TY - JOUR AB - For more than a century, physicists have described real solids in terms of perturbations about perfect crystalline order1. Such an approach takes us only so far: a glass, another ubiquitous form of rigid matter, cannot be described in any meaningful sense as a defected crystal2. Is there an opposite extreme to a crystal—a solid with complete disorder—that forms an alternative starting point for understanding real materials? Here, we argue that the solid comprising particles with finite-ranged interactions at the jamming transition3,4,5 constitutes such a limit. It has been shown that the physics associated with this transition can be extended to interactions that are long ranged6. We demonstrate that jamming physics is not restricted to amorphous systems, but dominates the behaviour of solids with surprisingly high order. Just as the free-electron and tight-binding models represent two idealized cases from which to understand electronic structure1, we identify two extreme limits of mechanical behaviour. Thus, the physics of jamming can be set side by side with the physics of crystals to provide an organizing structure for understanding the mechanical properties of solids over the entire spectrum of disorder. AU - Goodrich, Carl Peter AU - Liu, Andrea J. AU - Nagel, Sidney R. ID - 7773 IS - 8 JF - Nature Physics SN - 1745-2473 TI - Solids between the mechanical extremes of order and disorder VL - 10 ER - TY - JOUR AB - Athermal packings of soft repulsive spheres exhibit a sharp jamming transition in the thermodynamic limit. Upon further compression, various structural and mechanical properties display clean power-law behavior over many decades in pressure. As with any phase transition, the rounding of such behavior in finite systems close to the transition plays an important role in understanding the nature of the transition itself. The situation for jamming is surprisingly rich: the assumption that jammed packings are isotropic is only strictly true in the large-size limit, and finite-size has a profound effect on the very meaning of jamming. Here, we provide a comprehensive numerical study of finite-size effects in sphere packings above the jamming transition, focusing on stability as well as the scaling of the contact number and the elastic response. AU - Goodrich, Carl Peter AU - Dagois-Bohy, Simon AU - Tighe, Brian P. AU - van Hecke, Martin AU - Liu, Andrea J. AU - Nagel, Sidney R. ID - 7769 IS - 2 JF - Physical Review E SN - 1539-3755 TI - Jamming in finite systems: Stability, anisotropy, fluctuations, and scaling VL - 90 ER - TY - JOUR AB - Packings of frictionless athermal particles that interact only when they overlap experience a jamming transition as a function of packing density. Such packings provide the foundation for the theory of jamming. This theory rests on the observation that, despite the multitude of disordered configurations, the mechanical response to linear order depends only on the distance to the transition. We investigate the validity and utility of such measurements that invoke the harmonic approximation and show that, despite particles coming in and out of contact, there is a well-defined linear regime in the thermodynamic limit. AU - Goodrich, Carl Peter AU - Liu, Andrea J. AU - Nagel, Sidney R. ID - 7770 IS - 2 JF - Physical Review E SN - 1539-3755 TI - Contact nonlinearities and linear response in jammed particulate packings VL - 90 ER - TY - JOUR AB - Most excitatory inputs in the mammalian brain are made on dendritic spines, rather than on dendritic shafts. Spines compartmentalize calcium, and this biochemical isolation can underlie input-specific synaptic plasticity, providing a raison d'etre for spines. However, recent results indicate that the spine can experience a membrane potential different from that in the parent dendrite, as though the spine neck electrically isolated the spine. Here we use two-photon calcium imaging of mouse neocortical pyramidal neurons to analyze the correlation between the morphologies of spines activated under minimal synaptic stimulation and the excitatory postsynaptic potentials they generate. We find that excitatory postsynaptic potential amplitudes are inversely correlated with spine neck lengths. Furthermore, a spike timing-dependent plasticity protocol, in which two-photon glutamate uncaging over a spine is paired with postsynaptic spikes, produces rapid shrinkage of the spine neck and concomitant increases in the amplitude of the evoked spine potentials. Using numerical simulations, we explore the parameter regimes for the spine neck resistance and synaptic conductance changes necessary to explain our observations. Our data, directly correlating synaptic and morphological plasticity, imply that long-necked spines have small or negligible somatic voltage contributions, but that, upon synaptic stimulation paired with postsynaptic activity, they can shorten their necks and increase synaptic efficacy, thus changing the input/output gain of pyramidal neurons. AU - Araya, R. AU - Vogels, Tim P AU - Yuste, R. ID - 8021 IS - 28 JF - Proceedings of the National Academy of Sciences SN - 0027-8424 TI - Activity-dependent dendritic spine neck changes are correlated with synaptic strength VL - 111 ER - TY - JOUR AB - Uniform random sparse network architectures are ubiquitous in computational neuroscience, but the implicit hypothesis that they are a good representation of real neuronal networks has been met with skepticism. Here we used two experimental data sets, a study of triplet connectivity statistics and a data set measuring neuronal responses to channelrhodopsin stimuli, to evaluate the fidelity of thousands of model networks. Network architectures comprised three neuron types (excitatory, fast spiking, and nonfast spiking inhibitory) and were created from a set of rules that govern the statistics of the resulting connection types. In a high-dimensional parameter scan, we varied the degree distributions (i.e., how many cells each neuron connects with) and the synaptic weight correlations of synapses from or onto the same neuron. These variations converted initially uniform random and homogeneously connected networks, in which every neuron sent and received equal numbers of synapses with equal synaptic strength distributions, to highly heterogeneous networks in which the number of synapses per neuron, as well as average synaptic strength of synapses from or to a neuron were variable. By evaluating the impact of each variable on the network structure and dynamics, and their similarity to the experimental data, we could falsify the uniform random sparse connectivity hypothesis for 7 of 36 connectivity parameters, but we also confirmed the hypothesis in 8 cases. Twenty-one parameters had no substantial impact on the results of the test protocols we used. AU - Tomm, Christian AU - Avermann, Michael AU - Petersen, Carl AU - Gerstner, Wulfram AU - Vogels, Tim P ID - 8023 IS - 8 JF - Journal of Neurophysiology SN - 0022-3077 TI - Connection-type-specific biases make uniform random network models consistent with cortical recordings VL - 112 ER -