TY - THES AB - The human ability to recognize objects in complex scenes has driven research in the computer vision field over couple of decades. This thesis focuses on the object recognition task in images. That is, given the image, we want the computer system to be able to predict the class of the object that appears in the image. A recent successful attempt to bridge semantic understanding of the image perceived by humans and by computers uses attribute-based models. Attributes are semantic properties of the objects shared across different categories, which humans and computers can decide on. To explore the attribute-based models we take a statistical machine learning approach, and address two key learning challenges in view of object recognition task: learning augmented attributes as mid-level discriminative feature representation, and learning with attributes as privileged information. Our main contributions are parametric and non-parametric models and algorithms to solve these frameworks. In the parametric approach, we explore an autoencoder model combined with the large margin nearest neighbor principle for mid-level feature learning, and linear support vector machines for learning with privileged information. In the non-parametric approach, we propose a supervised Indian Buffet Process for automatic augmentation of semantic attributes, and explore the Gaussian Processes classification framework for learning with privileged information. A thorough experimental analysis shows the effectiveness of the proposed models in both parametric and non-parametric views. AU - Sharmanska, Viktoriia ID - 1401 SN - 2663-337X TI - Learning with attributes for object recognition: Parametric and non-parametrics views ER - TY - JOUR AB - The competition for resources among cells, individuals or species is a fundamental characteristic of evolution. Biological all-pay auctions have been used to model situations where multiple individuals compete for a single resource. However, in many situations multiple resources with various values exist and single reward auctions are not applicable. We generalize the model to multiple rewards and study the evolution of strategies. In biological all-pay auctions the bid of an individual corresponds to its strategy and is equivalent to its payment in the auction. The decreasingly ordered rewards are distributed according to the decreasingly ordered bids of the participating individuals. The reproductive success of an individual is proportional to its fitness given by the sum of the rewards won minus its payments. Hence, successful bidding strategies spread in the population. We find that the results for the multiple reward case are very different from the single reward case. While the mixed strategy equilibrium in the single reward case with more than two players consists of mostly low-bidding individuals, we show that the equilibrium can convert to many high-bidding individuals and a few low-bidding individuals in the multiple reward case. Some reward values lead to a specialization among the individuals where one subpopulation competes for the rewards and the other subpopulation largely avoids costly competitions. Whether the mixed strategy equilibrium is an evolutionarily stable strategy (ESS) depends on the specific values of the rewards. AU - Reiter, Johannes AU - Kanodia, Ayush AU - Gupta, Raghav AU - Nowak, Martin AU - Chatterjee, Krishnendu ID - 1709 IS - 1812 JF - Proceedings of the Royal Society of London Series B Biological Sciences TI - Biological auctions with multiple rewards VL - 282 ER - TY - THES AB - Cancer results from an uncontrolled growth of abnormal cells. Sequentially accumulated genetic and epigenetic alterations decrease cell death and increase cell replication. We used mathematical models to quantify the effect of driver gene mutations. The recently developed targeted therapies can lead to dramatic regressions. However, in solid cancers, clinical responses are often short-lived because resistant cancer cells evolve. We estimated that approximately 50 different mutations can confer resistance to a typical targeted therapeutic agent. We find that resistant cells are likely to be present in expanded subclones before the start of the treatment. The dominant strategy to prevent the evolution of resistance is combination therapy. Our analytical results suggest that in most patients, dual therapy, but not monotherapy, can result in long-term disease control. However, long-term control can only occur if there are no possible mutations in the genome that can cause cross-resistance to both drugs. Furthermore, we showed that simultaneous therapy with two drugs is much more likely to result in long-term disease control than sequential therapy with the same drugs. To improve our understanding of the underlying subclonal evolution we reconstruct the evolutionary history of a patient's cancer from next-generation sequencing data of spatially-distinct DNA samples. Using a quantitative measure of genetic relatedness, we found that pancreatic cancers and their metastases demonstrated a higher level of relatedness than that expected for any two cells randomly taken from a normal tissue. This minimal amount of genetic divergence among advanced lesions indicates that genetic heterogeneity, when quantitatively defined, is not a fundamental feature of the natural history of untreated pancreatic cancers. Our newly developed, phylogenomic tool Treeomics finds evidence for seeding patterns of metastases and can directly be used to discover rules governing the evolution of solid malignancies to transform cancer into a more predictable disease. AU - Reiter, Johannes ID - 1400 SN - 2663-337X TI - The subclonal evolution of cancer ER - TY - JOUR AB - Motivated by recent ideas of Harman (Unif. Distrib. Theory, 2010) we develop a new concept of variation of multivariate functions on a compact Hausdorff space with respect to a collection D of subsets. We prove a general version of the Koksma-Hlawka theorem that holds for this notion of variation and discrepancy with respect to D. As special cases, we obtain Koksma-Hlawka inequalities for classical notions, such as extreme or isotropic discrepancy. For extreme discrepancy, our result coincides with the usual Koksma-Hlawka theorem. We show that the space of functions of bounded D-variation contains important discontinuous functions and is closed under natural algebraic operations. Finally, we illustrate the results on concrete integration problems from integral geometry and stereology. AU - Pausinger, Florian AU - Svane, Anne ID - 1792 IS - 6 JF - Journal of Complexity TI - A Koksma-Hlawka inequality for general discrepancy systems VL - 31 ER - TY - THES AB - This thesis is concerned with the computation and approximation of intrinsic volumes. Given a smooth body M and a certain digital approximation of it, we develop algorithms to approximate various intrinsic volumes of M using only measurements taken from its digital approximations. The crucial idea behind our novel algorithms is to link the recent theory of persistent homology to the theory of intrinsic volumes via the Crofton formula from integral geometry and, in particular, via Euler characteristic computations. Our main contributions are a multigrid convergent digital algorithm to compute the first intrinsic volume of a solid body in R^n as well as an appropriate integration pipeline to approximate integral-geometric integrals defined over the Grassmannian manifold. AU - Pausinger, Florian ID - 1399 SN - 2663-337X TI - On the approximation of intrinsic volumes ER - TY - JOUR AB - Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics. AU - Tugrul, Murat AU - Paixao, Tiago AU - Barton, Nicholas H AU - Tkacik, Gasper ID - 1666 IS - 11 JF - PLoS Genetics TI - Dynamics of transcription factor binding site evolution VL - 11 ER - TY - CONF AB - We extend the theory of input-output conformance with operators for merge and quotient. The former is useful when testing against multiple requirements or views. The latter can be used to generate tests for patches of an already tested system. Both operators can combine systems with different action alphabets, which is usually the case when constructing complex systems and specifications from parts, for instance different views as well as newly defined functionality of a~previous version of the system. AU - Beneš, Nikola AU - Daca, Przemyslaw AU - Henzinger, Thomas A AU - Kretinsky, Jan AU - Nickovic, Dejan ID - 1502 SN - 978-1-4503-3471-6 TI - Complete composition operators for IOCO-testing theory ER - TY - JOUR AB - We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability. We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph algorithms with quadratic complexity to compute the simulation relation. We present an automated technique for assume-guarantee style reasoning for compositional analysis of two-player games by giving a counterexample guided abstraction-refinement approach to compute our new simulation relation. We show a tight link between two-player games and MDPs, and as a consequence the results for games are lifted to MDPs with qualitative properties. We have implemented our algorithms and show that the compositional analysis leads to significant improvements. AU - Chatterjee, Krishnendu AU - Chmelik, Martin AU - Daca, Przemyslaw ID - 1501 IS - 2 JF - Formal Methods in System Design TI - CEGAR for compositional analysis of qualitative properties in Markov decision processes VL - 47 ER - TY - JOUR AB - Interprocedural analysis is at the heart of numerous applications in programming languages, such as alias analysis, constant propagation, etc. Recursive state machines (RSMs) are standard models for interprocedural analysis. We consider a general framework with RSMs where the transitions are labeled from a semiring, and path properties are algebraic with semiring operations. RSMs with algebraic path properties can model interprocedural dataflow analysis problems, the shortest path problem, the most probable path problem, etc. The traditional algorithms for interprocedural analysis focus on path properties where the starting point is fixed as the entry point of a specific method. In this work, we consider possible multiple queries as required in many applications such as in alias analysis. The study of multiple queries allows us to bring in a very important algorithmic distinction between the resource usage of the one-time preprocessing vs for each individual query. The second aspect that we consider is that the control flow graphs for most programs have constant treewidth. Our main contributions are simple and implementable algorithms that supportmultiple queries for algebraic path properties for RSMs that have constant treewidth. Our theoretical results show that our algorithms have small additional one-time preprocessing, but can answer subsequent queries significantly faster as compared to the current best-known solutions for several important problems, such as interprocedural reachability and shortest path. We provide a prototype implementation for interprocedural reachability and intraprocedural shortest path that gives a significant speed-up on several benchmarks. AU - Chatterjee, Krishnendu AU - Ibsen-Jensen, Rasmus AU - Pavlogiannis, Andreas AU - Goyal, Prateesh ID - 1602 IS - 1 JF - ACM SIGPLAN Notices TI - Faster algorithms for algebraic path properties in recursive state machines with constant treewidth VL - 50 ER - TY - JOUR AB - We consider the quantitative analysis problem for interprocedural control-flow graphs (ICFGs). The input consists of an ICFG, a positive weight function that assigns every transition a positive integer-valued number, and a labelling of the transitions (events) as good, bad, and neutral events. The weight function assigns to each transition a numerical value that represents ameasure of how good or bad an event is. The quantitative analysis problem asks whether there is a run of the ICFG where the ratio of the sum of the numerical weights of good events versus the sum of weights of bad events in the long-run is at least a given threshold (or equivalently, to compute the maximal ratio among all valid paths in the ICFG). The quantitative analysis problem for ICFGs can be solved in polynomial time, and we present an efficient and practical algorithm for the problem. We show that several problems relevant for static program analysis, such as estimating the worst-case execution time of a program or the average energy consumption of a mobile application, can be modeled in our framework. We have implemented our algorithm as a tool in the Java Soot framework. We demonstrate the effectiveness of our approach with two case studies. First, we show that our framework provides a sound approach (no false positives) for the analysis of inefficiently-used containers. Second, we show that our approach can also be used for static profiling of programs which reasons about methods that are frequently invoked. Our experimental results show that our tool scales to relatively large benchmarks, and discovers relevant and useful information that can be used to optimize performance of the programs. AU - Chatterjee, Krishnendu AU - Pavlogiannis, Andreas AU - Velner, Yaron ID - 1604 IS - 1 JF - Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT SN - 978-1-4503-3300-9 TI - Quantitative interprocedural analysis VL - 50 ER - TY - CONF AB - We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean-payoff property, the ratio property, and the minimum initial credit for energy property. The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth, and it is well-known that the control-flow graphs of most programs have constant treewidth. Let n denote the number of nodes of a graph, m the number of edges (for constant treewidth graphs m=O(n)) and W the largest absolute value of the weights. Our main theoretical results are as follows. First, for constant treewidth graphs we present an algorithm that approximates the mean-payoff value within a multiplicative factor of ϵ in time O(n⋅log(n/ϵ)) and linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we present an algorithm that for constant treewidth graphs works in time O(n⋅log(|a⋅b|))=O(n⋅log(n⋅W)), when the output is ab, as compared to the previously best known algorithm with running time O(n2⋅log(n⋅W)). Third, for the minimum initial credit problem we show that (i) for general graphs the problem can be solved in O(n2⋅m) time and the associated decision problem can be solved in O(n⋅m) time, improving the previous known O(n3⋅m⋅log(n⋅W)) and O(n2⋅m) bounds, respectively; and (ii) for constant treewidth graphs we present an algorithm that requires O(n⋅logn) time, improving the previous known O(n4⋅log(n⋅W)) bound. We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks. AU - Chatterjee, Krishnendu AU - Ibsen-Jensen, Rasmus AU - Pavlogiannis, Andreas ID - 1607 TI - Faster algorithms for quantitative verification in constant treewidth graphs VL - 9206 ER - TY - CONF AB - We present a flexible framework for the automated competitive analysis of on-line scheduling algorithms for firm-deadline real-time tasks based on multi-objective graphs: Given a task set and an on-line scheduling algorithm specified as a labeled transition system, along with some optional safety, liveness, and/or limit-average constraints for the adversary, we automatically compute the competitive ratio of the algorithm w.r.t. A clairvoyant scheduler. We demonstrate the flexibility and power of our approach by comparing the competitive ratio of several on-line algorithms, including Dover, that have been proposed in the past, for various task sets. Our experimental results reveal that none of these algorithms is universally optimal, in the sense that there are task sets where other schedulers provide better performance. Our framework is hence a very useful design tool for selecting optimal algorithms for a given application. AU - Chatterjee, Krishnendu AU - Pavlogiannis, Andreas AU - Kößler, Alexander AU - Schmid, Ulrich ID - 1714 IS - January T2 - Real-Time Systems Symposium TI - A framework for automated competitive analysis of on-line scheduling of firm-deadline tasks VL - 2015 ER - TY - CONF AB - We present a method for simulating brittle fracture under the assumptions of quasi-static linear elastic fracture mechanics (LEFM). Using the boundary element method (BEM) and Lagrangian crack-fronts, we produce highly detailed fracture surfaces. The computational cost of the BEM is alleviated by using a low-resolution mesh and interpolating the resulting stress intensity factors when propagating the high-resolution crack-front. Our system produces physics-based fracture surfaces with high spatial and temporal resolution, taking spatial variation of material toughness and/or strength into account. It also allows for crack initiation to be handled separately from crack propagation, which is not only more reasonable from a physics perspective, but can also be used to control the simulation. Separating the resolution of the crack-front from the resolution of the computational mesh increases the efficiency and therefore the amount of visual detail on the resulting fracture surfaces. The BEM also allows us to re-use previously computed blocks of the system matrix. AU - Hahn, David AU - Wojtan, Christopher J ID - 1633 IS - 4 TI - High-resolution brittle fracture simulation with boundary elements VL - 34 ER - TY - JOUR AB - 3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype. AU - Ruprecht, Verena AU - Wieser, Stefan AU - Callan Jones, Andrew AU - Smutny, Michael AU - Morita, Hitoshi AU - Sako, Keisuke AU - Barone, Vanessa AU - Ritsch Marte, Monika AU - Sixt, Michael K AU - Voituriez, Raphaël AU - Heisenberg, Carl-Philipp J ID - 1537 IS - 4 JF - Cell TI - Cortical contractility triggers a stochastic switch to fast amoeboid cell motility VL - 160 ER - TY - JOUR AB - Auxin participates in a multitude of developmental processes, as well as responses to environmental cues. Compared with other plant hormones, auxin exhibits a unique property, as it undergoes directional, cell-to-cell transport facilitated by plasma membrane-localized transport proteins. Among them, a prominent role has been ascribed to the PIN family of auxin efflux facilitators. PIN proteins direct polar auxin transport on account of their asymmetric subcellular localizations. In this review, we provide an overview of the multiple developmental roles of PIN proteins, including the atypical endoplasmic reticulum-localized members of the family, and look at the family from an evolutionary perspective. Next, we cover the cell biological and molecular aspects of PIN function, in particular the establishment of their polar subcellular localization. Hormonal and environmental inputs into the regulation of PIN action are summarized as well. AU - Adamowski, Maciek AU - Friml, Jirí ID - 1591 IS - 1 JF - Plant Cell TI - PIN-dependent auxin transport: Action, regulation, and evolution VL - 27 ER - TY - JOUR AB - We consider real symmetric and complex Hermitian random matrices with the additional symmetry hxy = hN-y,N-x. The matrix elements are independent (up to the fourfold symmetry) and not necessarily identically distributed. This ensemble naturally arises as the Fourier transform of a Gaussian orthogonal ensemble. Italso occurs as the flip matrix model - an approximation of the two-dimensional Anderson model at small disorder. We show that the density of states converges to the Wigner semicircle law despite the new symmetry type. We also prove the local version of the semicircle law on the optimal scale. AU - Alt, Johannes ID - 1677 IS - 10 JF - Journal of Mathematical Physics TI - The local semicircle law for random matrices with a fourfold symmetry VL - 56 ER - TY - JOUR AB - High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that avoids the need for chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small-molecule screen against human protein kinases, including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes. AU - Inglés Prieto, Álvaro AU - Gschaider-Reichhart, Eva AU - Muellner, Markus AU - Nowak, Matthias AU - Nijman, Sebastian AU - Grusch, Michael AU - Janovjak, Harald L ID - 1678 IS - 12 JF - Nature Chemical Biology TI - Light-assisted small-molecule screening against protein kinases VL - 11 ER - TY - JOUR AB - Gene expression is controlled primarily by interactions between transcription factor proteins (TFs) and the regulatory DNA sequence, a process that can be captured well by thermodynamic models of regulation. These models, however, neglect regulatory crosstalk: the possibility that noncognate TFs could initiate transcription, with potentially disastrous effects for the cell. Here, we estimate the importance of crosstalk, suggest that its avoidance strongly constrains equilibrium models of TF binding, and propose an alternative nonequilibrium scheme that implements kinetic proofreading to suppress erroneous initiation. This proposal is consistent with the observed covalent modifications of the transcriptional apparatus and predicts increased noise in gene expression as a trade-off for improved specificity. Using information theory, we quantify this trade-off to find when optimal proofreading architectures are favored over their equilibrium counterparts. Such architectures exhibit significant super-Poisson noise at low expression in steady state. AU - Cepeda Humerez, Sarah A AU - Rieckh, Georg AU - Tkacik, Gasper ID - 1576 IS - 24 JF - Physical Review Letters TI - Stochastic proofreading mechanism alleviates crosstalk in transcriptional regulation VL - 115 ER - TY - GEN AB - We study conditions under which a finite simplicial complex $K$ can be mapped to $\mathbb R^d$ without higher-multiplicity intersections. An almost $r$-embedding is a map $f: K\to \mathbb R^d$ such that the images of any $r$ pairwise disjoint simplices of $K$ do not have a common point. We show that if $r$ is not a prime power and $d\geq 2r+1$, then there is a counterexample to the topological Tverberg conjecture, i.e., there is an almost $r$-embedding of the $(d+1)(r-1)$-simplex in $\mathbb R^d$. This improves on previous constructions of counterexamples (for $d\geq 3r$) based on a series of papers by M. \"Ozaydin, M. Gromov, P. Blagojevi\'c, F. Frick, G. Ziegler, and the second and fourth present authors. The counterexamples are obtained by proving the following algebraic criterion in codimension 2: If $r\ge3$ and if $K$ is a finite $2(r-1)$-complex then there exists an almost $r$-embedding $K\to \mathbb R^{2r}$ if and only if there exists a general position PL map $f:K\to \mathbb R^{2r}$ such that the algebraic intersection number of the $f$-images of any $r$ pairwise disjoint simplices of $K$ is zero. This result can be restated in terms of cohomological obstructions or equivariant maps, and extends an analogous codimension 3 criterion by the second and fourth authors. As another application we classify ornaments $f:S^3 \sqcup S^3\sqcup S^3\to \mathbb R^5$ up to ornament concordance. It follows from work of M. Freedman, V. Krushkal and P. Teichner that the analogous criterion for $r=2$ is false. We prove a lemma on singular higher-dimensional Borromean rings, yielding an elementary proof of the counterexample. AU - Avvakumov, Sergey AU - Mabillard, Isaac AU - Skopenkov, A. AU - Wagner, Uli ID - 8183 T2 - arXiv TI - Eliminating higher-multiplicity intersections, III. Codimension 2 ER - TY - GEN AB - We study algorithmic questions for concurrent systems where the transitions are labeled from a complete, closed semiring, and path properties are algebraic with semiring operations. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural problems that arise in program analysis. We consider that each component of the concurrent system is a graph with constant treewidth, a property satisfied by the controlflow graphs of most programs. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis. The study of multiple queries allows us to consider the tradeoff between the resource usage of the one-time preprocessing and for each individual query. The traditional approach constructs the product graph of all components and applies the best-known graph algorithm on the product. In this approach, even the answer to a single query requires the transitive closure (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time. Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time, each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results showing that the worst-case running time of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (i.e., improving the worst-case bound for the shortest path problem in general graphs). Preliminary experimental results show that our algorithms perform favorably on several benchmarks. AU - Chatterjee, Krishnendu AU - Ibsen-Jensen, Rasmus AU - Goharshady, Amir AU - Pavlogiannis, Andreas ID - 5441 SN - 2664-1690 TI - Algorithms for algebraic path properties in concurrent systems of constant treewidth components ER -