TY - JOUR AB - A procedure for the continuous production of Cu 2ZnSnS 4 (CZTS) nanoparticles with controlled composition is presented. CZTS nanoparticles were prepared through the reaction of the metals' amino complexes with elemental sulfur in a continuous-flow reactor at moderate temperatures (300-330 °C). High-resolution transmission electron microscopy and X-ray diffraction analysis showed the nanocrystals to have a crystallographic structure compatible with that of the kesterite. Chemical characterization of the materials showed the presence of the four elements in each individual nanocrystal. Composition control was achieved by adjusting the solution flow rate through the reactor and the proper choice of the nominal precursor concentration within the flowing solution. Single-particle analysis revealed a composition distribution within each sample, which was optimized at the highest synthesis temperatures used. AU - Shavel, Alexey AU - Cadavid, Doris AU - Ibáñez, Maria AU - Carrete, Alex AU - Cabot, Andreu ID - 340 IS - 3 JF - Journal of the American Chemical Society TI - Continuous production of Cu inf 2 inf ZnSnS inf 4 inf nanocrystals in a flow reactor VL - 134 ER - TY - JOUR AB - Nanocomposites are highly promising materials to enhance the efficiency of current thermoelectric devices. A straightforward and at the same time highly versatile and controllable approach to produce nanocomposites is the assembly of solution-processed nanocrystal building blocks. The convenience of this bottom-up approach to produce nanocomposites with homogeneous phase distributions and adjustable composition is demonstrated here by blending Ag2Te and PbTe colloidal nanocrystals to form Ag2Te–PbTe bulk nanocomposites. The thermoelectric properties of these nanocomposites are analyzed in the temperature range from 300 to 700 K. The evolution of their electrical conductivity and Seebeck coefficient is discussed in terms of the blend composition and the characteristics of the constituent materials. AU - Cadavid, Doris AU - Ibáñez, Maria AU - Gorsse, Stéphane AU - López, Antonio AU - Cirera, Albert AU - Morante, Joan AU - Cabot, Andreu ID - 345 IS - 12 JF - Journal of Nanoparticle Research TI - Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: The case of Ag2Te–PbTe VL - 14 ER - TY - JOUR AB - A synthetic route for producing Cu 2ZnGeSe 4 nanocrystals with narrow size distributions and controlled composition is presented. These nanocrystals were used to produce densely packed nanomaterials by hot-pressing. From the characterization of the thermoelectric properties of these nanomaterials, Cu 2ZnGeSe 4 is demonstrated to show excellent thermoelectric properties. A very preliminary adjustment of the nanocrystal composition has already resulted in a figure of merit of up to 0.55 at 450°C. AU - Ibáñez, Maria AU - Zamani, Reza AU - Lalonde, Aaron AU - Cadavid, Doris AU - Li, Wenhua AU - Shavel, Alexey AU - Arbiol, Jordi AU - Morante, Joan AU - Gorsse, Stéphane AU - Snyder, G Jeffrey AU - Cabot, Andreu ID - 347 IS - 9 JF - Journal of the American Chemical Society TI - Cu 2ZnGeSe 4 nanocrystals: Synthesis and thermoelectric properties VL - 134 ER - TY - JOUR AB - Hierarchical Timing Language (HTL) is a coordination language for distributed, hard real-time applications. HTL is a hierarchical extension of Giotto and, like its predecessor, based on the logical execution time (LET) paradigm of real-time programming. Giotto is compiled into code for a virtual machine, called the EmbeddedMachine (or E machine). If HTL is targeted to the E machine, then the hierarchicalprogram structure needs to be flattened; the flattening makes separatecompilation difficult, and may result in E machinecode of exponential size. In this paper, we propose a generalization of the E machine, which supports a hierarchicalprogram structure at runtime through real-time trigger mechanisms that are arranged in a tree. We present the generalized E machine, and a modular compiler for HTL that generates code of linear size. The compiler may generate code for any part of a given HTL program separately in any order. AU - Ghosal, Arkadeb AU - Iercan, Daniel AU - Kirsch, Christoph AU - Henzinger, Thomas A AU - Sangiovanni Vincentelli, Alberto ID - 3836 IS - 2 JF - Science of Computer Programming TI - Separate compilation of hierarchical real-time programs into linear-bounded embedded machine code VL - 77 ER - TY - JOUR AB - Energy parity games are infinite two-player turn-based games played on weighted graphs. The objective of the game combines a (qualitative) parity condition with the (quantitative) requirement that the sum of the weights (i.e., the level of energy in the game) must remain positive. Beside their own interest in the design and synthesis of resource-constrained omega-regular specifications, energy parity games provide one of the simplest model of games with combined qualitative and quantitative objectives. Our main results are as follows: (a) exponential memory is sufficient and may be necessary for winning strategies in energy parity games; (b) the problem of deciding the winner in energy parity games can be solved in NP ∩ coNP; and (c) we give an algorithm to solve energy parity by reduction to energy games. We also show that the problem of deciding the winner in energy parity games is logspace-equivalent to the problem of deciding the winner in mean-payoff parity games, which can thus be solved in NP ∩ coNP. As a consequence we also obtain a conceptually simple algorithm to solve mean-payoff parity games. AU - Chatterjee, Krishnendu AU - Doyen, Laurent ID - 2972 JF - Theoretical Computer Science TI - Energy parity games VL - 458 ER -