TY - JOUR AB - Proton-translocating transhydrogenase (also known as nicotinamide nucleotide transhydrogenase (NNT)) is found in the plasma membranes of bacteria and the inner mitochondrial membranes of eukaryotes. NNT catalyses the transfer of a hydride between NADH and NADP+, coupled to the translocation of one proton across the membrane. Its main physiological function is the generation of NADPH, which is a substrate in anabolic reactions and a regulator of oxidative status; however, NNT may also fine-tune the Krebs cycle1,2. NNT deficiency causes familial glucocorticoid deficiency in humans and metabolic abnormalities in mice, similar to those observed in type II diabetes3,4. The catalytic mechanism of NNT has been proposed to involve a rotation of around 180° of the entire NADP(H)-binding domain that alternately participates in hydride transfer and proton-channel gating. However, owing to the lack of high-resolution structures of intact NNT, the details of this process remain unclear5,6. Here we present the cryo-electron microscopy structure of intact mammalian NNT in different conformational states. We show how the NADP(H)-binding domain opens the proton channel to the opposite sides of the membrane, and we provide structures of these two states. We also describe the catalytically important interfaces and linkers between the membrane and the soluble domains and their roles in nucleotide exchange. These structures enable us to propose a revised mechanism for a coupling process in NNT that is consistent with a large body of previous biochemical work. Our results are relevant to the development of currently unavailable NNT inhibitors, which may have therapeutic potential in ischaemia reperfusion injury, metabolic syndrome and some cancers7,8,9. AU - Kampjut, Domen AU - Sazanov, Leonid A ID - 6848 IS - 7773 JF - Nature SN - 0028-0836 TI - Structure and mechanism of mitochondrial proton-translocating transhydrogenase VL - 573 ER - TY - JOUR AB - Grid cells with their rigid hexagonal firing fields are thought to provide an invariant metric to the hippocampal cognitive map, yet environmental geometrical features have recently been shown to distort the grid structure. Given that the hippocampal role goes beyond space, we tested the influence of nonspatial information on the grid organization. We trained rats to daily learn three new reward locations on a cheeseboard maze while recording from the medial entorhinal cortex and the hippocampal CA1 region. Many grid fields moved toward goal location, leading to long-lasting deformations of the entorhinal map. Therefore, distortions in the grid structure contribute to goal representation during both learning and recall, which demonstrates that grid cells participate in mnemonic coding and do not merely provide a simple metric of space. AU - Boccara, Charlotte N. AU - Nardin, Michele AU - Stella, Federico AU - O'Neill, Joseph AU - Csicsvari, Jozsef L ID - 6194 IS - 6434 JF - Science SN - 0036-8075 TI - The entorhinal cognitive map is attracted to goals VL - 363 ER - TY - THES AB - A major challenge in neuroscience research is to dissect the circuits that orchestrate behavior in health and disease. Proteins from a wide range of non-mammalian species, such as microbial opsins, have been successfully transplanted to specific neuronal targets to override their natural communication patterns. The goal of our work is to manipulate synaptic communication in a manner that closely incorporates the functional intricacies of synapses by preserving temporal encoding (i.e. the firing pattern of the presynaptic neuron) and connectivity (i.e. target specific synapses rather than specific neurons). Our strategy to achieve this goal builds on the use of non-mammalian transplants to create a synthetic synapse. The mode of modulation comes from pre-synaptic uptake of a synthetic neurotransmitter (SN) into synaptic vesicles by means of a genetically targeted transporter selective for the SN. Upon natural vesicular release, exposure of the SN to the synaptic cleft will modify the post-synaptic potential through an orthogonal ligand gated ion channel. To achieve this goal we have functionally characterized a mixed cationic methionine-gated ion channel from Arabidopsis thaliana, designed a method to functionally characterize a synthetic transporter in isolated synaptic vesicles without the need for transgenic animals, identified and extracted multiple prokaryotic uptake systems that are substrate specific for methionine (Met), and established a primary/cell line co-culture system that would allow future combinatorial testing of this orthogonal transmitter-transporter-channel trifecta. Synthetic synapses will provide a unique opportunity to manipulate synaptic communication while maintaining the electrophysiological integrity of the pre-synaptic cell. In this way, information may be preserved that was generated in upstream circuits and that could be essential for concerted function and information processing. AU - Mckenzie, Catherine ID - 7132 SN - 2663-337X TI - Design and characterization of methods and biological components to realize synthetic neurotransmission ER - TY - JOUR AB - Aberrant proteostasis of protein aggregation may lead to behavior disorders including chronic mental illnesses (CMI). Furthermore, the neuronal activity alterations that underlie CMI are not well understood. We recorded the local field potential and single-unit activity of the hippocampal CA1 region in vivo in rats transgenically overexpressing the Disrupted-in-Schizophrenia 1 (DISC1) gene (tgDISC1), modeling sporadic CMI. These tgDISC1 rats have previously been shown to exhibit DISC1 protein aggregation, disturbances in the dopaminergic system and attention-related deficits. Recordings were performed during exploration of familiar and novel open field environments and during sleep, allowing investigation of neuronal abnormalities in unconstrained behavior. Compared to controls, tgDISC1 place cells exhibited smaller place fields and decreased speed-modulation of their firing rates, demonstrating altered spatial coding and deficits in encoding location-independent sensory inputs. Oscillation analyses showed that tgDISC1 pyramidal neurons had higher theta phase locking strength during novelty, limiting their phase coding ability. However, their mean theta phases were more variable at the population level, reducing oscillatory network synchronization. Finally, tgDISC1 pyramidal neurons showed a lack of novelty-induced shift in their preferred theta and gamma firing phases, indicating deficits in coding of novel environments with oscillatory firing. By combining single cell and neuronal population analyses, we link DISC1 protein pathology with abnormal hippocampal neural coding and network synchrony, and thereby gain a more comprehensive understanding of CMI mechanisms. AU - Käfer, Karola AU - Malagon-Vina, Hugo AU - Dickerson, Desiree AU - O'Neill, Joseph AU - Trossbach, Svenja V. AU - Korth, Carsten AU - Csicsvari, Jozsef L ID - 5949 IS - 9 JF - Hippocampus TI - Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization VL - 29 ER - TY - THES AB - The solving of complex tasks requires the functions of more than one brain area and their interaction. Whilst spatial navigation and memory is dependent on the hippocampus, flexible behavior relies on the medial prefrontal cortex (mPFC). To further examine the roles of the hippocampus and mPFC, we recorded their neural activity during a task that depends on both of these brain regions. With tetrodes, we recorded the extracellular activity of dorsal hippocampal CA1 (HPC) and mPFC neurons in Long-Evans rats performing a rule-switching task on the plus-maze. The plus-maze task had a spatial component since it required navigation along one of the two start arms and at the maze center a choice between one of the two goal arms. Which goal contained a reward depended on the rule currently in place. After an uncued rule change the animal had to abandon the old strategy and switch to the new rule, testing cognitive flexibility. Investigating the coordination of activity between the HPC and mPFC allows determination during which task stages their interaction is required. Additionally, comparing neural activity patterns in these two brain regions allows delineation of the specialized functions of the HPC and mPFC in this task. We analyzed neural activity in the HPC and mPFC in terms of oscillatory interactions, rule coding and replay. We found that theta coherence between the HPC and mPFC is increased at the center and goals of the maze, both when the rule was stable or has changed. Similar results were found for locking of HPC and mPFC neurons to HPC theta oscillations. However, no differences in HPC-mPFC theta coordination were observed between the spatially- and cue-guided rule. Phase locking of HPC and mPFC neurons to HPC gamma oscillations was not modulated by maze position or rule type. We found that the HPC coded for the two different rules with cofiring relationships between cell pairs. However, we could not find conclusive evidence for rule coding in the mPFC. Spatially-selective firing in the mPFC generalized between the two start and two goal arms. With Bayesian positional decoding, we found that the mPFC reactivated non-local positions during awake immobility periods. Replay of these non-local positions could represent entire behavioral trajectories resembling trajectory replay of the HPC. Furthermore, mPFC trajectory-replay at the goal positively correlated with rule-switching performance. Finally, HPC and mPFC trajectory replay occurred independently of each other. These results show that the mPFC can replay ordered patterns of activity during awake immobility, possibly underlying its role in flexible behavior. AU - Käfer, Karola ID - 6825 SN - 2663-337X TI - The hippocampus and medial prefrontal cortex during flexible behavior ER -