TY - JOUR AB - The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis—a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors. AU - Palkina, Kseniia A. AU - Karataeva, Tatiana A. AU - Perfilov, Maxim M. AU - Fakhranurova, Liliia I. AU - Markina, Nadezhda M. AU - Gonzalez Somermeyer, Louisa AU - Garcia-Perez, Elena AU - Vazquez-Vilar, Marta AU - Rodriguez-Rodriguez, Marta AU - Vazquez-Vilriales, Victor AU - Shakhova, Ekaterina S. AU - Mitiouchkina, Tatiana AU - Belozerova, Olga A. AU - Kovalchuk, Sergey I. AU - Alekberova, Anna AU - Malyshevskaia, Alena K. AU - Bugaeva, Evgenia N. AU - Guglya, Elena B. AU - Balakireva, Anastasia AU - Sytov, Nikita AU - Bezlikhotnova, Anastasia AU - Boldyreva, Daria I. AU - Babenko, Vladislav V. AU - Kondrashov, Fyodor AU - Choob, Vladimir V. AU - Orzaez, Diego AU - Yampolsky, Ilia V. AU - Mishin, Alexander S. AU - Sarkisyan, Karen S. ID - 15179 IS - 10 JF - Science Advances SN - 2375-2548 TI - A hybrid pathway for self-sustained luminescence VL - 10 ER - TY - JOUR AB - The elimination of rain evaporation in the planetary boundary layer (PBL) has been found to lead to convective self‐aggregation (CSA) even without radiative feedback, but the precise mechanisms underlying this phenomenon remain unclear. We conducted cloud‐resolving simulations with two domain sizes and progressively reduced rain evaporation in the PBL. Surprisingly, CSA only occurred when rain evaporation was almost completely removed. The additional convective heating resulting from the reduction of evaporative cooling in the moist patch was found to be the trigger, thereafter a dry subsidence intrusion into the PBL in the dry patch takes over and sets CSA in motion. Temperature and moisture anomalies oppose each other in their buoyancy effects, hence explaining the need for almost total rain evaporation removal. We also found radiative cooling and not cold pools to be the leading cause for the comparative ease of CSA to take place in the larger domain. AU - Hwong, Yi-Ling AU - Muller, Caroline J ID - 15186 IS - 6 JF - Geophysical Research Letters KW - General Earth and Planetary Sciences KW - Geophysics SN - 0094-8276 TI - The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation VL - 51 ER - TY - JOUR AB - We demonstrate the failure of the adiabatic Born-Oppenheimer approximation to describe the ground state of a quantum impurity within an ultracold Fermi gas despite substantial mass differences between the bath and impurity species. Increasing repulsion leads to the appearance of nonadiabatic couplings between the fast bath and slow impurity degrees of freedom, which reduce the parity symmetry of the latter according to the pseudo Jahn-Teller effect. The presence of this mechanism is associated to a conical intersection involving the impurity position and the inverse of the interaction strength, which acts as a synthetic dimension. We elucidate the presence of these effects via a detailed ground-state analysis involving the comparison of ab initio fully correlated simulations with effective models. Our study suggests ultracold atomic ensembles as potent emulators of complex molecular phenomena. AU - Becker, A. AU - Koutentakis, Georgios AU - Schmelcher, P. ID - 15181 IS - 1 JF - Physical Review Research SN - 2643-1564 TI - Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions VL - 6 ER - TY - JOUR AB - Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high-performance materials is limited. Traditional high-temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution-based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n-type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high-performance thermoelectric materials for practical applications. AU - Kleinhanns, Tobias AU - Milillo, Francesco AU - Calcabrini, Mariano AU - Fiedler, Christine AU - Horta, Sharona AU - Balazs, Daniel AU - Strumolo, Marissa J. AU - Hasler, Roger AU - Llorca, Jordi AU - Tkadletz, Michael AU - Brutchey, Richard L. AU - Ibáñez, Maria ID - 15182 JF - Advanced Energy Materials SN - 1614-6832 TI - A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se ER - TY - JOUR AB - Current knowledge suggests a drought Indian monsoon (perhaps a severe one) when the El Nino Southern Oscillation and Pacific Decadal Oscillation each exhibit positive phases (a joint positive phase). For the monsoons, which are exceptions in this regard, we found northeast India often gets excess pre-monsoon rainfall. Further investigation reveals that this excess pre-monsoon rainfall is produced by the interaction of the large-scale circulation associated with the joint phase with the mountains in northeast India. We posit that a warmer troposphere, a consequence of excess rainfall over northeast India, drives a stronger monsoon circulation and enhances monsoon rainfall over central India. Hence, we argue that pre-monsoon rainfall over northeast India can be used for seasonal monsoon rainfall prediction over central India. Most importantly, its predictive value is at its peak when the Pacific Ocean exhibits a joint positive phase and the threat of extreme drought monsoon looms over India. AU - Goswami, Bidyut B ID - 15165 IS - 5 JF - Geophysical Research Letters SN - 0094-8276 TI - A pre-monsoon signal of false alarms of Indian monsoon droughts VL - 51 ER -