TY - CONF AB - The genus g(G) of a graph G is the minimum g such that G has an embedding on the orientable surface M_g of genus g. A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z_2-genus of a graph G, denoted by g_0(G), is the minimum g such that G has an independently even drawing on M_g. By a result of Battle, Harary, Kodama and Youngs from 1962, the graph genus is additive over 2-connected blocks. In 2013, Schaefer and Stefankovic proved that the Z_2-genus of a graph is additive over 2-connected blocks as well, and asked whether this result can be extended to so-called 2-amalgamations, as an analogue of results by Decker, Glover, Huneke, and Stahl for the genus. We give the following partial answer. If G=G_1 cup G_2, G_1 and G_2 intersect in two vertices u and v, and G-u-v has k connected components (among which we count the edge uv if present), then |g_0(G)-(g_0(G_1)+g_0(G_2))|<=k+1. For complete bipartite graphs K_{m,n}, with n >= m >= 3, we prove that g_0(K_{m,n})/g(K_{m,n})=1-O(1/n). Similar results are proved also for the Euler Z_2-genus. We express the Z_2-genus of a graph using the minimum rank of partial symmetric matrices over Z_2; a problem that might be of independent interest. AU - Fulek, Radoslav AU - Kyncl, Jan ID - 7401 SN - 1868-8969 T2 - 35th International Symposium on Computational Geometry (SoCG 2019) TI - Z_2-Genus of graphs and minimum rank of partial symmetric matrices VL - 129 ER - TY - CHAP AB - We illustrate the ingredients of the state-of-the-art of model-based approach for the formal design and verification of cyber-physical systems. To capture the interaction between a discrete controller and its continuously evolving environment, we use the formal models of timed and hybrid automata. We explain the steps of modeling and verification in the tools Uppaal and SpaceEx using a case study based on a dual-chamber implantable pacemaker monitoring a human heart. We show how to design a model as a composition of components, how to construct models at varying levels of detail, how to establish that one model is an abstraction of another, how to specify correctness requirements using temporal logic, and how to verify that a model satisfies a logical requirement. AU - Alur, Rajeev AU - Giacobbe, Mirco AU - Henzinger, Thomas A AU - Larsen, Kim G. AU - Mikučionis, Marius ED - Steffen, Bernhard ED - Woeginger, Gerhard ID - 7453 SN - 1611-3349 T2 - Computing and Software Science TI - Continuous-time models for system design and analysis VL - 10000 ER - TY - JOUR AB - We report the fabrication of BaTiO3-Ni magnetoelectric nanocomposites comprising of BaTiO3 nanotubes surrounded by Ni matrix. BaTiO3 nanotubes obtained from the hydrothermal transformation of TiO2 have both inner and outer surfaces, which facilitates greater magnetoelectric coupling with the surrounding Ni matrix. The magnetoelectric coupling was studied by measuring the piezoelectric behavior in the presence of an in-plane direct magnetic field. A higher magnetoelectric voltage coefficient of 110 mV/cm·Oe was obtained, because of better coupling between Ni and BaTiO3 through the walls of the nanotubes. Such nanocomposite developed directly on Ti substrate may lead to efficient fabrication of magnetoelectric devices. AU - Vadla, Samba Siva AU - Costanzo, Tommaso AU - John, Subish AU - Caruntu, Gabriel AU - Roy, Somnath C. ID - 7459 JF - Scripta Materialia SN - 1359-6462 TI - Local probing of magnetoelectric coupling in BaTiO3-Ni 1–3 composites VL - 159 ER - TY - JOUR AB - The sebaceous gland (SG) is an essential component of the skin, and SG dysfunction is debilitating1,2. Yet, the cellular bases for its origin, development and subsequent maintenance remain poorly understood. Here, we apply large-scale quantitative fate mapping to define the patterns of cell fate behaviour during SG development and maintenance. We show that the SG develops from a defined number of lineage-restricted progenitors that undergo a programme of independent and stochastic cell fate decisions. Following an expansion phase, equipotent progenitors transition into a phase of homeostatic turnover, which is correlated with changes in the mechanical properties of the stroma and spatial restrictions on gland size. Expression of the oncogene KrasG12D results in a release from these constraints and unbridled gland expansion. Quantitative clonal fate analysis reveals that, during this phase, the primary effect of the Kras oncogene is to drive a constant fate bias with little effect on cell division rates. These findings provide insight into the developmental programme of the SG, as well as the mechanisms that drive tumour progression and gland dysfunction. AU - Andersen, Marianne Stemann AU - Hannezo, Edouard B AU - Ulyanchenko, Svetlana AU - Estrach, Soline AU - Antoku, Yasuko AU - Pisano, Sabrina AU - Boonekamp, Kim E. AU - Sendrup, Sarah AU - Maimets, Martti AU - Pedersen, Marianne Terndrup AU - Johansen, Jens V. AU - Clement, Ditte L. AU - Feral, Chloe C. AU - Simons, Benjamin D. AU - Jensen, Kim B. ID - 7476 IS - 8 JF - Nature Cell Biology SN - 1465-7392 TI - Tracing the cellular dynamics of sebaceous gland development in normal and perturbed states VL - 21 ER - TY - JOUR AB - Although the aggregation of the amyloid-β peptide (Aβ) into amyloid fibrils is a well-established hallmark of Alzheimer’s disease, the complex mechanisms linking this process to neurodegeneration are still incompletely understood. The nematode worm C. elegans is a valuable model organism through which to study these mechanisms because of its simple nervous system and its relatively short lifespan. Standard Aβ-based C. elegans models of Alzheimer’s disease are designed to study the toxic effects of the overexpression of Aβ in the muscle or nervous systems. However, the wide variety of effects associated with the tissue-level overexpression of Aβ makes it difficult to single out and study specific cellular mechanisms related to the onset of Alzheimer’s disease. Here, to better understand how to investigate the early events affecting neuronal signalling, we created a C. elegans model expressing Aβ42, the 42-residue form of Aβ, from a single-copy gene insertion in just one pair of glutamatergic sensory neurons, the BAG neurons. In behavioural assays, we found that the Aβ42-expressing animals displayed a subtle modulation of the response to CO2, compared to controls. Ca2+ imaging revealed that the BAG neurons in young Aβ42-expressing nematodes were activated more strongly than in control animals, and that neuronal activation remained intact until old age. Taken together, our results suggest that Aβ42-expression in this very subtle model of AD is sufficient to modulate the behavioural response but not strong enough to generate significant neurotoxicity, suggesting that slightly more aggressive perturbations will enable effectively studies of the links between the modulation of a physiological response and its associated neurotoxicity. AU - Sinnige, Tessa AU - Ciryam, Prashanth AU - Casford, Samuel AU - Dobson, Christopher M. AU - de Bono, Mario AU - Vendruscolo, Michele ID - 7548 IS - 5 JF - PLOS ONE SN - 1932-6203 TI - Expression of the amyloid-β peptide in a single pair of C. elegans sensory neurons modulates the associated behavioural response VL - 14 ER -