TY - JOUR AB - Synaptic transmission, connectivity, and dendritic morphology mature in parallel during brain development and are often disrupted in neurodevelopmental disorders. Yet how these changes influence the neuronal computations necessary for normal brain function are not well understood. To identify cellular mechanisms underlying the maturation of synaptic integration in interneurons, we combined patch-clamp recordings of excitatory inputs in mouse cerebellar stellate cells (SCs), three-dimensional reconstruction of SC morphology with excitatory synapse location, and biophysical modeling. We found that postnatal maturation of postsynaptic strength was homogeneously reduced along the somatodendritic axis, but dendritic integration was always sublinear. However, dendritic branching increased without changes in synapse density, leading to a substantial gain in distal inputs. Thus, changes in synapse distribution, rather than dendrite cable properties, are the dominant mechanism underlying the maturation of neuronal computation. These mechanisms favor the emergence of a spatially compartmentalized two-stage integration model promoting location-dependent integration within dendritic subunits. AU - Biane, Celia AU - Rückerl, Florian AU - Abrahamsson, Therese AU - Saint-Cloment, Cécile AU - Mariani, Jean AU - Shigemoto, Ryuichi AU - Digregorio, David A. AU - Sherrard, Rachel M. AU - Cathala, Laurence ID - 10403 JF - eLife TI - Developmental emergence of two-stage nonlinear synaptic integration in cerebellar interneurons VL - 10 ER - TY - JOUR AB - Theoretical and experimental studies of the interaction between spins and temperature are vital for the development of spin caloritronics, as they dictate the design of future devices. In this work, we propose a two-terminal cold-atom simulator to study that interaction. The proposed quantum simulator consists of strongly interacting atoms that occupy two temperature reservoirs connected by a one-dimensional link. First, we argue that the dynamics in the link can be described using an inhomogeneous Heisenberg spin chain whose couplings are defined by the local temperature. Second, we show the existence of a spin current in a system with a temperature difference by studying the dynamics that follows the spin-flip of an atom in the link. A temperature gradient accelerates the impurity in one direction more than in the other, leading to an overall spin current similar to the spin Seebeck effect. AU - Barfknecht, Rafael E. AU - Foerster, Angela AU - Zinner, Nikolaj T. AU - Volosniev, Artem ID - 10401 IS - 1 JF - Communications Physics TI - Generation of spin currents by a temperature gradient in a two-terminal device VL - 4 ER - TY - JOUR AB - While convolutional neural networks (CNNs) have found wide adoption as state-of-the-art models for image-related tasks, their predictions are often highly sensitive to small input perturbations, which the human vision is robust against. This paper presents Perturber, a web-based application that allows users to instantaneously explore how CNN activations and predictions evolve when a 3D input scene is interactively perturbed. Perturber offers a large variety of scene modifications, such as camera controls, lighting and shading effects, background modifications, object morphing, as well as adversarial attacks, to facilitate the discovery of potential vulnerabilities. Fine-tuned model versions can be directly compared for qualitative evaluation of their robustness. Case studies with machine learning experts have shown that Perturber helps users to quickly generate hypotheses about model vulnerabilities and to qualitatively compare model behavior. Using quantitative analyses, we could replicate users’ insights with other CNN architectures and input images, yielding new insights about the vulnerability of adversarially trained models. AU - Sietzen, Stefan AU - Lechner, Mathias AU - Borowski, Judy AU - Hasani, Ramin AU - Waldner, Manuela ID - 10404 IS - 7 JF - Computer Graphics Forum SN - 0167-7055 TI - Interactive analysis of CNN robustness VL - 40 ER - TY - JOUR AB - Multicellular organisms develop complex shapes from much simpler, single-celled zygotes through a process commonly called morphogenesis. Morphogenesis involves an interplay between several factors, ranging from the gene regulatory networks determining cell fate and differentiation to the mechanical processes underlying cell and tissue shape changes. Thus, the study of morphogenesis has historically been based on multidisciplinary approaches at the interface of biology with physics and mathematics. Recent technological advances have further improved our ability to study morphogenesis by bridging the gap between the genetic and biophysical factors through the development of new tools for visualizing, analyzing, and perturbing these factors and their biochemical intermediaries. Here, we review how a combination of genetic, microscopic, biophysical, and biochemical approaches has aided our attempts to understand morphogenesis and discuss potential approaches that may be beneficial to such an inquiry in the future. AU - Mishra, Nikhil AU - Heisenberg, Carl-Philipp J ID - 10406 JF - Annual Review of Genetics KW - morphogenesis KW - forward genetics KW - high-resolution microscopy KW - biophysics KW - biochemistry KW - patterning SN - 0066-4197 TI - Dissecting organismal morphogenesis by bridging genetics and biophysics VL - 55 ER - TY - GEN AB - The zip file includes source data used in the main text of the manuscript "Theory of branching morphogenesis by local interactions and global guidance", as well as a representative Jupyter notebook to reproduce the main figures. A sample script for the simulations of branching and annihilating random walks is also included (Sample_script_for_simulations_of_BARWs.ipynb) to generate exemplary branched networks under external guidance. A detailed description of the simulation setup is provided in the supplementary information of the manuscipt. AU - Ucar, Mehmet C ID - 13058 TI - Source data for the manuscript "Theory of branching morphogenesis by local interactions and global guidance" ER -