/3+1}) symbolic operations and only linear space. We also present the first linear space set-based symbolic algorithm for parity games that requires at most a sub-exponential number of symbolic operations.
AU - Chatterjee, Krishnendu
AU - Dvorák, Wolfgang
AU - Henzinger, Monika
AU - Loitzenbauer, Veronika
ID - 6519
TI - Improved set-based symbolic algorithms for parity games
VL - 82
ER -
TY - CONF
AB - We present an approach that enables robots to self-organize their sensorimotor behavior from scratch without providing specific information about neither the robot nor its environment. This is achieved by a simple neural control law that increases the consistency between external sensor dynamics and internal neural dynamics of the utterly simple controller. In this way, the embodiment and the agent-environment coupling are the only source of individual development. We show how an anthropomorphic tendon driven arm-shoulder system develops different behaviors depending on that coupling. For instance: Given a bottle half-filled with water, the arm starts to shake it, driven by the physical response of the water. When attaching a brush, the arm can be manipulated into wiping a table, and when connected to a revolvable wheel it finds out how to rotate it. Thus, the robot may be said to discover the affordances of the world. When allowing two (simulated) humanoid robots to interact physically, they engage into a joint behavior development leading to, for instance, spontaneous cooperation. More social effects are observed if the robots can visually perceive each other. Although, as an observer, it is tempting to attribute an apparent intentionality, there is nothing of the kind put in. As a conclusion, we argue that emergent behavior may be much less rooted in explicit intentions, internal motivations, or specific reward systems than is commonly believed.
AU - Der, Ralf
AU - Martius, Georg S
ID - 652
SN - 978-150905069-7
TI - Dynamical self consistency leads to behavioral development and emergent social interactions in robots
ER -
TY - CONF
AB - This paper studies the complexity of estimating Rényi divergences of discrete distributions: p observed from samples and the baseline distribution q known a priori. Extending the results of Acharya et al. (SODA'15) on estimating Rényi entropy, we present improved estimation techniques together with upper and lower bounds on the sample complexity. We show that, contrarily to estimating Rényi entropy where a sublinear (in the alphabet size) number of samples suffices, the sample complexity is heavily dependent on events occurring unlikely in q, and is unbounded in general (no matter what an estimation technique is used). For any divergence of integer order bigger than 1, we provide upper and lower bounds on the number of samples dependent on probabilities of p and q (the lower bounds hold for non-integer orders as well). We conclude that the worst-case sample complexity is polynomial in the alphabet size if and only if the probabilities of q are non-negligible. This gives theoretical insights into heuristics used in the applied literature to handle numerical instability, which occurs for small probabilities of q. Our result shows that they should be handled with care not only because of numerical issues, but also because of a blow up in the sample complexity.
AU - Skórski, Maciej
ID - 6526
SN - 9781509040964
T2 - 2017 IEEE International Symposium on Information Theory (ISIT)
TI - On the complexity of estimating Rènyi divergences
ER -
TY - CONF
AB - A memory-hard function (MHF) ƒn with parameter n can be computed in sequential time and space n. Simultaneously, a high amortized parallel area-time complexity (aAT) is incurred per evaluation. In practice, MHFs are used to limit the rate at which an adversary (using a custom computational device) can evaluate a security sensitive function that still occasionally needs to be evaluated by honest users (using an off-the-shelf general purpose device). The most prevalent examples of such sensitive functions are Key Derivation Functions (KDFs) and password hashing algorithms where rate limits help mitigate off-line dictionary attacks. As the honest users' inputs to these functions are often (low-entropy) passwords special attention is given to a class of side-channel resistant MHFs called iMHFs.
Essentially all iMHFs can be viewed as some mode of operation (making n calls to some round function) given by a directed acyclic graph (DAG) with very low indegree. Recently, a combinatorial property of a DAG has been identified (called "depth-robustness") which results in good provable security for an iMHF based on that DAG. Depth-robust DAGs have also proven useful in other cryptographic applications. Unfortunately, up till now, all known very depth-robust DAGs are impractically complicated and little is known about their exact (i.e. non-asymptotic) depth-robustness both in theory and in practice.
In this work we build and analyze (both formally and empirically) several exceedingly simple and efficient to navigate practical DAGs for use in iMHFs and other applications. For each DAG we:
*Prove that their depth-robustness is asymptotically maximal.
*Prove bounds of at least 3 orders of magnitude better on their exact depth-robustness compared to known bounds for other practical iMHF.
*Implement and empirically evaluate their depth-robustness and aAT against a variety of state-of-the art (and several new) depth-reduction and low aAT attacks.
We find that, against all attacks, the new DAGs perform significantly better in practice than Argon2i, the most widely deployed iMHF in practice.
Along the way we also improve the best known empirical attacks on the aAT of Argon2i by implementing and testing several heuristic versions of a (hitherto purely theoretical) depth-reduction attack. Finally, we demonstrate practicality of our constructions by modifying the Argon2i code base to use one of the new high aAT DAGs. Experimental benchmarks on a standard off-the-shelf CPU show that the new modifications do not adversely affect the impressive throughput of Argon2i (despite seemingly enjoying significantly higher aAT).
AU - Alwen, Joel F
AU - Blocki, Jeremiah
AU - Harsha, Ben
ID - 6527
SN - 9781450349468
T2 - Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security
TI - Practical graphs for optimal side-channel resistant memory-hard functions
ER -
TY - JOUR
AB - The extent of heterogeneity among driver gene mutations present in naturally occurring metastases - that is, treatment-naive metastatic disease - is largely unknown. To address this issue, we carried out 60× whole-genome sequencing of 26 metastases from four patients with pancreatic cancer. We found that identical mutations in known driver genes were present in every metastatic lesion for each patient studied. Passenger gene mutations, which do not have known or predicted functional consequences, accounted for all intratumoral heterogeneity. Even with respect to these passenger mutations, our analysis suggests that the genetic similarity among the founding cells of metastases was higher than that expected for any two cells randomly taken from a normal tissue. The uniformity of known driver gene mutations among metastases in the same patient has critical and encouraging implications for the success of future targeted therapies in advanced-stage disease.
AU - Makohon Moore, Alvin
AU - Zhang, Ming
AU - Reiter, Johannes
AU - Božić, Ivana
AU - Allen, Benjamin
AU - Kundu, Deepanjan
AU - Chatterjee, Krishnendu
AU - Wong, Fay
AU - Jiao, Yuchen
AU - Kohutek, Zachary
AU - Hong, Jungeui
AU - Attiyeh, Marc
AU - Javier, Breanna
AU - Wood, Laura
AU - Hruban, Ralph
AU - Nowak, Martin
AU - Papadopoulos, Nickolas
AU - Kinzler, Kenneth
AU - Vogelstein, Bert
AU - Iacobuzio Donahue, Christine
ID - 653
IS - 3
JF - Nature Genetics
SN - 10614036
TI - Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer
VL - 49
ER -
TY - JOUR
AB - In November 2016, developmental biologists, synthetic biologists and engineers gathered in Paris for a meeting called ‘Engineering the embryo’. The participants shared an interest in exploring how synthetic systems can reveal new principles of embryonic development, and how the in vitro manipulation and modeling of development using stem cells can be used to integrate ideas and expertise from physics, developmental biology and tissue engineering. As we review here, the conference pinpointed some of the challenges arising at the intersection of these fields, along with great enthusiasm for finding new approaches and collaborations.
AU - Kicheva, Anna
AU - Rivron, Nicolas
ID - 654
IS - 5
JF - Development
SN - 09501991
TI - Creating to understand – developmental biology meets engineering in Paris
VL - 144
ER -
TY - JOUR
AB - The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ~1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.
AU - Renault, Thibaud
AU - Abraham, Anthony
AU - Bergmiller, Tobias
AU - Paradis, Guillaume
AU - Rainville, Simon
AU - Charpentier, Emmanuelle
AU - Guet, Calin C
AU - Tu, Yuhai
AU - Namba, Keiichi
AU - Keener, James
AU - Minamino, Tohru
AU - Erhardt, Marc
ID - 655
JF - eLife
SN - 2050084X
TI - Bacterial flagella grow through an injection diffusion mechanism
VL - 6
ER -
TY - JOUR
AB - We report a direct-numerical-simulation study of the Taylor-Couette flow in the quasi-Keplerian regime at shear Reynolds numbers up to (105). Quasi-Keplerian rotating flow has been investigated for decades as a simplified model system to study the origin of turbulence in accretion disks that is not fully understood. The flow in this study is axially periodic and thus the experimental end-wall effects on the stability of the flow are avoided. Using optimal linear perturbations as initial conditions, our simulations find no sustained turbulence: the strong initial perturbations distort the velocity profile and trigger turbulence that eventually decays.
AU - Shi, Liang
AU - Hof, Björn
AU - Rampp, Markus
AU - Avila, Marc
ID - 662
IS - 4
JF - Physics of Fluids
SN - 10706631
TI - Hydrodynamic turbulence in quasi Keplerian rotating flows
VL - 29
ER -
TY - CONF
AB - In this paper, we propose an approach to automatically compute invariant clusters for nonlinear semialgebraic hybrid systems. An invariant cluster for an ordinary differential equation (ODE) is a multivariate polynomial invariant g(u→, x→) = 0, parametric in u→, which can yield an infinite number of concrete invariants by assigning different values to u→ so that every trajectory of the system can be overapproximated precisely by the intersection of a group of concrete invariants. For semialgebraic systems, which involve ODEs with multivariate polynomial right-hand sides, given a template multivariate polynomial g(u→, x→), an invariant cluster can be obtained by first computing the remainder of the Lie derivative of g(u→, x→) divided by g(u→, x→) and then solving the system of polynomial equations obtained from the coefficients of the remainder. Based on invariant clusters and sum-of-squares (SOS) programming, we present a new method for the safety verification of hybrid systems. Experiments on nonlinear benchmark systems from biology and control theory show that our approach is efficient.
AU - Kong, Hui
AU - Bogomolov, Sergiy
AU - Schilling, Christian
AU - Jiang, Yu
AU - Henzinger, Thomas A
ID - 663
SN - 978-145034590-3
T2 - Proceedings of the 20th International Conference on Hybrid Systems
TI - Safety verification of nonlinear hybrid systems based on invariant clusters
ER -
TY - JOUR
AB - The molecular mechanisms underlying phenotypic variation in isogenic bacterial populations remain poorly understood.We report that AcrAB-TolC, the main multidrug efflux pump of Escherichia coli, exhibits a strong partitioning bias for old cell poles by a segregation mechanism that is mediated by ternary AcrAB-TolC complex formation. Mother cells inheriting old poles are phenotypically distinct and display increased drug efflux activity relative to daughters. Consequently, we find systematic and long-lived growth differences between mother and daughter cells in the presence of subinhibitory drug concentrations. A simple model for biased partitioning predicts a population structure of long-lived and highly heterogeneous phenotypes. This straightforward mechanism of generating sustained growth rate differences at subinhibitory antibiotic concentrations has implications for understanding the emergence of multidrug resistance in bacteria.
AU - Bergmiller, Tobias
AU - Andersson, Anna M
AU - Tomasek, Kathrin
AU - Balleza, Enrique
AU - Kiviet, Daniel
AU - Hauschild, Robert
AU - Tkacik, Gasper
AU - Guet, Calin C
ID - 665
IS - 6335
JF - Science
SN - 00368075
TI - Biased partitioning of the multidrug efflux pump AcrAB TolC underlies long lived phenotypic heterogeneity
VL - 356
ER -
TY - DATA
AB - This repository contains the data collected for the manuscript "Biased partitioning of the multi-drug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity".
The data is compressed into a single archive. Within the archive, different folders correspond to figures of the main text and the SI of the related publication.
Data is saved as plain text, with each folder containing a separate readme file describing the format. Typically, the data is from fluorescence microscopy measurements of single cells growing in a microfluidic "mother machine" device, and consists of relevant values (primarily arbitrary unit or normalized fluorescence measurements, and division times / growth rates) after raw microscopy images have been processed, segmented, and their features extracted, as described in the methods section of the related publication.
AU - Bergmiller, Tobias
AU - Andersson, Anna M
AU - Tomasek, Kathrin
AU - Balleza, Enrique
AU - Kiviet, Daniel
AU - Hauschild, Robert
AU - Tkacik, Gasper
AU - Guet, Calin C
ID - 5560
KW - single cell microscopy
KW - mother machine microfluidic device
KW - AcrAB-TolC pump
KW - multi-drug efflux
KW - Escherichia coli
TI - Biased partitioning of the multi-drug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity
ER -
TY - JOUR
AB - Perinatal exposure to penicillin may result in longlasting gut and behavioral changes.
AU - Novarino, Gaia
ID - 667
IS - 387
JF - Science Translational Medicine
SN - 19466234
TI - The antisocial side of antibiotics
VL - 9
ER -
TY - JOUR
AB - We propose an efficient method to model paper tearing in the context of interactive modeling. The method uses geometrical information to automatically detect potential starting points of tears. We further introduce a new hybrid geometrical and physical-based method to compute the trajectory of tears while procedurally synthesizing high resolution details of the tearing path using a texture based approach. The results obtained are compared with real paper and with previous studies on the expected geometric paths of paper that tears.
AU - Schreck, Camille
AU - Rohmer, Damien
AU - Hahmann, Stefanie
ID - 670
IS - 2
JF - Computer Graphics Forum
SN - 01677055
TI - Interactive paper tearing
VL - 36
ER -
TY - JOUR
AB - Humans routinely use conditionally cooperative strategies when interacting in repeated social dilemmas. They are more likely to cooperate if others cooperated before, and are ready to retaliate if others defected. To capture the emergence of reciprocity, most previous models consider subjects who can only choose from a restricted set of representative strategies, or who react to the outcome of the very last round only. As players memorize more rounds, the dimension of the strategy space increases exponentially. This increasing computational complexity renders simulations for individuals with higher cognitive abilities infeasible, especially if multiplayer interactions are taken into account. Here, we take an axiomatic approach instead. We propose several properties that a robust cooperative strategy for a repeated multiplayer dilemma should have. These properties naturally lead to a unique class of cooperative strategies, which contains the classical Win-Stay Lose-Shift rule as a special case. A comprehensive numerical analysis for the prisoner's dilemma and for the public goods game suggests that strategies of this class readily evolve across various memory-n spaces. Our results reveal that successful strategies depend not only on how cooperative others were in the past but also on the respective context of cooperation.
AU - Hilbe, Christian
AU - Martinez, Vaquero
AU - Chatterjee, Krishnendu
AU - Nowak, Martin
ID - 671
IS - 18
JF - PNAS
SN - 00278424
TI - Memory-n strategies of direct reciprocity
VL - 114
ER -
TY - JOUR
AB - Trafficking cells frequently transmigrate through epithelial and endothelial monolayers. How monolayers cooperate with the penetrating cells to support their transit is poorly understood. We studied dendritic cell (DC) entry into lymphatic capillaries as a model system for transendothelial migration. We find that the chemokine CCL21, which is the decisive guidance cue for intravasation, mainly localizes in the trans-Golgi network and intracellular vesicles of lymphatic endothelial cells. Upon DC transmigration, these Golgi deposits disperse and CCL21 becomes extracellularly enriched at the sites of endothelial cell-cell junctions. When we reconstitute the transmigration process in vitro, we find that secretion of CCL21-positive vesicles is triggered by a DC contact-induced calcium signal, and selective calcium chelation in lymphatic endothelium attenuates transmigration. Altogether, our data demonstrate a chemokine-mediated feedback between DCs and lymphatic endothelium, which facilitates transendothelial migration.
AU - Vaahtomeri, Kari
AU - Brown, Markus
AU - Hauschild, Robert
AU - De Vries, Ingrid
AU - Leithner, Alexander F
AU - Mehling, Matthias
AU - Kaufmann, Walter
AU - Sixt, Michael K
ID - 672
IS - 5
JF - Cell Reports
SN - 22111247
TI - Locally triggered release of the chemokine CCL21 promotes dendritic cell transmigration across lymphatic endothelia
VL - 19
ER -
TY - CONF
AB - Polar codes represent one of the major recent breakthroughs in coding theory and, because of their attractive features, they have been selected for the incoming 5G standard. As such, a lot of attention has been devoted to the development of decoding algorithms with good error performance and efficient hardware implementation. One of the leading candidates in this regard is represented by successive-cancellation list (SCL) decoding. However, its hardware implementation requires a large amount of memory. Recently, a partitioned SCL (PSCL) decoder has been proposed to significantly reduce the memory consumption [1]. In this paper, we examine the paradigm of PSCL decoding from both theoretical and practical standpoints: (i) by changing the construction of the code, we are able to improve the performance at no additional computational, latency or memory cost, (ii) we present an optimal scheme to allocate cyclic redundancy checks (CRCs), and (iii) we provide an upper bound on the list size that allows MAP performance.
AU - Hashemi, Seyyed Ali
AU - Mondelli, Marco
AU - Hassani, Hamed
AU - Urbanke, Ruediger
AU - Gross, Warren
ID - 6679
T2 - 2017 IEEE Global Communications Conference
TI - Partitioned list decoding of polar codes: Analysis and improvement of finite length performance
ER -
TY - JOUR
AB - Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading.
AU - Horsthemke, Markus
AU - Bachg, Anne
AU - Groll, Katharina
AU - Moyzio, Sven
AU - Müther, Barbara
AU - Hemkemeyer, Sandra
AU - Wedlich Söldner, Roland
AU - Sixt, Michael K
AU - Tacke, Sebastian
AU - Bähler, Martin
AU - Hanley, Peter
ID - 668
IS - 17
JF - Journal of Biological Chemistry
SN - 00219258
TI - Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion
VL - 292
ER -
TY - JOUR
AB - The exocyst, a eukaryotic tethering complex, coregulates targeted exocytosis as an effector of small GTPases in polarized cell growth. In land plants, several exocyst subunits are encoded by double or triple paralogs, culminating in tens of EXO70 paralogs. Out of 23 Arabidopsis thaliana EXO70 isoforms, we analyzed seven isoforms expressed in pollen. Genetic and microscopic analyses of single mutants in EXO70A2, EXO70C1, EXO70C2, EXO70F1, EXO70H3, EXO70H5, and EXO70H6 genes revealed that only a loss-of-function EXO70C2 allele resulted in a significant male-specific transmission defect (segregation 40%:51%:9%) due to aberrant pollen tube growth. Mutant pollen tubes grown in vitro exhibited an enhanced growth rate and a decreased thickness of the tip cell wall, causing tip bursts. However, exo70C2 pollen tubes could frequently recover and restart their speedy elongation, resulting in a repetitive stop-and-go growth dynamics. A pollenspecific depletion of the closest paralog, EXO70C1, using artificial microRNA in the exo70C2 mutant background, resulted in a complete pollen-specific transmission defect, suggesting redundant functions of EXO70C1 and EXO70C2. Both EXO70C1 and EXO70C2, GFP tagged and expressed under the control of their native promoters, localized in the cytoplasm of pollen grains, pollen tubes, and also root trichoblast cells. The expression of EXO70C2-GFP complemented the aberrant growth of exo70C2 pollen tubes. The absent EXO70C2 interactions with core exocyst subunits in the yeast two-hybrid assay, cytoplasmic localization, and genetic effect suggest an unconventional EXO70 function possibly as a regulator of exocytosis outside the exocyst complex. In conclusion, EXO70C2 is a novel factor contributing to the regulation of optimal tip growth of Arabidopsis pollen tubes.
AU - Synek, Lukáš
AU - Vukašinović, Nemanja
AU - Kulich, Ivan
AU - Hála, Michal
AU - Aldorfová, Klára
AU - Fendrych, Matyas
AU - Žárský, Viktor
ID - 669
IS - 1
JF - Plant Physiology
SN - 00320889
TI - EXO70C2 is a key regulatory factor for optimal tip growth of pollen
VL - 174
ER -
TY - CONF
AB - Consider the problem of constructing a polar code of block length N for the transmission over a given channel W. Typically this requires to compute the reliability of all the N synthetic channels and then to include those that are sufficiently reliable. However, we know from [1], [2] that there is a partial order among the synthetic channels. Hence, it is natural to ask whether we can exploit it to reduce the computational burden of the construction problem. We show that, if we take advantage of the partial order [1], [2], we can construct a polar code by computing the reliability of roughly N/ log 3/2 N synthetic channels. Such a set of synthetic channels is universal, in the sense that it allows one to construct polar codes for any W, and it can be identified by solving a maximum matching problem on a bipartite graph. Our proof technique consists in reducing the construction problem to the problem of computing the maximum cardinality of an antichain for a suitable partially ordered set. As such, this method is general and it can be used to further improve the complexity of the construction problem in case a new partial order on the synthetic channels of polar codes is discovered.
AU - Mondelli, Marco
AU - Hassani, S. Hamed
AU - Urbanke, Rudiger
ID - 6729
SN - 9781509040964
T2 - 2017 IEEE International Symposium on Information Theory
TI - Construction of polar codes with sublinear complexity
ER -
TY - JOUR
AB - We present a numerical study of wavy supercritical cylindrical Couette flow between counter-rotating cylinders in which the wavy pattern propagates either prograde with the inner cylinder or retrograde opposite the rotation of the inner cylinder. The wave propagation reversals from prograde to retrograde and vice versa occur at distinct values of the inner cylinder Reynolds number when the associated frequency of the wavy instability vanishes. The reversal occurs for both twofold and threefold symmetric wavy vortices. Moreover, the wave propagation reversal only occurs for sufficiently strong counter-rotation. The flow pattern reversal appears to be intrinsic in the system as either periodic boundary conditions or fixed end wall boundary conditions for different system sizes always result in the wave propagation reversal. We present a detailed bifurcation sequence and parameter space diagram with respect to retrograde behavior of wavy flows. The retrograde propagation of the instability occurs when the inner Reynolds number is about two times the outer Reynolds number. The mechanism for the retrograde propagation is associated with the inviscidly unstable region near the inner cylinder and the direction of the global average azimuthal velocity. Flow dynamics, spatio-temporal behavior, global mean angular velocity, and torque of the flow with the wavy pattern are explored.
AU - Altmeyer, Sebastian
AU - Lueptow, Richard
ID - 673
IS - 5
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
SN - 24700045
TI - Wave propagation reversal for wavy vortices in wide gap counter rotating cylindrical Couette flow
VL - 95
ER -
TY - JOUR
AB - We introduce a new approach to proving that a sequence of deterministic linear codes achieves capacity on an erasure channel under maximum a posteriori decoding. Rather than relying on the precise structure of the codes, our method exploits code symmetry. In particular, the technique applies to any sequence of linear codes where the blocklengths are strictly increasing, the code rates converge, and the permutation group of each code is doubly transitive. In other words, we show that symmetry alone implies near-optimal performance. An important consequence of this result is that a sequence of Reed-Muller codes with increasing block length and converging rate achieves capacity. This possibility has been suggested previously in the literature but it has only been proven for cases where the limiting code rate is 0 or 1. Moreover, these results extend naturally to all affine-invariant codes and, thus, to extended primitive narrow-sense BCH codes. This also resolves, in the affirmative, the existence question for capacity-achieving sequences of binary cyclic codes. The primary tools used in the proof are the sharp threshold property for symmetric monotone Boolean functions and the area theorem for extrinsic information transfer functions.
AU - Kudekar, Shrinivas
AU - Kumar, Santhosh
AU - Mondelli, Marco
AU - Pfister, Henry D.
AU - Sasoglu, Eren
AU - Urbanke, Ridiger L.
ID - 6730
IS - 7
JF - IEEE Transactions on Information Theory
SN - 0018-9448
TI - Reed–Muller codes achieve capacity on erasure channels
VL - 63
ER -
TY - CONF
AB - We present a rate-compatible polar coding scheme that achieves the capacity of any family of channels. Our solution generalizes the previous results [1], [2] that provide capacity-achieving rate-compatible polar codes for a degraded family of channels. The motivation for our extension comes from the fact that in many practical scenarios, e.g., MIMO systems and non-Gaussian interference, the channels cannot be ordered by degradation. The main technical contribution of this paper consists in removing the degradation condition. To do so, we exploit the ideas coming from the construction of universal polar codes. Our scheme possesses the usual attractive features of polar codes: low complexity code construction, encoding, and decoding; super-polynomial scaling of the error probability with the block length; and absence of error floors. On the negative side, the scaling of the gap to capacity with the block length is slower than in standard polar codes, and we prove an upper bound on the scaling exponent.
AU - Mondelli, Marco
AU - Hassani, Hamed
AU - Maric, Ivana
AU - Hui, Dennis
AU - Hong, Song-Nam
ID - 6731
SN - 9781509059089
T2 - 2017 IEEE Wireless Communications and Networking Conference Workshops
TI - Capacity-achieving rate-compatible polar codes for general channels
ER -
TY - JOUR
AB - Navigation of cells along gradients of guidance cues is a determining step in many developmental and immunological processes. Gradients can either be soluble or immobilized to tissues as demonstrated for the haptotactic migration of dendritic cells (DCs) toward higher concentrations of immobilized chemokine CCL21. To elucidate how gradient characteristics govern cellular response patterns, we here introduce an in vitro system allowing to track migratory responses of DCs to precisely controlled immobilized gradients of CCL21. We find that haptotactic sensing depends on the absolute CCL21 concentration and local steepness of the gradient, consistent with a scenario where DC directionality is governed by the signal-to-noise ratio of CCL21 binding to the receptor CCR7. We find that the conditions for optimal DC guidance are perfectly provided by the CCL21 gradients we measure in vivo. Furthermore, we find that CCR7 signal termination by the G-protein-coupled receptor kinase 6 (GRK6) is crucial for haptotactic but dispensable for chemotactic CCL21 gradient sensing in vitro and confirm those observations in vivo. These findings suggest that stable, tissue-bound CCL21 gradients as sustainable “roads” ensure optimal guidance in vivo.
AU - Schwarz, Jan
AU - Bierbaum, Veronika
AU - Vaahtomeri, Kari
AU - Hauschild, Robert
AU - Brown, Markus
AU - De Vries, Ingrid
AU - Leithner, Alexander F
AU - Reversat, Anne
AU - Merrin, Jack
AU - Tarrant, Teresa
AU - Bollenbach, Tobias
AU - Sixt, Michael K
ID - 674
IS - 9
JF - Current Biology
SN - 09609822
TI - Dendritic cells interpret haptotactic chemokine gradients in a manner governed by signal to noise ratio and dependent on GRK6
VL - 27
ER -
TY - JOUR
AB - We report the enhancement of infrared absorption of chemisorbed carbon monoxide on platinum in the gap of plasmonic nanoantennas. Our method is based on the self-assembled formation of platinum nanoislands on nanoscopic dipole antenna arrays manufactured via electron beam lithography. We employ systematic variations of the plasmonic antenna resonance to precisely couple to the molecular stretch vibration of carbon monoxide adsorbed on the platinum nanoislands. Ultimately, we reach more than 1500-fold infrared absorption enhancements, allowing for an ultrasensitive detection of a monolayer of chemisorbed carbon monoxide. The developed procedure can be adapted to other metal adsorbents and molecular species and could be utilized for coverage sensing in surface catalytic reactions.
AU - Haase, Johannes
AU - Bagiante, Salvatore
AU - Sigg, Hans
AU - Van Bokhoven, Jeroen
ID - 675
IS - 10
JF - Optics Letters
TI - Surface enhanced infrared absorption of chemisorbed carbon monoxide using plasmonic nanoantennas
VL - 42
ER -
TY - JOUR
AB - The seminal observation that mechanical signals can elicit changes in biochemical signalling within cells, a process commonly termed mechanosensation and mechanotransduction, has revolutionized our understanding of the role of cell mechanics in various fundamental biological processes, such as cell motility, adhesion, proliferation and differentiation. In this Review, we will discuss how the interplay and feedback between mechanical and biochemical signals control tissue morphogenesis and cell fate specification in embryonic development.
AU - Petridou, Nicoletta
AU - Spiro, Zoltan P
AU - Heisenberg, Carl-Philipp J
ID - 678
IS - 6
JF - Nature Cell Biology
SN - 14657392
TI - Multiscale force sensing in development
VL - 19
ER -
TY - JOUR
AB - Protective responses against pathogens require a rapid mobilization of resting neutrophils and the timely removal of activated ones. Neutrophils are exceptionally short-lived leukocytes, yet it remains unclear whether the lifespan of pathogen-engaged neutrophils is regulated differently from that in the circulating steady-state pool. Here, we have found that under homeostatic conditions, the mRNA-destabilizing protein tristetraprolin (TTP) regulates apoptosis and the numbers of activated infiltrating murine neutrophils but not neutrophil cellularity. Activated TTP-deficient neutrophils exhibited decreased apoptosis and enhanced accumulation at the infection site. In the context of myeloid-specific deletion of Ttp, the potentiation of neutrophil deployment protected mice against lethal soft tissue infection with Streptococcus pyogenes and prevented bacterial dissemination. Neutrophil transcriptome analysis revealed that decreased apoptosis of TTP-deficient neutrophils was specifically associated with elevated expression of myeloid cell leukemia 1 (Mcl1) but not other antiapoptotic B cell leukemia/ lymphoma 2 (Bcl2) family members. Higher Mcl1 expression resulted from stabilization of Mcl1 mRNA in the absence of TTP. The low apoptosis rate of infiltrating TTP-deficient neutrophils was comparable to that of transgenic Mcl1-overexpressing neutrophils. Our study demonstrates that posttranscriptional gene regulation by TTP schedules the termination of the antimicrobial engagement of neutrophils. The balancing role of TTP comes at the cost of an increased risk of bacterial infections.
AU - Ebner, Florian
AU - Sedlyarov, Vitaly
AU - Tasciyan, Saren
AU - Ivin, Masa
AU - Kratochvill, Franz
AU - Gratz, Nina
AU - Kenner, Lukas
AU - Villunger, Andreas
AU - Sixt, Michael K
AU - Kovarik, Pavel
ID - 679
IS - 6
JF - The Journal of Clinical Investigation
SN - 00219738
TI - The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection
VL - 127
ER -
TY - JOUR
AB - In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics.
AU - Chalk, Matthew J
AU - Masset, Paul
AU - Gutkin, Boris
AU - Denève, Sophie
ID - 680
IS - 6
JF - PLoS Computational Biology
SN - 1553734X
TI - Sensory noise predicts divisive reshaping of receptive fields
VL - 13
ER -
TY - JOUR
AB - Two-player games on graphs provide the theoretical framework for many important problems such as reactive synthesis. While the traditional study of two-player zero-sum games has been extended to multi-player games with several notions of equilibria, they are decidable only for perfect-information games, whereas several applications require imperfect-information. In this paper we propose a new notion of equilibria, called doomsday equilibria, which is a strategy profile where all players satisfy their own objective, and if any coalition of players deviates and violates even one of the players' objective, then the objective of every player is violated. We present algorithms and complexity results for deciding the existence of doomsday equilibria for various classes of ω-regular objectives, both for imperfect-information games, and for perfect-information games. We provide optimal complexity bounds for imperfect-information games, and in most cases for perfect-information games.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Filiot, Emmanuel
AU - Raskin, Jean
ID - 681
JF - Information and Computation
SN - 08905401
TI - Doomsday equilibria for omega-regular games
VL - 254
ER -
TY - JOUR
AB - The INO80 complex (INO80-C) is an evolutionarily conserved nucleosome remodeler that acts in transcription, replication, and genome stability. It is required for resistance against genotoxic agents and is involved in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). However, the causes of the HR defect in INO80-C mutant cells are controversial. Here, we unite previous findings using a system to study HR with high spatial resolution in budding yeast. We find that INO80-C has at least two distinct functions during HR—DNA end resection and presynaptic filament formation. Importantly, the second function is linked to the histone variant H2A.Z. In the absence of H2A.Z, presynaptic filament formation and HR are restored in INO80-C-deficient mutants, suggesting that presynaptic filament formation is the crucial INO80-C function during HR.
AU - Lademann, Claudio
AU - Renkawitz, Jörg
AU - Pfander, Boris
AU - Jentsch, Stefan
ID - 677
IS - 7
JF - Cell Reports
SN - 22111247
TI - The INO80 complex removes H2A.Z to promote presynaptic filament formation during homologous recombination
VL - 19
ER -
TY - JOUR
AB - Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B). By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI) proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB), an MHCI receptor. As in β2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.
AU - Ukai, Hikari
AU - Kawahara, Aiko
AU - Hirayama, Keiko
AU - Case, Matthew J
AU - Aino, Shotaro
AU - Miyabe, Masahiro
AU - Wakita, Ken
AU - Oogi, Ryohei
AU - Kasayuki, Michiyo
AU - Kawashima, Shihomi
AU - Sugimoto, Shunichi
AU - Chikamatsu, Kanako
AU - Nitta, Noritaka
AU - Koga, Tsuneyuki
AU - Shigemoto, Ryuichi
AU - Takai, Toshiyuki
AU - Ito, Isao
ID - 682
IS - 6
JF - PLoS One
SN - 19326203
TI - PirB regulates asymmetries in hippocampal circuitry
VL - 12
ER -
TY - CONF
AB - Given a triangulation of a point set in the plane, a flip deletes an edge e whose removal leaves a convex quadrilateral, and replaces e by the opposite diagonal of the quadrilateral. It is well known that any triangulation of a point set can be reconfigured to any other triangulation by some sequence of flips. We explore this question in the setting where each edge of a triangulation has a label, and a flip transfers the label of the removed edge to the new edge. It is not true that every labelled triangulation of a point set can be reconfigured to every other labelled triangulation via a sequence of flips, but we characterize when this is possible. There is an obvious necessary condition: for each label l, if edge e has label l in the first triangulation and edge f has label l in the second triangulation, then there must be some sequence of flips that moves label l from e to f, ignoring all other labels. Bose, Lubiw, Pathak and Verdonschot formulated the Orbit Conjecture, which states that this necessary condition is also sufficient, i.e. that all labels can be simultaneously mapped to their destination if and only if each label individually can be mapped to its destination. We prove this conjecture. Furthermore, we give a polynomial-time algorithm to find a sequence of flips to reconfigure one labelled triangulation to another, if such a sequence exists, and we prove an upper bound of O(n7) on the length of the flip sequence. Our proof uses the topological result that the sets of pairwise non-crossing edges on a planar point set form a simplicial complex that is homeomorphic to a high-dimensional ball (this follows from a result of Orden and Santos; we give a different proof based on a shelling argument). The dual cell complex of this simplicial ball, called the flip complex, has the usual flip graph as its 1-skeleton. We use properties of the 2-skeleton of the flip complex to prove the Orbit Conjecture.
AU - Lubiw, Anna
AU - Masárová, Zuzana
AU - Wagner, Uli
ID - 683
TI - A proof of the orbit conjecture for flipping edge labelled triangulations
VL - 77
ER -
TY - JOUR
AB - By applying methods and principles from the physical sciences to biological problems, D'Arcy Thompson's On Growth and Form demonstrated how mathematical reasoning reveals elegant, simple explanations for seemingly complex processes. This has had a profound influence on subsequent generations of developmental biologists. We discuss how this influence can be traced through twentieth century morphologists, embryologists and theoreticians to current research that explores the molecular and cellular mechanisms of tissue growth and patterning, including our own studies of the vertebrate neural tube.
AU - Briscoe, James
AU - Kicheva, Anna
ID - 685
JF - Mechanisms of Development
SN - 09254773
TI - The physics of development 100 years after D'Arcy Thompson's “on growth and form”
VL - 145
ER -