TY - JOUR
AB - Let g be a complex semisimple Lie algebra. We give a classification of contravariant forms on the nondegenerate Whittaker g-modules Y(χ,η) introduced by Kostant. We prove that the set of all contravariant forms on Y(χ,η) forms a vector space whose dimension is given by the cardinality of the Weyl group of g. We also describe a procedure for parabolically inducing contravariant forms. As a corollary, we deduce the existence of the Shapovalov form on a Verma module, and provide a formula for the dimension of the space of contravariant forms on the degenerate Whittaker modules M(χ,η) introduced by McDowell.
AU - Brown, Adam
AU - Romanov, Anna
ID - 8773
IS - 1
JF - Proceedings of the American Mathematical Society
KW - Applied Mathematics
KW - General Mathematics
SN - 0002-9939
TI - Contravariant forms on Whittaker modules
VL - 149
ER -
TY - JOUR
AB - We study optimal election sequences for repeatedly selecting a (very) small group of leaders among a set of participants (players) with publicly known unique ids. In every time slot, every player has to select exactly one player that it considers to be the current leader, oblivious to the selection of the other players, but with the overarching goal of maximizing a given parameterized global (“social”) payoff function in the limit. We consider a quite generic model, where the local payoff achieved by a given player depends, weighted by some arbitrary but fixed real parameter, on the number of different leaders chosen in a round, the number of players that choose the given player as the leader, and whether the chosen leader has changed w.r.t. the previous round or not. The social payoff can be the maximum, average or minimum local payoff of the players. Possible applications include quite diverse examples such as rotating coordinator-based distributed algorithms and long-haul formation flying of social birds. Depending on the weights and the particular social payoff, optimal sequences can be very different, from simple round-robin where all players chose the same leader alternatingly every time slot to very exotic patterns, where a small group of leaders (at most 2) is elected in every time slot. Moreover, we study the question if and when a single player would not benefit w.r.t. its local payoff when deviating from the given optimal sequence, i.e., when our optimal sequences are Nash equilibria in the restricted strategy space of oblivious strategies. As this is the case for many parameterizations of our model, our results reveal that no punishment is needed to make it rational for the players to optimize the social payoff.
AU - Zeiner, Martin
AU - Schmid, Ulrich
AU - Chatterjee, Krishnendu
ID - 8793
IS - 1
JF - Discrete Applied Mathematics
SN - 0166218X
TI - Optimal strategies for selecting coordinators
VL - 289
ER -
TY - JOUR
AB - Area-dependent quantum field theory is a modification of two-dimensional topological quantum field theory, where one equips each connected component of a bordism with a positive real number—interpreted as area—which behaves additively under glueing. As opposed to topological theories, in area-dependent theories the state spaces can be infinite-dimensional. We introduce the notion of regularised Frobenius algebras in Hilbert spaces and show that area-dependent theories are in one-to-one correspondence to commutative regularised Frobenius algebras. We also provide a state sum construction for area-dependent theories. Our main example is two-dimensional Yang–Mills theory with compact gauge group, which we treat in detail.
AU - Runkel, Ingo
AU - Szegedy, Lorant
ID - 8816
IS - 1
JF - Communications in Mathematical Physics
SN - 00103616
TI - Area-dependent quantum field theory
VL - 381
ER -
TY - JOUR
AB - The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep1. These changes require precise homeostatic control by subcortical neuromodulatory structures2. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis.
AU - Ramirez Villegas, Juan F
AU - Besserve, Michel
AU - Murayama, Yusuke
AU - Evrard, Henry C.
AU - Oeltermann, Axel
AU - Logothetis, Nikos K.
ID - 8818
IS - 7840
JF - Nature
SN - 00280836
TI - Coupling of hippocampal theta and ripples with pontogeniculooccipital waves
VL - 589
ER -
TY - JOUR
AB - Plants are able to orient their growth according to gravity, which ultimately controls both shoot and root architecture.1 Gravitropism is a dynamic process whereby gravistimulation induces the asymmetric distribution of the plant hormone auxin, leading to asymmetric growth, organ bending, and subsequent reset of auxin distribution back to the original pre-gravistimulation situation.1, 2, 3 Differential auxin accumulation during the gravitropic response depends on the activity of polarly localized PIN-FORMED (PIN) auxin-efflux carriers.1, 2, 3, 4 In particular, the timing of this dynamic response is regulated by PIN2,5,6 but the underlying molecular mechanisms are poorly understood. Here, we show that MEMBRANE ASSOCIATED KINASE REGULATOR2 (MAKR2) controls the pace of the root gravitropic response. We found that MAKR2 is required for the PIN2 asymmetry during gravitropism by acting as a negative regulator of the cell-surface signaling mediated by the receptor-like kinase TRANSMEMBRANE KINASE1 (TMK1).2,7, 8, 9, 10 Furthermore, we show that the MAKR2 inhibitory effect on TMK1 signaling is antagonized by auxin itself, which triggers rapid MAKR2 membrane dissociation in a TMK1-dependent manner. Our findings suggest that the timing of the root gravitropic response is orchestrated by the reversible inhibition of the TMK1 signaling pathway at the cell surface.
AU - Marquès-Bueno, MM
AU - Armengot, L
AU - Noack, LC
AU - Bareille, J
AU - Rodriguez Solovey, Lesia
AU - Platre, MP
AU - Bayle, V
AU - Liu, M
AU - Opdenacker, D
AU - Vanneste, S
AU - Möller, BK
AU - Nimchuk, ZL
AU - Beeckman, T
AU - Caño-Delgado, AI
AU - Friml, Jiří
AU - Jaillais, Y
ID - 8824
IS - 1
JF - Current Biology
SN - 0960-9822
TI - Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism
VL - 31
ER -
TY - JOUR
AB - Novelty facilitates formation of memories. The detection of novelty and storage of contextual memories are both mediated by the hippocampus, yet the mechanisms that link these two functions remain to be defined. Dentate granule cells (GCs) of the dorsal hippocampus fire upon novelty exposure forming engrams of contextual memory. However, their key excitatory inputs from the entorhinal cortex are not responsive to novelty and are insufficient to make dorsal GCs fire reliably. Here we uncover a powerful glutamatergic pathway to dorsal GCs from ventral hippocampal mossy cells (MCs) that relays novelty, and is necessary and sufficient for driving dorsal GCs activation. Furthermore, manipulation of ventral MCs activity bidirectionally regulates novelty-induced contextual memory acquisition. Our results show that ventral MCs activity controls memory formation through an intra-hippocampal interaction mechanism gated by novelty.
AU - Fredes Tolorza, Felipe A
AU - Silva Sifuentes, Maria A
AU - Koppensteiner, Peter
AU - Kobayashi, Kenta
AU - Jösch, Maximilian A
AU - Shigemoto, Ryuichi
ID - 7551
IS - 1
JF - Current Biology
TI - Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation
VL - 31
ER -
TY - JOUR
AB - We consider a gas of interacting bosons trapped in a box of side length one in the Gross–Pitaevskii limit. We review the proof of the validity of Bogoliubov’s prediction for the ground state energy and the low-energy excitation spectrum. This note is based on joint work with C. Brennecke, S. Cenatiempo and B. Schlein.
AU - Boccato, Chiara
ID - 7685
IS - 1
JF - Reviews in Mathematical Physics
SN - 0129-055X
TI - The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime
VL - 33
ER -
TY - JOUR
AB - Hartree–Fock theory has been justified as a mean-field approximation for fermionic systems. However, it suffers from some defects in predicting physical properties, making necessary a theory of quantum correlations. Recently, bosonization of many-body correlations has been rigorously justified as an upper bound on the correlation energy at high density with weak interactions. We review the bosonic approximation, deriving an effective Hamiltonian. We then show that for systems with Coulomb interaction this effective theory predicts collective excitations (plasmons) in accordance with the random phase approximation of Bohm and Pines, and with experimental observation.
AU - Benedikter, Niels P
ID - 7900
IS - 1
JF - Reviews in Mathematical Physics
SN - 0129-055X
TI - Bosonic collective excitations in Fermi gases
VL - 33
ER -
TY - JOUR
AB - The recent outbreak of coronavirus disease 2019 (COVID‐19), caused by the Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) has resulted in a world‐wide pandemic. Disseminated lung injury with the development of acute respiratory distress syndrome (ARDS) is the main cause of mortality in COVID‐19. Although liver failure does not seem to occur in the absence of pre‐existing liver disease, hepatic involvement in COVID‐19 may correlate with overall disease severity and serve as a prognostic factor for the development of ARDS. The spectrum of liver injury in COVID‐19 may range from direct infection by SARS‐CoV‐2, indirect involvement by systemic inflammation, hypoxic changes, iatrogenic causes such as drugs and ventilation to exacerbation of underlying liver disease. This concise review discusses the potential pathophysiological mechanisms for SARS‐CoV‐2 hepatic tropism as well as acute and possibly long‐term liver injury in COVID‐19.
AU - Nardo, Alexander D.
AU - Schneeweiss-Gleixner, Mathias
AU - Bakail, May M
AU - Dixon, Emmanuel D.
AU - Lax, Sigurd F.
AU - Trauner, Michael
ID - 8927
IS - 1
JF - Liver International
SN - 14783223
TI - Pathophysiological mechanisms of liver injury in COVID-19
VL - 41
ER -
TY - JOUR
AB - Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear.
Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation.
The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.
AU - Gelová, Zuzana
AU - Gallei, Michelle C
AU - Pernisová, Markéta
AU - Brunoud, Géraldine
AU - Zhang, Xixi
AU - Glanc, Matous
AU - Li, Lanxin
AU - Michalko, Jaroslav
AU - Pavlovicova, Zlata
AU - Verstraeten, Inge
AU - Han, Huibin
AU - Hajny, Jakub
AU - Hauschild, Robert
AU - Čovanová, Milada
AU - Zwiewka, Marta
AU - Hörmayer, Lukas
AU - Fendrych, Matyas
AU - Xu, Tongda
AU - Vernoux, Teva
AU - Friml, Jiří
ID - 8931
JF - Plant Science
KW - Agronomy and Crop Science
KW - Plant Science
KW - Genetics
KW - General Medicine
SN - 0168-9452
TI - Developmental roles of auxin binding protein 1 in Arabidopsis thaliana
VL - 303
ER -
TY - JOUR
AB - The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1’s functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1’s enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching.
AU - Düllberg, Christian F
AU - Auer, Albert
AU - Canigova, Nikola
AU - Loibl, Katrin
AU - Loose, Martin
ID - 8988
IS - 1
JF - PNAS
SN - 00278424
TI - In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1
VL - 118
ER -
TY - JOUR
AB - The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network.
AU - Tan, Shutang
AU - Luschnig, Christian
AU - Friml, Jiří
ID - 8992
IS - 1
JF - Molecular Plant
SN - 16742052
TI - Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling
VL - 14
ER -
TY - JOUR
AB - N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism.
AU - Abas, Lindy
AU - Kolb, Martina
AU - Stadlmann, Johannes
AU - Janacek, Dorina P.
AU - Lukic, Kristina
AU - Schwechheimer, Claus
AU - Sazanov, Leonid A
AU - Mach, Lukas
AU - Friml, Jiří
AU - Hammes, Ulrich Z.
ID - 8993
IS - 1
JF - PNAS
SN - 00278424
TI - Naphthylphthalamic acid associates with and inhibits PIN auxin transporters
VL - 118
ER -
TY - JOUR
AB - Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial “growth laws,” which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems.
AU - Kavcic, Bor
AU - Tkačik, Gašper
AU - Bollenbach, Tobias
ID - 8997
JF - PLOS Computational Biology
KW - Modelling and Simulation
KW - Genetics
KW - Molecular Biology
KW - Antibiotics
KW - Drug interactions
SN - 1553-7358
TI - Minimal biophysical model of combined antibiotic action
VL - 17
ER -
TY - JOUR
AB - In many basic shear flows, such as pipe, Couette, and channel flow, turbulence does not
arise from an instability of the laminar state, and both dynamical states co-exist. With decreasing flow speed (i.e., decreasing Reynolds number) the fraction of fluid in laminar motion increases while turbulence recedes and eventually the entire flow relaminarizes. The first step towards understanding the nature of this transition is to determine if the phase change is of either first or second order. In the former case, the turbulent fraction would drop discontinuously to zero as the Reynolds number decreases while in the latter the process would be continuous. For Couette flow, the flow between two parallel plates, earlier studies suggest a discontinuous scenario. In the present study we realize a Couette flow between two concentric cylinders which allows studies to be carried out in large aspect ratios and for extensive observation times. The presented measurements show that the transition in this circular Couette geometry is continuous suggesting that former studies were limited by finite size effects. A further characterization of this transition, in particular its relation to the directed percolation universality class, requires even larger system sizes than presently available.
AU - Avila, Kerstin
AU - Hof, Björn
ID - 8999
IS - 1
JF - Entropy
TI - Second-order phase transition in counter-rotating taylor-couette flow experiment
VL - 23
ER -
TY - JOUR
AB - Studies on the experimental realization of two-dimensional anyons in terms of quasiparticles have been restricted, so far, to only anyons on the plane. It is known, however, that the geometry and topology of space can have significant effects on quantum statistics for particles moving on it. Here, we have undertaken the first step toward realizing the emerging fractional statistics for particles restricted to move on the sphere instead of on the plane. We show that such a model arises naturally in the context of quantum impurity problems. In particular, we demonstrate a setup in which the lowest-energy spectrum of two linear bosonic or fermionic molecules immersed in a quantum many-particle environment can coincide with the anyonic spectrum on the sphere. This paves the way toward the experimental realization of anyons on the sphere using molecular impurities. Furthermore, since a change in the alignment of the molecules corresponds to the exchange of the particles on the sphere, such a realization reveals a novel type of exclusion principle for molecular impurities, which could also be of use as a powerful technique to measure the statistics parameter. Finally, our approach opens up a simple numerical route to investigate the spectra of many anyons on the sphere. Accordingly, we present the spectrum of two anyons on the sphere in the presence of a Dirac monopole field.
AU - Brooks, Morris
AU - Lemeshko, Mikhail
AU - Lundholm, D.
AU - Yakaboylu, Enderalp
ID - 9005
IS - 1
JF - Physical Review Letters
SN - 00319007
TI - Molecular impurities as a realization of anyons on the two-sphere
VL - 126
ER -
TY - JOUR
AB - Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate‐dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.
AU - Ötvös, Krisztina
AU - Marconi, Marco
AU - Vega, Andrea
AU - O’Brien, Jose
AU - Johnson, Alexander J
AU - Abualia, Rashed
AU - Antonielli, Livio
AU - Montesinos López, Juan C
AU - Zhang, Yuzhou
AU - Tan, Shutang
AU - Cuesta, Candela
AU - Artner, Christina
AU - Bouguyon, Eleonore
AU - Gojon, Alain
AU - Friml, Jiří
AU - Gutiérrez, Rodrigo A.
AU - Wabnik, Krzysztof T
AU - Benková, Eva
ID - 9010
IS - 3
JF - EMBO Journal
SN - 02614189
TI - Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport
VL - 40
ER -
TY - JOUR
AB - We study dynamics and thermodynamics of ion transport in narrow, water-filled channels, considered as effective 1D Coulomb systems. The long range nature of the inter-ion interactions comes about due to the dielectric constants mismatch between the water and the surrounding medium, confining the electric filed to stay mostly within the water-filled channel. Statistical mechanics of such Coulomb systems is dominated by entropic effects which may be accurately accounted for by mapping onto an effective quantum mechanics. In presence of multivalent ions the corresponding quantum mechanics appears to be non-Hermitian. In this review we discuss a framework for semiclassical calculations for the effective non-Hermitian Hamiltonians. Non-Hermiticity elevates WKB action integrals from the real line to closed cycles on a complex Riemann surfaces where direct calculations are not attainable. We circumvent this issue by applying tools from algebraic topology, such as the Picard-Fuchs equation. We discuss how its solutions relate to the thermodynamics and correlation functions of multivalent solutions within narrow, water-filled channels.
AU - Gulden, Tobias
AU - Kamenev, Alex
ID - 9020
IS - 1
JF - Entropy
TI - Dynamics of ion channels via non-hermitian quantum mechanics
VL - 23
ER -
TY - THES
AB - In the first part of the thesis we consider Hermitian random matrices. Firstly, we consider sample covariance matrices XX∗ with X having independent identically distributed (i.i.d.) centred entries. We prove a Central Limit Theorem for differences of linear statistics of XX∗ and its minor after removing the first column of X. Secondly, we consider Wigner-type matrices and prove that the eigenvalue statistics near cusp singularities of the limiting density of states are universal and that they form a Pearcey process. Since the limiting eigenvalue distribution admits only square root (edge) and cubic root (cusp) singularities, this concludes the third and last remaining case of the Wigner-Dyson-Mehta universality conjecture. The main technical ingredients are an optimal local law at the cusp, and the proof of the fast relaxation to equilibrium of the Dyson Brownian motion in the cusp regime.
In the second part we consider non-Hermitian matrices X with centred i.i.d. entries. We normalise the entries of X to have variance N −1. It is well known that the empirical eigenvalue density converges to the uniform distribution on the unit disk (circular law). In the first project, we prove universality of the local eigenvalue statistics close to the edge of the spectrum. This is the non-Hermitian analogue of the TracyWidom universality at the Hermitian edge. Technically we analyse the evolution of the spectral distribution of X along the Ornstein-Uhlenbeck flow for very long time
(up to t = +∞). In the second project, we consider linear statistics of eigenvalues for macroscopic test functions f in the Sobolev space H2+ϵ and prove their convergence to the projection of the Gaussian Free Field on the unit disk. We prove this result for non-Hermitian matrices with real or complex entries. The main technical ingredients are: (i) local law for products of two resolvents at different spectral parameters, (ii) analysis of correlated Dyson Brownian motions.
In the third and final part we discuss the mathematically rigorous application of supersymmetric techniques (SUSY ) to give a lower tail estimate of the lowest singular value of X − z, with z ∈ C. More precisely, we use superbosonisation formula to give an integral representation of the resolvent of (X − z)(X − z)∗ which reduces to two and three contour integrals in the complex and real case, respectively. The rigorous analysis of these integrals is quite challenging since simple saddle point analysis cannot be applied (the main contribution comes from a non-trivial manifold). Our result
improves classical smoothing inequalities in the regime |z| ≈ 1; this result is essential to prove edge universality for i.i.d. non-Hermitian matrices.
AU - Cipolloni, Giorgio
ID - 9022
TI - Fluctuations in the spectrum of random matrices
ER -
TY - GEN
AB - We determine an asymptotic formula for the number of integral points of bounded height on a blow-up of $\mathbb{P}^3$ outside certain planes using universal torsors.
AU - Wilsch, Florian Alexander
ID - 9034
T2 - arXiv
TI - Integral points of bounded height on a log Fano threefold
ER -