TY - CONF AB - We present the results of a friendly competition for formal verification of continuous and hybrid systems with nonlinear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In this year, 6 tools Ariadne, CORA, DynIbex, Flow*, Isabelle/HOL, and JuliaReach (in alphabetic order) participated. They are applied to solve reachability analysis problems on four benchmark problems, one of them with hybrid dynamics. We do not rank the tools based on the results, but show the current status and discover the potential advantages of different tools. AU - Immler, Fabian AU - Althoff, Matthias AU - Benet, Luis AU - Chapoutot, Alexandre AU - Chen, Xin AU - Forets, Marcelo AU - Geretti, Luca AU - Kochdumper, Niklas AU - Sanders, David P. AU - Schilling, Christian ID - 7576 T2 - EPiC Series in Computing TI - ARCH-COMP19 Category Report: Continuous and hybrid systems with nonlinear dynamics VL - 61 ER - TY - GEN AB - Electrodepositing insulating and insoluble Li2O2 is the key process during discharge of aprotic Li-O2 batteries and determines rate, capacity, and reversibility. Current understanding states that the partition between surface adsorbed and solvated LiO2 governs whether Li2O2 grows as surface film, leading to low capacity even at low rates, or in solution, leading to particles and high capacities. Here we show that Li2O2 forms to the widest extent as particles via solution mediated LiO2 disproportionation. We describe a unified Li2O2 growth model that conclusively explains capacity limitations across the whole range of electrolytes. Deciding for particle morphology, achievable rate and capacities are species mobilities, electrode specific surface area (determining true areal rate) and the concentration distribution of associated LiO2 in solution. Provided that species mobilities and surface are high, high, capacities are possible even with low-donor-number electrolytes, previously considered prototypical for low capacity via surface growth. The tools for these insights are microscopy, hydrodynamic voltammetry, a numerical reaction model, and in situ small/wide angle X-ray scattering (SAXS/WAXS). Combined with sophisticated data analysis, SAXS allows retrieving rich quantitative information from complex multi-phase systems. On a wider perspective, this SAXS method is a powerful in situ metrology with atomic to sub-micron resolution to study mechanisms in complex electrochemical systems and beyond. AU - Prehal, Christian AU - Samojlov, Aleksej AU - Nachtnebel, Manfred AU - Kriechbaum, Manfred AU - Amenitsch, Heinz AU - Freunberger, Stefan Alexander ID - 7627 TI - A revised O2 reduction model in Li-O2 batteries as revealed by in situ small angle X-ray scattering ER - TY - JOUR AB - The number of human genomes being genotyped or sequenced increases exponentially and efficient haplotype estimation methods able to handle this amount of data are now required. Here we present a method, SHAPEIT4, which substantially improves upon other methods to process large genotype and high coverage sequencing datasets. It notably exhibits sub-linear running times with sample size, provides highly accurate haplotypes and allows integrating external phasing information such as large reference panels of haplotypes, collections of pre-phased variants and long sequencing reads. We provide SHAPEIT4 in an open source format and demonstrate its performance in terms of accuracy and running times on two gold standard datasets: the UK Biobank data and the Genome In A Bottle. AU - Delaneau, Olivier AU - Zagury, Jean-François AU - Robinson, Matthew Richard AU - Marchini, Jonathan L. AU - Dermitzakis, Emmanouil T. ID - 7710 JF - Nature Communications SN - 2041-1723 TI - Accurate, scalable and integrative haplotype estimation VL - 10 ER - TY - JOUR AB - The nature and extent of mitochondrial DNA variation in a population and how it affects traits is poorly understood. Here we resequence the mitochondrial genomes of 169 Drosophila Genetic Reference Panel lines, identifying 231 variants that stratify along 12 mitochondrial haplotypes. We identify 1,845 cases of mitonuclear allelic imbalances, thus implying that mitochondrial haplotypes are reflected in the nuclear genome. However, no major fitness effects are associated with mitonuclear imbalance, suggesting that such imbalances reflect population structure at the mitochondrial level rather than genomic incompatibilities. Although mitochondrial haplotypes have no direct impact on mitochondrial respiration, some haplotypes are associated with stress- and metabolism-related phenotypes, including food intake in males. Finally, through reciprocal swapping of mitochondrial genomes, we demonstrate that a mitochondrial haplotype associated with high food intake can rescue a low food intake phenotype. Together, our findings provide new insight into population structure at the mitochondrial level and point to the importance of incorporating mitochondrial haplotypes in genotype–phenotype relationship studies. AU - Bevers, Roel P. J. AU - Litovchenko, Maria AU - Kapopoulou, Adamandia AU - Braman, Virginie S. AU - Robinson, Matthew Richard AU - Auwerx, Johan AU - Hollis, Brian AU - Deplancke, Bart ID - 7711 IS - 12 JF - Nature Metabolism SN - 2522-5812 TI - Mitochondrial haplotypes affect metabolic phenotypes in the Drosophila Genetic Reference Panel VL - 1 ER - TY - GEN AB - As genome-wide association studies (GWAS) increased in size, numerous gene-environment interactions (GxE) have been discovered, many of which however explore only one environment at a time and may suffer from statistical artefacts leading to biased interaction estimates. Here we propose a maximum likelihood method to estimate the contribution of GxE to complex traits taking into account all interacting environmental variables at the same time, without the need to measure any. This is possible because GxE induces fluctuations in the conditional trait variance, the extent of which depends on the strength of GxE. The approach can be applied to continuous outcomes and for single SNPs or genetic risk scores (GRS). Extensive simulations demonstrated that our method yields unbiased interaction estimates and excellent confidence interval coverage. We also offer a strategy to distinguish specific GxE from general heteroscedasticity (scale effects). Applying our method to 32 complex traits in the UK Biobank reveals that for body mass index (BMI) the GRSxE explains an additional 1.9% variance on top of the 5.2% GRS contribution. However, this interaction is not specific to the GRS and holds for any variable similarly correlated with BMI. On the contrary, the GRSxE interaction effect for leg impedance Embedded Image is significantly (P < 10−56) larger than it would be expected for a similarly correlated variable Embedded Image. We showed that our method could robustly detect the global contribution of GxE to complex traits, which turned out to be substantial for certain obesity measures. AU - Sulc, Jonathan AU - Mounier, Ninon AU - Günther, Felix AU - Winkler, Thomas AU - Wood, Andrew R. AU - Frayling, Timothy M. AU - Heid, Iris M. AU - Robinson, Matthew Richard AU - Kutalik, Zoltán ID - 7782 T2 - bioRxiv TI - Maximum likelihood method quantifies the overall contribution of gene-environment interaction to continuous traits: An application to complex traits in the UK Biobank ER -