TY - JOUR AB - Stomata are two-celled valves that control epidermal pores whose spacing optimizes shoot-atmosphere gas exchange. They develop from protodermal cells after unequal divisions followed by an equal division and differentiation. The concentration of the hormone auxin, a master plant developmental regulator, is tightly controlled in time and space, but its role, if any, in stomatal formation is obscure. Here dynamic changes of auxin activity during stomatal development are monitored using auxin input (DII-VENUS) and output (DR5:VENUS) markers by time-lapse imaging. A decrease in auxin levels in the smaller daughter cell after unequal division presages the acquisition of a guard mother cell fate whose equal division produces the two guard cells. Thus, stomatal patterning requires auxin pathway control of stem cell compartment size, as well as auxin depletion that triggers a developmental switch from unequal to equal division. AU - Le, Jie AU - Liu, Xuguang AU - Yang, Kezhen AU - Chen, Xiaolan AU - Zhu, Lingling AU - Wang, Hongzhe AU - Wang, Ming AU - Vanneste, Steffen AU - Morita, Miyo AU - Tasaka, Masao AU - Ding, Zhaojun AU - Friml, Jirí AU - Beeckman, Tom AU - Sack, Fred ID - 1924 JF - Nature Communications TI - Auxin transport and activity regulate stomatal patterning and development VL - 5 ER - TY - JOUR AB - In infectious disease epidemiology the basic reproductive ratio, R0, is defined as the average number of new infections caused by a single infected individual in a fully susceptible population. Many models describing competition for hosts between non-interacting pathogen strains in an infinite population lead to the conclusion that selection favors invasion of new strains if and only if they have higher R0 values than the resident. Here we demonstrate that this picture fails in finite populations. Using a simple stochastic SIS model, we show that in general there is no analogous optimization principle. We find that successive invasions may in some cases lead to strains that infect a smaller fraction of the host population, and that mutually invasible pathogen strains exist. In the limit of weak selection we demonstrate that an optimization principle does exist, although it differs from R0 maximization. For strains with very large R0, we derive an expression for this local fitness function and use it to establish a lower bound for the error caused by neglecting stochastic effects. Furthermore, we apply this weak selection limit to investigate the selection dynamics in the presence of a trade-off between the virulence and the transmission rate of a pathogen. AU - Humplik, Jan AU - Hill, Alison AU - Nowak, Martin ID - 1928 JF - Journal of Theoretical Biology TI - Evolutionary dynamics of infectious diseases in finite populations VL - 360 ER - TY - JOUR AB - We propose an algorithm for the generalization of cartographic objects that can be used to represent maps on different scales. AU - Alexeev, V V AU - Bogaevskaya, V G AU - Preobrazhenskaya, M M AU - Ukhalov, A Y AU - Edelsbrunner, Herbert AU - Yakimova, Olga ID - 1929 IS - 6 JF - Journal of Mathematical Sciences SN - 1072-3374 TI - An algorithm for cartographic generalization that preserves global topology VL - 203 ER - TY - JOUR AB - We consider Ising models in d = 2 and d = 3 dimensions with nearest neighbor ferromagnetic and long-range antiferromagnetic interactions, the latter decaying as (distance)-p, p > 2d, at large distances. If the strength J of the ferromagnetic interaction is larger than a critical value J c, then the ground state is homogeneous. It has been conjectured that when J is smaller than but close to J c, the ground state is periodic and striped, with stripes of constant width h = h(J), and h → ∞ as J → Jc -. (In d = 3 stripes mean slabs, not columns.) Here we rigorously prove that, if we normalize the energy in such a way that the energy of the homogeneous state is zero, then the ratio e 0(J)/e S(J) tends to 1 as J → Jc -, with e S(J) being the energy per site of the optimal periodic striped/slabbed state and e 0(J) the actual ground state energy per site of the system. Our proof comes with explicit bounds on the difference e 0(J)-e S(J) at small but positive J c-J, and also shows that in this parameter range the ground state is striped/slabbed in a certain sense: namely, if one looks at a randomly chosen window, of suitable size ℓ (very large compared to the optimal stripe size h(J)), one finds a striped/slabbed state with high probability. AU - Giuliani, Alessandro AU - Lieb, Élliott AU - Seiringer, Robert ID - 1935 JF - Communications in Mathematical Physics SN - 0010-3616 TI - Formation of stripes and slabs near the ferromagnetic transition VL - 331 ER - TY - JOUR AB - The social intelligence hypothesis states that the need to cope with complexities of social life has driven the evolution of advanced cognitive abilities. It is usually invoked in the context of challenges arising from complex intragroup structures, hierarchies, and alliances. However, a fundamental aspect of group living remains largely unexplored as a driving force in cognitive evolution: the competition between individuals searching for resources (producers) and conspecifics that parasitize their findings (scroungers). In populations of social foragers, abilities that enable scroungers to steal by outsmarting producers, and those allowing producers to prevent theft by outsmarting scroungers, are likely to be beneficial and may fuel a cognitive arms race. Using analytical theory and agent-based simulations, we present a general model for such a race that is driven by the producer-scrounger game and show that the race's plausibility is dramatically affected by the nature of the evolving abilities. If scrounging and scrounging avoidance rely on separate, strategy-specific cognitive abilities, arms races are short-lived and have a limited effect on cognition. However, general cognitive abilities that facilitate both scrounging and scrounging avoidance undergo stable, long-lasting arms races. Thus, ubiquitous foraging interactions may lead to the evolution of general cognitive abilities in social animals, without the requirement of complex intragroup structures. AU - Arbilly, Michal AU - Weissman, Daniel AU - Feldman, Marcus AU - Grodzinski, Uri ID - 1936 IS - 3 JF - Behavioral Ecology TI - An arms race between producers and scroungers can drive the evolution of social cognition VL - 25 ER -