TY - CONF AB - A chain rule for an entropy notion H(.) states that the entropy H(X) of a variable X decreases by at most l if conditioned on an l-bit string A, i.e., H(X|A)>= H(X)-l. More generally, it satisfies a chain rule for conditional entropy if H(X|Y,A)>= H(X|Y)-l. All natural information theoretic entropy notions we are aware of (like Shannon or min-entropy) satisfy some kind of chain rule for conditional entropy. Moreover, many computational entropy notions (like Yao entropy, unpredictability entropy and several variants of HILL entropy) satisfy the chain rule for conditional entropy, though here not only the quantity decreases by l, but also the quality of the entropy decreases exponentially in l. However, for the standard notion of conditional HILL entropy (the computational equivalent of min-entropy) the existence of such a rule was unknown so far. In this paper, we prove that for conditional HILL entropy no meaningful chain rule exists, assuming the existence of one-way permutations: there exist distributions X,Y,A, where A is a distribution over a single bit, but $H(X|Y)>>H(X|Y,A)$, even if we simultaneously allow for a massive degradation in the quality of the entropy. The idea underlying our construction is based on a surprising connection between the chain rule for HILL entropy and deniable encryption. AU - Krenn, Stephan AU - Pietrzak, Krzysztof Z AU - Wadia, Akshay ED - Sahai, Amit ID - 2940 TI - A counterexample to the chain rule for conditional HILL entropy, and what deniable encryption has to do with it VL - 7785 ER - TY - CONF AB - Many visual datasets are traditionally used to analyze the performance of different learning techniques. The evaluation is usually done within each dataset, therefore it is questionable if such results are a reliable indicator of true generalization ability. We propose here an algorithm to exploit the existing data resources when learning on a new multiclass problem. Our main idea is to identify an image representation that decomposes orthogonally into two subspaces: a part specific to each dataset, and a part generic to, and therefore shared between, all the considered source sets. This allows us to use the generic representation as un-biased reference knowledge for a novel classification task. By casting the method in the multi-view setting, we also make it possible to use different features for different databases. We call the algorithm MUST, Multitask Unaligned Shared knowledge Transfer. Through extensive experiments on five public datasets, we show that MUST consistently improves the cross-datasets generalization performance. AU - Tommasi, Tatiana AU - Quadrianto, Novi AU - Caputo, Barbara AU - Lampert, Christoph ID - 2948 TI - Beyond dataset bias: Multi-task unaligned shared knowledge transfer VL - 7724 ER - TY - CONF AB - Efficient zero-knowledge proofs of knowledge (ZK-PoK) are basic building blocks of many practical cryptographic applications such as identification schemes, group signatures, and secure multiparty computation. Currently, first applications that critically rely on ZK-PoKs are being deployed in the real world. The most prominent example is Direct Anonymous Attestation (DAA), which was adopted by the Trusted Computing Group (TCG) and implemented as one of the functionalities of the cryptographic Trusted Platform Module (TPM) chip. Implementing systems using ZK-PoK turns out to be challenging, since ZK-PoK are, loosely speaking, significantly more complex than standard crypto primitives, such as encryption and signature schemes. As a result, implementation cycles of ZK-PoK are time-consuming and error-prone, in particular for developers with minor or no cryptographic skills. In this paper we report on our ongoing and future research vision with the goal to bring ZK-PoK to practice by making them accessible to crypto and security engineers. To this end we are developing compilers and related tools that support and partially automate the design, implementation, verification and secure implementation of ZK-PoK protocols. AU - Bangerter, Endre AU - Barzan, Stefania AU - Stephan Krenn AU - Sadeghi, Ahmad-Reza AU - Schneider, Thomas AU - Tsay, Joe-Kai ED - Christianson, Bruce ED - Malcolm, James A. ED - Matyas, Vashek ED - Roe, Michael ID - 2973 TI - Bringing Zero-Knowledge Proofs of Knowledge to Practice VL - 7028 ER - TY - JOUR AB - Multithreaded programs coordinate their interaction through synchronization primitives like mutexes and semaphores, which are managed by an OS-provided resource manager. We propose algorithms for the automatic construction of code-aware resource managers for multithreaded embedded applications. Such managers use knowledge about the structure and resource usage (mutex and semaphore usage) of the threads to guarantee deadlock freedom and progress while managing resources in an efficient way. Our algorithms compute managers as winning strategies in certain infinite games, and produce a compact code description of these strategies. We have implemented the algorithms in the tool Cynthesis. Given a multithreaded program in C, the tool produces C code implementing a code-aware resource manager. We show in experiments that Cynthesis produces compact resource managers within a few minutes on a set of embedded benchmarks with up to 6 threads. © 2012 Springer Science+Business Media, LLC. AU - Chatterjee, Krishnendu AU - De Alfaro, Luca AU - Faella, Marco AU - Majumdar, Ritankar AU - Raman, Vishwanath ID - 3116 IS - 2 JF - Formal Methods in System Design TI - Code aware resource management VL - 42 ER - TY - JOUR AB - The fact that a sum of isotropic Gaussian kernels can have more modes than kernels is surprising. Extra (ghost) modes do not exist in ℝ1 and are generally not well studied in higher dimensions. We study a configuration of n+1 Gaussian kernels for which there are exactly n+2 modes. We show that all modes lie on a finite set of lines, which we call axes, and study the restriction of the Gaussian mixture to these axes in order to discover that there are an exponential number of critical points in this configuration. Although the existence of ghost modes remained unknown due to the difficulty of finding examples in ℝ2, we show that the resilience of ghost modes grows like the square root of the dimension. In addition, we exhibit finite configurations of isotropic Gaussian kernels with superlinearly many modes. AU - Edelsbrunner, Herbert AU - Fasy, Brittany Terese AU - Rote, Günter ID - 2815 IS - 4 JF - Discrete & Computational Geometry SN - 0179-5376 TI - Add isotropic Gaussian kernels at own risk: More and more resilient modes in higher dimensions VL - 49 ER -