TY - JOUR AB - We consider real symmetric and complex Hermitian random matrices with the additional symmetry hxy = hN-y,N-x. The matrix elements are independent (up to the fourfold symmetry) and not necessarily identically distributed. This ensemble naturally arises as the Fourier transform of a Gaussian orthogonal ensemble. Italso occurs as the flip matrix model - an approximation of the two-dimensional Anderson model at small disorder. We show that the density of states converges to the Wigner semicircle law despite the new symmetry type. We also prove the local version of the semicircle law on the optimal scale. AU - Alt, Johannes ID - 1677 IS - 10 JF - Journal of Mathematical Physics TI - The local semicircle law for random matrices with a fourfold symmetry VL - 56 ER - TY - JOUR AB - High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that avoids the need for chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small-molecule screen against human protein kinases, including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes. AU - Inglés Prieto, Álvaro AU - Gschaider-Reichhart, Eva AU - Muellner, Markus AU - Nowak, Matthias AU - Nijman, Sebastian AU - Grusch, Michael AU - Janovjak, Harald L ID - 1678 IS - 12 JF - Nature Chemical Biology TI - Light-assisted small-molecule screening against protein kinases VL - 11 ER - TY - JOUR AB - Gene expression is controlled primarily by interactions between transcription factor proteins (TFs) and the regulatory DNA sequence, a process that can be captured well by thermodynamic models of regulation. These models, however, neglect regulatory crosstalk: the possibility that noncognate TFs could initiate transcription, with potentially disastrous effects for the cell. Here, we estimate the importance of crosstalk, suggest that its avoidance strongly constrains equilibrium models of TF binding, and propose an alternative nonequilibrium scheme that implements kinetic proofreading to suppress erroneous initiation. This proposal is consistent with the observed covalent modifications of the transcriptional apparatus and predicts increased noise in gene expression as a trade-off for improved specificity. Using information theory, we quantify this trade-off to find when optimal proofreading architectures are favored over their equilibrium counterparts. Such architectures exhibit significant super-Poisson noise at low expression in steady state. AU - Cepeda Humerez, Sarah A AU - Rieckh, Georg AU - Tkacik, Gasper ID - 1576 IS - 24 JF - Physical Review Letters TI - Stochastic proofreading mechanism alleviates crosstalk in transcriptional regulation VL - 115 ER - TY - GEN AB - We study conditions under which a finite simplicial complex $K$ can be mapped to $\mathbb R^d$ without higher-multiplicity intersections. An almost $r$-embedding is a map $f: K\to \mathbb R^d$ such that the images of any $r$ pairwise disjoint simplices of $K$ do not have a common point. We show that if $r$ is not a prime power and $d\geq 2r+1$, then there is a counterexample to the topological Tverberg conjecture, i.e., there is an almost $r$-embedding of the $(d+1)(r-1)$-simplex in $\mathbb R^d$. This improves on previous constructions of counterexamples (for $d\geq 3r$) based on a series of papers by M. \"Ozaydin, M. Gromov, P. Blagojevi\'c, F. Frick, G. Ziegler, and the second and fourth present authors. The counterexamples are obtained by proving the following algebraic criterion in codimension 2: If $r\ge3$ and if $K$ is a finite $2(r-1)$-complex then there exists an almost $r$-embedding $K\to \mathbb R^{2r}$ if and only if there exists a general position PL map $f:K\to \mathbb R^{2r}$ such that the algebraic intersection number of the $f$-images of any $r$ pairwise disjoint simplices of $K$ is zero. This result can be restated in terms of cohomological obstructions or equivariant maps, and extends an analogous codimension 3 criterion by the second and fourth authors. As another application we classify ornaments $f:S^3 \sqcup S^3\sqcup S^3\to \mathbb R^5$ up to ornament concordance. It follows from work of M. Freedman, V. Krushkal and P. Teichner that the analogous criterion for $r=2$ is false. We prove a lemma on singular higher-dimensional Borromean rings, yielding an elementary proof of the counterexample. AU - Avvakumov, Sergey AU - Mabillard, Isaac AU - Skopenkov, A. AU - Wagner, Uli ID - 8183 T2 - arXiv TI - Eliminating higher-multiplicity intersections, III. Codimension 2 ER - TY - GEN AB - We study algorithmic questions for concurrent systems where the transitions are labeled from a complete, closed semiring, and path properties are algebraic with semiring operations. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural problems that arise in program analysis. We consider that each component of the concurrent system is a graph with constant treewidth, a property satisfied by the controlflow graphs of most programs. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis. The study of multiple queries allows us to consider the tradeoff between the resource usage of the one-time preprocessing and for each individual query. The traditional approach constructs the product graph of all components and applies the best-known graph algorithm on the product. In this approach, even the answer to a single query requires the transitive closure (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time. Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time, each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results showing that the worst-case running time of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (i.e., improving the worst-case bound for the shortest path problem in general graphs). Preliminary experimental results show that our algorithms perform favorably on several benchmarks. AU - Chatterjee, Krishnendu AU - Ibsen-Jensen, Rasmus AU - Goharshady, Amir AU - Pavlogiannis, Andreas ID - 5441 SN - 2664-1690 TI - Algorithms for algebraic path properties in concurrent systems of constant treewidth components ER -