TY - JOUR
AB - A game of rock-paper-scissors is an interesting example of an interaction where none of the pure strategies strictly dominates all others, leading to a cyclic pattern. In this work, we consider an unstable version of rock-paper-scissors dynamics and allow individuals to make behavioural mistakes during the strategy execution. We show that such an assumption can break a cyclic relationship leading to a stable equilibrium emerging with only one strategy surviving. We consider two cases: completely random mistakes when individuals have no bias towards any strategy and a general form of mistakes. Then, we determine conditions for a strategy to dominate all other strategies. However, given that individuals who adopt a dominating strategy are still prone to behavioural mistakes in the observed behaviour, we may still observe extinct strategies. That is, behavioural mistakes in strategy execution stabilise evolutionary dynamics leading to an evolutionary stable and, potentially, mixed co-existence equilibrium.
AU - Kleshnina, Maria
AU - Streipert, Sabrina S.
AU - Filar, Jerzy A.
AU - Chatterjee, Krishnendu
ID - 9381
IS - 4
JF - PLoS Computational Biology
SN - 1553734X
TI - Mistakes can stabilise the dynamics of rock-paper-scissors games
VL - 17
ER -
TY - JOUR
AB - A primary roadblock to our understanding of speciation is that it usually occurs over a timeframe that is too long to study from start to finish. The idea of a speciation continuum provides something of a solution to this problem; rather than observing the entire process, we can simply reconstruct it from the multitude of speciation events that surround us. But what do we really mean when we talk about the speciation continuum, and can it really help us understand speciation? We explored these questions using a literature review and online survey of speciation researchers. Although most researchers were familiar with the concept and thought it was useful, our survey revealed extensive disagreement about what the speciation continuum actually tells us. This is due partly to the lack of a clear definition. Here, we provide an explicit definition that is compatible with the Biological Species Concept. That is, the speciation continuum is a continuum of reproductive isolation. After outlining the logic of the definition in light of alternatives, we explain why attempts to reconstruct the speciation process from presentβday populations will ultimately fail. We then outline how we think the speciation continuum concept can continue to act as a foundation for understanding the continuum of reproductive isolation that surrounds us.
AU - Stankowski, Sean
AU - Ravinet, Mark
ID - 9383
JF - Evolution
SN - 00143820
TI - Defining the speciation continuum
ER -
TY - JOUR
AU - Bolger-Munro, Madison
AU - Choi, Kate
AU - Cheung, Faith
AU - Liu, Yi Tian
AU - Dang-Lawson, May
AU - Deretic, Nikola
AU - Keane, Connor
AU - Gold, Michael R.
ID - 9379
JF - Frontiers in Cell and Developmental Biology
KW - B cell
KW - actin
KW - immune synapse
KW - cell spreading
KW - cofilin
KW - WDR1 (AIP1)
KW - LIM domain kinase
KW - B cell receptor (BCR)
TI - The Wdr1-LIMK-Cofilin axis controls B cell antigen receptor-induced actin remodeling and signaling at the immune synapse
VL - 9
ER -
TY - JOUR
AB - We report the complete analysis of a deterministic model of deleterious mutations and negative selection against them at two haploid loci without recombination. As long as mutation is a weaker force than selection, mutant alleles remain rare at the only stable equilibrium, and otherwise, a variety of dynamics are possible. If the mutation-free genotype is absent, generally the only stable equilibrium is the one that corresponds to fixation of the mutant allele at the locus where it is less deleterious. This result suggests that fixation of a deleterious allele that follows a click of the Mullerβs ratchet is governed by natural selection, instead of random drift.
AU - Khudiakova, Kseniia
AU - Neretina, Tatiana Yu.
AU - Kondrashov, Alexey S.
ID - 9387
JF - Journal of Theoretical Biology
KW - General Biochemistry
KW - Genetics and Molecular Biology
KW - Modelling and Simulation
KW - Statistics and Probability
KW - General Immunology and Microbiology
KW - Applied Mathematics
KW - General Agricultural and Biological Sciences
KW - General Medicine
SN - 0022-5193
TI - Two linked loci under mutation-selection balance and Mullerβs ratchet
VL - 524
ER -
TY - JOUR
AB - We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean-payoff, the ratio, and the minimum initial credit for energy property. The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with bounded treewidthβa class that contains the control flow graphs of most programs. Let n denote the number of nodes of a graph, m the number of edges (for bounded treewidth π=π(π)) and W the largest absolute value of the weights. Our main theoretical results are as follows. First, for the minimum initial credit problem we show that (1) for general graphs the problem can be solved in π(π2β
π) time and the associated decision problem in π(πβ
π) time, improving the previous known π(π3β
πβ
log(πβ
π)) and π(π2β
π) bounds, respectively; and (2) for bounded treewidth graphs we present an algorithm that requires π(πβ
logπ) time. Second, for bounded treewidth graphs we present an algorithm that approximates the mean-payoff value within a factor of 1+π in time π(πβ
log(π/π)) as compared to the classical exact algorithms on general graphs that require quadratic time. Third, for the ratio property we present an algorithm that for bounded treewidth graphs works in time π(πβ
log(|πβ
π|))=π(πβ
log(πβ
π)), when the output is ππ, as compared to the previously best known algorithm on general graphs with running time π(π2β
log(πβ
π)). We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks.
AU - Chatterjee, Krishnendu
AU - Ibsen-Jensen, Rasmus
AU - Pavlogiannis, Andreas
ID - 9393
JF - Formal Methods in System Design
SN - 09259856
TI - Faster algorithms for quantitative verification in bounded treewidth graphs
ER -