TY - JOUR AB - A light-triggered fabrication method extends the functionality of printable nanomaterials AU - Balazs, Daniel AU - Ibáñez, Maria ID - 14404 IS - 6665 JF - Science TI - Widening the use of 3D printing VL - 381 ER - TY - CONF AB - Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic games with the total reward objective. This gives rise to an objective function that demands the control of systems in a risk-averse manner. We show that the resulting games are determined and, in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures that previously have been considered in the special case of Markov decision processes and that require randomization and/or memory. We provide several results on the decidability and the computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds a given threshold. In the most general case, the problem is decidable subject to Shanuel’s conjecture. If all inputs are rational, the resulting threshold problem can be solved using algebraic numbers, leading to decidability via a polynomial-time reduction to the existential theory of the reals. Further restrictions on the encoding of the input allow the solution of the threshold problem in NP∩coNP. Finally, an approximation algorithm for the optimal value of ERisk is provided. AU - Baier, Christel AU - Chatterjee, Krishnendu AU - Meggendorfer, Tobias AU - Piribauer, Jakob ID - 14417 SN - 9783959772921 T2 - 48th International Symposium on Mathematical Foundations of Computer Science TI - Entropic risk for turn-based stochastic games VL - 272 ER - TY - JOUR AB - Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e., submanifolds of Rd defined as the zero set of some multivariate multivalued smooth function f:Rd→Rd−n, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M=f−1(0) is to consider its piecewise linear (PL) approximation M^ based on a triangulation T of the ambient space Rd. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ=1/D (and unavoidably exponential in n). Since it is known that for δ=Ω(d2.5), M^ is O(D2)-close and isotopic to M , our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M^ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art. AU - Boissonnat, Jean Daniel AU - Kachanovich, Siargey AU - Wintraecken, Mathijs ID - 12960 IS - 2 JF - SIAM Journal on Computing SN - 0097-5397 TI - Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations VL - 52 ER - TY - JOUR AB - We propose a characterization of discrete analytical spheres, planes and lines in the body-centered cubic (BCC) grid, both in the Cartesian and in the recently proposed alternative compact coordinate system, in which each integer triplet addresses some voxel in the grid. We define spheres and planes through double Diophantine inequalities and investigate their relevant topological features, such as functionality or the interrelation between the thickness of the objects and their connectivity and separation properties. We define lines as the intersection of planes. The number of the planes (up to six) is equal to the number of the pairs of faces of a BCC voxel that are parallel to the line. AU - Čomić, Lidija AU - Largeteau-Skapin, Gaëlle AU - Zrour, Rita AU - Biswas, Ranita AU - Andres, Eric ID - 13134 IS - 10 JF - Pattern Recognition SN - 0031-3203 TI - Discrete analytical objects in the body-centered cubic grid VL - 142 ER - TY - JOUR AB - Physical catalysts often have multiple sites where reactions can take place. One prominent example is single-atom alloys, where the reactive dopant atoms can preferentially locate in the bulk or at different sites on the surface of the nanoparticle. However, ab initio modeling of catalysts usually only considers one site of the catalyst, neglecting the effects of multiple sites. Here, nanoparticles of copper doped with single-atom rhodium or palladium are modeled for the dehydrogenation of propane. Single-atom alloy nanoparticles are simulated at 400–600 K, using machine learning potentials trained on density functional theory calculations, and then the occupation of different single-atom active sites is identified using a similarity kernel. Further, the turnover frequency for all possible sites is calculated for propane dehydrogenation to propene through microkinetic modeling using density functional theory calculations. The total turnover frequencies of the whole nanoparticle are then described from both the population and the individual turnover frequency of each site. Under operating conditions, rhodium as a dopant is found to almost exclusively occupy (111) surface sites while palladium as a dopant occupies a greater variety of facets. Undercoordinated dopant surface sites are found to tend to be more reactive for propane dehydrogenation compared to the (111) surface. It is found that considering the dynamics of the single-atom alloy nanoparticle has a profound effect on the calculated catalytic activity of single-atom alloys by several orders of magnitude. AU - Bunting, Rhys AU - Wodaczek, Felix AU - Torabi, Tina AU - Cheng, Bingqing ID - 13216 IS - 27 JF - Journal of the American Chemical Society KW - Colloid and Surface Chemistry KW - Biochemistry KW - General Chemistry KW - Catalysis SN - 0002-7863 TI - Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane VL - 145 ER -