TY - JOUR AU - Kasugai, Yu AU - Vogel, Elisabeth AU - Hörtnagl, Heide AU - Schönherr, Sabine AU - Paradiso, Enrica AU - Hauschild, Markus AU - Göbel, Georg AU - Milenkovic, Ivan AU - Peterschmitt, Yvan AU - Tasan, Ramon AU - Sperk, Günther AU - Shigemoto, Ryuichi AU - Sieghart, Werner AU - Singewald, Nicolas AU - Lüthi, Andreas AU - Ferraguti, Francesco ID - 7099 IS - 4 JF - Neuron SN - 0896-6273 TI - Structural and functional remodeling of amygdala GABAergic synapses in associative fear learning VL - 104 ER - TY - JOUR AB - During corticogenesis, distinct subtypes of neurons are sequentially born from ventricular zone progenitors. How these cells are molecularly temporally patterned is poorly understood. We used single-cell RNA sequencing at high temporal resolution to trace the lineage of the molecular identities of successive generations of apical progenitors (APs) and their daughter neurons in mouse embryos. We identified a core set of evolutionarily conserved, temporally patterned genes that drive APs from internally driven to more exteroceptive states. We found that the Polycomb repressor complex 2 (PRC2) epigenetically regulates AP temporal progression. Embryonic age–dependent AP molecular states are transmitted to their progeny as successive ground states, onto which essentially conserved early postmitotic differentiation programs are applied, and are complemented by later-occurring environment-dependent signals. Thus, epigenetically regulated temporal molecular birthmarks present in progenitors act in their postmitotic progeny to seed adult neuronal diversity. AU - Telley, L AU - Agirman, G AU - Prados, J AU - Amberg, Nicole AU - Fièvre, S AU - Oberst, P AU - Bartolini, G AU - Vitali, I AU - Cadilhac, C AU - Hippenmeyer, Simon AU - Nguyen, L AU - Dayer, A AU - Jabaudon, D ID - 6455 IS - 6440 JF - Science SN - 0036-8075 TI - Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex VL - 364 ER - TY - JOUR AB - The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals allow exquisite surface engineering. This provides additional means to modulate the nanomaterial characteristics and particularly its electronic transport properties. For instance, inorganic surface ligands can be used to tune the type and concentration of majority carriers or to modify the electronic band structure. Herein, we report the thermoelectric properties of SnTe nanocomposites obtained from the consolidation of surface-engineered SnTe nanocrystals into macroscopic pellets. A CdSe-based ligand is selected to (i) converge the light and heavy bands through partial Cd alloying and (ii) generate CdSe nanoinclusions as a secondary phase within the SnTe matrix, thereby reducing the thermal conductivity. These SnTe-CdSe nanocomposites possess thermoelectric figures of merit of up to 1.3 at 850 K, which is, to the best of our knowledge, the highest thermoelectric figure of merit reported for solution-processed SnTe. AU - Ibáñez, Maria AU - Hasler, Roger AU - Genç, Aziz AU - Liu, Yu AU - Kuster, Beatrice AU - Schuster, Maximilian AU - Dobrozhan, Oleksandr AU - Cadavid, Doris AU - Arbiol, Jordi AU - Cabot, Andreu AU - Kovalenko, Maksym V. ID - 6586 IS - 20 JF - Journal of the American Chemical Society SN - 0002-7863 TI - Ligand-mediated band engineering in bottom-up assembled SnTe nanocomposites for thermoelectric energy conversion VL - 141 ER - TY - JOUR AB - We propose a scaling theory for the many-body localization (MBL) phase transition in one dimension, building on the idea that it proceeds via a “quantum avalanche.” We argue that the critical properties can be captured at a coarse-grained level by a Kosterlitz-Thouless (KT) renormalization group (RG) flow. On phenomenological grounds, we identify the scaling variables as the density of thermal regions and the length scale that controls the decay of typical matrix elements. Within this KT picture, the MBL phase is a line of fixed points that terminates at the delocalization transition. We discuss two possible scenarios distinguished by the distribution of rare, fractal thermal inclusions within the MBL phase. In the first scenario, these regions have a stretched exponential distribution in the MBL phase. In the second scenario, the near-critical MBL phase hosts rare thermal regions that are power-law-distributed in size. This points to the existence of a second transition within the MBL phase, at which these power laws change to the stretched exponential form expected at strong disorder. We numerically simulate two different phenomenological RGs previously proposed to describe the MBL transition. Both RGs display a universal power-law length distribution of thermal regions at the transition with a critical exponent αc=2, and continuously varying exponents in the MBL phase consistent with the KT picture. AU - Dumitrescu, Philipp T. AU - Goremykina, Anna AU - Parameswaran, Siddharth A. AU - Serbyn, Maksym AU - Vasseur, Romain ID - 6174 IS - 9 JF - Physical Review B SN - 2469-9950 TI - Kosterlitz-Thouless scaling at many-body localization phase transitions VL - 99 ER - TY - JOUR AB - Plants have a remarkable capacity to adjust their growth and development to elevated ambient temperatures. Increased elongation growth of roots, hypocotyls and petioles in warm temperatures are hallmarks of seedling thermomorphogenesis. In the last decade, significant progress has been made to identify the molecular signaling components regulating these growth responses. Increased ambient temperature utilizes diverse components of the light sensing and signal transduction network to trigger growth adjustments. However, it remains unknown whether temperature sensing and responses are universal processes that occur uniformly in all plant organs. Alternatively, temperature sensing may be confined to specific tissues or organs, which would require a systemic signal that mediates responses in distal parts of the plant. Here we show that Arabidopsis (Arabidopsis thaliana) seedlings show organ-specific transcriptome responses to elevated temperatures, and that thermomorphogenesis involves both autonomous and organ-interdependent temperature sensing and signaling. Seedling roots can sense and respond to temperature in a shoot-independent manner, whereas shoot temperature responses require both local and systemic processes. The induction of cell elongation in hypocotyls requires temperature sensing in cotyledons, followed by generation of a mobile auxin signal. Subsequently, auxin travels to the hypocotyl where it triggers local brassinosteroid-induced cell elongation in seedling stems, which depends upon a distinct, permissive temperature sensor in the hypocotyl. AU - Bellstaedt, Julia AU - Trenner, Jana AU - Lippmann, Rebecca AU - Poeschl, Yvonne AU - Zhang, Xixi AU - Friml, Jiří AU - Quint, Marcel AU - Delker, Carolin ID - 6366 IS - 2 JF - Plant Physiology SN - 0032-0889 TI - A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls VL - 180 ER -