TY - JOUR AB - The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly. AU - Zens, Bettina AU - Fäßler, Florian AU - Hansen, Jesse AU - Hauschild, Robert AU - Datler, Julia AU - Hodirnau, Victor-Valentin AU - Zheden, Vanessa AU - Alanko, Jonna H AU - Sixt, Michael K AU - Schur, Florian KM ID - 15146 IS - 6 JF - Journal of Cell Biology SN - 0021-9525 TI - Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix VL - 223 ER - TY - JOUR AB - We prove an upper bound on the ground state energy of the dilute spin-polarized Fermi gas capturing the leading correction to the kinetic energy resulting from repulsive interactions. One of the main ingredients in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin et al. (1971) [15]. AU - Lauritsen, Asbjørn Bækgaard AU - Seiringer, Robert ID - 14931 IS - 7 JF - Journal of Functional Analysis SN - 0022-1236 TI - Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion VL - 286 ER - TY - CHAP AB - The mammary gland consists of a bilayered epithelial structure with an extensively branched morphology. The majority of this epithelial tree is laid down during puberty, during which actively proliferating terminal end buds repeatedly elongate and bifurcate to form the basic structure of the ductal tree. Mammary ducts consist of a basal and luminal cell layer with a multitude of identified sub-lineages within both layers. The understanding of how these different cell lineages are cooperatively driving branching morphogenesis is a problem of crossing multiple scales, as this requires information on the macroscopic branched structure of the gland, as well as data on single-cell dynamics driving the morphogenic program. Here we describe a method to combine genetic lineage tracing with whole-gland branching analysis. Quantitative data on the global organ structure can be used to derive a model for mammary gland branching morphogenesis and provide a backbone on which the dynamics of individual cell lineages can be simulated and compared to lineage-tracing approaches. Eventually, these quantitative models and experiments allow to understand the couplings between the macroscopic shape of the mammary gland and the underlying single-cell dynamics driving branching morphogenesis. AU - Hannezo, Edouard B AU - Scheele, Colinda L.G.J. ED - Margadant, Coert ID - 12428 SN - 9781071628867 T2 - Cell Migration in Three Dimensions TI - A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland VL - 2608 ER - TY - JOUR AB - Brownian motion of a mobile impurity in a bath is affected by spin-orbit coupling (SOC). Here, we discuss a Caldeira-Leggett-type model that can be used to propose and interpret quantum simulators of this problem in cold Bose gases. First, we derive a master equation that describes the model and explore it in a one-dimensional (1D) setting. To validate the standard assumptions needed for our derivation, we analyze available experimental data without SOC; as a byproduct, this analysis suggests that the quench dynamics of the impurity is beyond the 1D Bose-polaron approach at temperatures currently accessible in a cold-atom laboratory—motion of the impurity is mainly driven by dissipation. For systems with SOC, we demonstrate that 1D spin-orbit coupling can be gauged out even in the presence of dissipation—the information about SOC is incorporated in the initial conditions. Observables sensitive to this information (such as spin densities) can be used to study formation of steady spin polarization domains during quench dynamics. AU - Ghazaryan, Areg AU - Cappellaro, Alberto AU - Lemeshko, Mikhail AU - Volosniev, Artem ID - 12534 IS - 1 JF - Physical Review Research SN - 2643-1564 TI - Dissipative dynamics of an impurity with spin-orbit coupling VL - 5 ER - TY - JOUR AB - Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages. AU - Zeller, Peter AU - Yeung, Jake AU - Viñas Gaza, Helena AU - de Barbanson, Buys Anton AU - Bhardwaj, Vivek AU - Florescu, Maria AU - van der Linden, Reinier AU - van Oudenaarden, Alexander ID - 12158 JF - Nature Genetics KW - Genetics SN - 1061-4036 TI - Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis VL - 55 ER -