TY - JOUR AB - Cell fate specification by lateral inhibition typically involves contact signaling through the Delta-Notch signaling pathway. However, whether this is the only signaling mode mediating lateral inhibition remains unclear. Here we show that in zebrafish oogenesis, a group of cells within the granulosa cell layer at the oocyte animal pole acquire elevated levels of the transcriptional coactivator TAZ in their nuclei. One of these cells, the future micropyle precursor cell (MPC), accumulates increasingly high levels of nuclear TAZ and grows faster than its surrounding cells, mechanically compressing those cells, which ultimately lose TAZ from their nuclei. Strikingly, relieving neighbor-cell compression by MPC ablation or aspiration restores nuclear TAZ accumulation in neighboring cells, eventually leading to MPC re-specification from these cells. Conversely, MPC specification is defective in taz−/− follicles. These findings uncover a novel mode of lateral inhibition in cell fate specification based on mechanical signals controlling TAZ activity. AU - Xia, Peng AU - Gütl, Daniel J AU - Zheden, Vanessa AU - Heisenberg, Carl-Philipp J ID - 6087 IS - 6 JF - Cell TI - Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity VL - 176 ER - TY - GEN AB - 1. Hosts can alter their strategy towards pathogens during their lifetime, i.e., they can show phenotypic plasticity in immunity or life history. Immune priming is one such example, where a previous encounter with a pathogen confers enhanced protection upon secondary challenge, resulting in reduced pathogen load (i.e. resistance) and improved host survival. However, an initial encounter might also enhance tolerance, particularly to less virulent opportunistic pathogens that establish persistent infections. In this scenario, individuals are better able to reduce the negative fitness consequences that result from a high pathogen load. Finally, previous exposure may also lead to life history adjustments, such as terminal investment into reproduction. 2. Using different Drosophila melanogaster host genotypes and two bacterial pathogens, Lactococcus lactis and Pseudomonas entomophila, we tested if previous exposure results in resistance or tolerance and whether it modifies immune gene expression during an acute-phase infection (one day post-challenge). We then asked if previous pathogen exposure affects chronic-phase pathogen persistence and longer-term survival (28 days post-challenge). 3. We predicted that previous exposure would increase host resistance to an early stage bacterial infection while it might come at a cost to host fecundity tolerance. We reasoned that resistance would be due in part to stronger immune gene expression after challenge. We expected that previous exposure would improve long-term survival, that it would reduce infection persistence, and we expected to find genetic variation in these responses. 4. We found that previous exposure to P. entomophila weakened host resistance to a second infection independent of genotype and had no effect on immune gene expression. Fecundity tolerance showed genotypic variation but was not influenced by previous exposure. However, L. lactis persisted as a chronic infection, whereas survivors cleared the more pathogenic P. entomophila infection. 5. To our knowledge, this is the first study that addresses host tolerance to bacteria in relation to previous exposure, taking a multi-faceted approach to address the topic. Our results suggest that previous exposure comes with transient costs to resistance during the early stage of infection in this host-pathogen system and that infection persistence may be bacterium-specific. AU - Kutzer, Megan AU - Kurtz, Joachim AU - Armitage, Sophie A.O. ID - 9806 TI - Data from: A multi-faceted approach testing the effects of previous bacterial exposure on resistance and tolerance ER - TY - JOUR AB - We show that linear analytic cocycles where all Lyapunov exponents are negative infinite are nilpotent. For such one-frequency cocycles we show that they can be analytically conjugated to an upper triangular cocycle or a Jordan normal form. As a consequence, an arbitrarily small analytic perturbation leads to distinct Lyapunov exponents. Moreover, in the one-frequency case where the th Lyapunov exponent is finite and the st negative infinite, we obtain a simple criterion for domination in which case there is a splitting into a nilpotent part and an invertible part. AU - Sadel, Christian AU - Xu, Disheng ID - 6086 IS - 4 JF - Ergodic Theory and Dynamical Systems TI - Singular analytic linear cocycles with negative infinite Lyapunov exponents VL - 39 ER - TY - JOUR AB - Light is a union of electric and magnetic fields, and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures. There, complicated electric and magnetic fields varying over subwavelength scales are generally present, which results in photonic phenomena such as extraordinary optical momentum, superchiral fields, and a complex spatial evolution of optical singularities. An understanding of such phenomena requires nanoscale measurements of the complete optical field vector. Although the sensitivity of near- field scanning optical microscopy to the complete electromagnetic field was recently demonstrated, a separation of different components required a priori knowledge of the sample. Here, we introduce a robust algorithm that can disentangle all six electric and magnetic field components from a single near-field measurement without any numerical modeling of the structure. As examples, we unravel the fields of two prototypical nanophotonic structures: a photonic crystal waveguide and a plasmonic nanowire. These results pave the way for new studies of complex photonic phenomena at the nanoscale and for the design of structures that optimize their optical behavior. AU - Le Feber, B. AU - Sipe, J. E. AU - Wulf, Matthias AU - Kuipers, L. AU - Rotenberg, N. ID - 6102 IS - 1 JF - Light: Science and Applications SN - 20955545 TI - A full vectorial mapping of nanophotonic light fields VL - 8 ER - TY - JOUR AB - Abiotic stress poses constant challenges for plant survival and is a serious problem for global agricultural productivity. On a molecular level, stress conditions result in elevation of reactive oxygen species (ROS) production causing oxidative stress associated with oxidation of proteins and nucleic acids as well as impairment of membrane functions. Adaptation of root growth to ROS accumulation is facilitated through modification of auxin and cytokinin hormone homeostasis. Here, we report that in Arabidopsis root meristem, ROS-induced changes of auxin levels correspond to decreased abundance of PIN auxin efflux carriers at the plasma membrane (PM). Specifically, increase in H2O2 levels affects PIN2 endocytic recycling. We show that the PIN2 intracellular trafficking during adaptation to oxidative stress requires the function of the ADP-ribosylation factor (ARF)-guanine-nucleotide exchange factor (GEF) BEN1, an actin-associated regulator of the trafficking from the PM to early endosomes and, presumably, indirectly, trafficking to the vacuoles. We propose that H2O2 levels affect the actin dynamics thus modulating ARF-GEF-dependent trafficking of PIN2. This mechanism provides a way how root growth acclimates to stress and adapts to a changing environment. AU - Zwiewka, Marta AU - Bielach, Agnieszka AU - Tamizhselvan, Prashanth AU - Madhavan, Sharmila AU - Ryad, Eman Elrefaay AU - Tan, Shutang AU - Hrtyan, Mónika AU - Dobrev, Petre AU - Vanková, Radomira AU - Friml, Jiří AU - Tognetti, Vanesa B. ID - 6104 IS - 2 JF - Plant and Cell Physiology SN - 0032-0781 TI - Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking VL - 60 ER - TY - JOUR AB - The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a two-phase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing’s reaction–diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller–Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis. AU - Recho, Pierre AU - Hallou, Adrien AU - Hannezo, Edouard B ID - 6191 IS - 12 JF - Proceedings of the National Academy of Sciences of the United States of America SN - 00278424 TI - Theory of mechanochemical patterning in biphasic biological tissues VL - 116 ER - TY - JOUR AB - Increased levels of the chemokine CCL2 in cancer patients are associated with poor prognosis. Experimental evidence suggests that CCL2 correlates with inflammatory monocyte recruitment and induction of vascular activation, but the functionality remains open. Here, we show that endothelial Ccr2 facilitates pulmonary metastasis using an endothelial-specific Ccr2-deficient mouse model (Ccr2ecKO). Similar levels of circulating monocytes and equal leukocyte recruitment to metastatic lesions of Ccr2ecKO and Ccr2fl/fl littermates were observed. The absence of endothelial Ccr2 strongly reduced pulmonary metastasis, while the primary tumor growth was unaffected. Despite a comparable cytokine milieu in Ccr2ecKO and Ccr2fl/fl littermates the absence of vascular permeability induction was observed only in Ccr2ecKO mice. CCL2 stimulation of pulmonary endothelial cells resulted in increased phosphorylation of MLC2, endothelial cell retraction, and vascular leakiness that was blocked by an addition of a CCR2 inhibitor. These data demonstrate that endothelial CCR2 expression is required for tumor cell extravasation and pulmonary metastasis. Implications: The findings provide mechanistic insight into how CCL2–CCR2 signaling in endothelial cells promotes their activation through myosin light chain phosphorylation, resulting in endothelial retraction and enhanced tumor cell migration and metastasis. AU - Roblek, Marko AU - Protsyuk, Darya AU - Becker, Paul F. AU - Stefanescu, Cristina AU - Gorzelanny, Christian AU - Glaus Garzon, Jesus F. AU - Knopfova, Lucia AU - Heikenwalder, Mathias AU - Luckow, Bruno AU - Schneider, Stefan W. AU - Borsig, Lubor ID - 6190 IS - 3 JF - Molecular Cancer Research SN - 15417786 TI - CCL2 is a vascular permeability factor inducing CCR2-dependent endothelial retraction during lung metastasis VL - 17 ER - TY - JOUR AB - Great care is needed when interpreting claims about the genetic basis of human variation based on data from genome-wide association studies. AU - Barton, Nicholas H AU - Hermisson, Joachim AU - Nordborg, Magnus ID - 6230 JF - eLife TI - Why structure matters VL - 8 ER - TY - JOUR AB - The boundary behaviour of solutions of stochastic PDEs with Dirichlet boundary conditions can be surprisingly—and in a sense, arbitrarily—bad: as shown by Krylov[ SIAM J. Math. Anal.34(2003) 1167–1182], for any α>0 one can find a simple 1-dimensional constant coefficient linear equation whose solution at the boundary is not α-Hölder continuous.We obtain a positive counterpart of this: under some mild regularity assumptions on the coefficients, solutions of semilinear SPDEs on C1 domains are proved to be α-Hölder continuous up to the boundary with some α>0. AU - Gerencser, Mate ID - 6232 IS - 2 JF - Annals of Probability SN - 00911798 TI - Boundary regularity of stochastic PDEs VL - 47 ER - TY - JOUR AB - Gravitropism is an adaptive response that orients plant growth parallel to the gravity vector. Asymmetric distribution of the phytohormone auxin is a necessary prerequisite to the tropic bending both in roots and shoots. During hypocotyl gravitropic response, the PIN3 auxin transporter polarizes within gravity-sensing cells to redirect intercellular auxin fluxes. First gravity-induced PIN3 polarization to the bottom cell mem- branes leads to the auxin accumulation at the lower side of the organ, initiating bending and, later, auxin feedback-mediated repolarization restores symmetric auxin distribution to terminate bending. Here, we per- formed a forward genetic screen to identify regulators of both PIN3 polarization events during gravitropic response. We searched for mutants with defective PIN3 polarizations based on easy-to-score morphological outputs of decreased or increased gravity-induced hypocotyl bending. We identified the number of hypocotyl reduced bending (hrb) and hypocotyl hyperbending (hhb) mutants, revealing that reduced bending corre- lated typically with defective gravity-induced PIN3 relocation whereas all analyzed hhb mutants showed defects in the second, auxin-mediated PIN3 relocation. Next-generation sequencing-aided mutation map- ping identified several candidate genes, including SCARECROW and ACTIN2, revealing roles of endodermis specification and actin cytoskeleton in the respective gravity- and auxin-induced PIN polarization events. The hypocotyl gravitropism screen thus promises to provide novel insights into mechanisms underlying cell polarity and plant adaptive development. AU - Rakusová, Hana AU - Han, Huibin AU - Valošek, Petr AU - Friml, Jiří ID - 6262 IS - 6 JF - The Plant Journal SN - 0960-7412 TI - Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls VL - 98 ER - TY - JOUR AB - Cell-cell and cell-glycocalyx interactions under flow are important for the behaviour of circulating cells in blood and lymphatic vessels. However, such interactions are not well understood due in part to a lack of tools to study them in defined environments. Here, we develop a versatile in vitro platform for the study of cell-glycocalyx interactions in well-defined physical and chemical settings under flow. Our approach is demonstrated with the interaction between hyaluronan (HA, a key component of the endothelial glycocalyx) and its cell receptor CD44. We generate HA brushes in situ within a microfluidic device, and demonstrate the tuning of their physical (thickness and softness) and chemical (density of CD44 binding sites) properties using characterisation with reflection interference contrast microscopy (RICM) and application of polymer theory. We highlight the interactions of HA brushes with CD44-displaying beads and cells under flow. Observations of CD44+ beads on a HA brush with RICM enabled the 3-dimensional trajectories to be generated, and revealed interactions in the form of stop and go phases with reduced rolling velocity and reduced distance between the bead and the HA brush, compared to uncoated beads. Combined RICM and bright-field microscopy of CD44+ AKR1 T-lymphocytes revealed complementary information about the dynamics of cell rolling and cell morphology, and highlighted the formation of tethers and slings, as they interacted with a HA brush under flow. This platform can readily incorporate more complex models of the glycocalyx, and should permit the study of how mechanical and biochemical factors are orchestrated to enable highly selective blood cell-vessel wall interactions under flow. AU - Davies, Heather S. AU - Baranova, Natalia S. AU - El Amri, Nouha AU - Coche-Guérente, Liliane AU - Verdier, Claude AU - Bureau, Lionel AU - Richter, Ralf P. AU - Débarre, Delphine ID - 6297 JF - Matrix Biology SN - 0945-053X TI - An integrated assay to probe endothelial glycocalyx-blood cell interactions under flow in mechanically and biochemically well-defined environments VL - 78-79 ER - TY - JOUR AB - An asymptotic formula is established for the number of rational points of bounded anticanonical height which lie on a certain Zariskiopen subset of an arbitrary smooth biquadratic hypersurface in sufficiently many variables. The proof uses the Hardy–Littlewood circle method. AU - Browning, Timothy D AU - Hu, L.Q. ID - 6310 JF - Advances in Mathematics SN - 00018708 TI - Counting rational points on biquadratic hypersurfaces VL - 349 ER - TY - JOUR AB - Nitrate regulation of root stem cell activity is auxin-dependent. AU - Wang, Y AU - Gong, Z AU - Friml, Jiří AU - Zhang, J ID - 6261 IS - 1 JF - Plant Physiology SN - 0032-0889 TI - Nitrate modulates the differentiation of root distal stem cells VL - 180 ER - TY - JOUR AB - Chronic overuse of common pharmaceuticals, e.g. acetaminophen (paracetamol), often leads to the development of acute liver failure (ALF). This study aimed to elucidate the effect of cultured mesenchymal stem cells (MSCs) proteome on the onset of liver damage and regeneration dynamics in animals with ALF induced by acetaminophen, to test the liver protective efficacy of MSCs proteome depending on the oxygen tension in cell culture, and to blueprint protein components responsible for the effect. Protein compositions prepared from MSCs cultured in mild hypoxic (5% and 10% O2) and normal (21% O2) conditions were used to treat ALF induced in mice by injection of acetaminophen. To test the effect of reduced oxygen tension in cell culture on resulting MSCs proteome content we applied a combination of high performance liquid chromatography and mass-spectrometry (LC–MS/MS) for the identification of proteins in lysates of MSCs cultured at different O2 levels. The treatment of acetaminophen-administered animals with proteins released from cultured MSCs resulted in the inhibition of inflammatory reactions in damaged liver; the area of hepatocyte necrosis being reduced in the first 24 h. Compositions obtained from MSCs cultured at lower O2 level were shown to be more potent than a composition prepared from normoxic cells. A comparative characterization of protein pattern and identification of individual components done by a cytokine assay and proteomics analysis of protein compositions revealed that even moderate hypoxia produces discrete changes in the expression of various subsets of proteins responsible for intracellular respiration and cell signaling. The application of proteins prepared from MSCs grown in vitro at reduced oxygen tension significantly accelerates healing process in damaged liver tissue. The proteomics data obtained for different preparations offer new information about the potential candidates in the MSCs protein repertoire sensitive to oxygen tension in culture medium, which can be involved in the generalized mechanisms the cells use to respond to acute liver failure. AU - Temnov, Andrey Alexandrovich AU - Rogov, Konstantin Arkadevich AU - Sklifas, Alla Nikolaevna AU - Klychnikova, Elena Valerievna AU - Hartl, Markus AU - Djinovic-Carugo, Kristina AU - Charnagalov, Alexej ID - 6352 JF - Molecular Biology Reports SN - 03014851 TI - Protective properties of the cultured stem cell proteome studied in an animal model of acetaminophen-induced acute liver failure ER - TY - JOUR AB - High-speed optical telecommunication is enabled by wavelength-division multiplexing, whereby hundreds of individually stabilized lasers encode information within a single-mode optical fibre. Higher bandwidths require higher total optical power, but the power sent into the fibre is limited by optical nonlinearities within the fibre, and energy consumption by the light sources starts to become a substantial cost factor1. Optical frequency combs have been suggested to remedy this problem by generating numerous discrete, equidistant laser lines within a monolithic device; however, at present their stability and coherence allow them to operate only within small parameter ranges2,3,4. Here we show that a broadband frequency comb realized through the electro-optic effect within a high-quality whispering-gallery-mode resonator can operate at low microwave and optical powers. Unlike the usual third-order Kerr nonlinear optical frequency combs, our combs rely on the second-order nonlinear effect, which is much more efficient. Our result uses a fixed microwave signal that is mixed with an optical-pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to work with microwave powers that are three orders of magnitude lower than those in commercially available devices. We emphasize the practical relevance of our results to high rates of data communication. To circumvent the limitations imposed by nonlinear effects in optical communication fibres, one has to solve two problems: to provide a compact and fully integrated, yet high-quality and coherent, frequency comb generator; and to calculate nonlinear signal propagation in real time5. We report a solution to the first problem. AU - Rueda Sanchez, Alfredo R AU - Sedlmeir, Florian AU - Kumari, Madhuri AU - Leuchs, Gerd AU - Schwefel, Harald G.L. ID - 6348 IS - 7752 JF - Nature SN - 00280836 TI - Resonant electro-optic frequency comb VL - 568 ER - TY - JOUR AB - Hippocampal activity patterns representing movement trajectories are reactivated in immobility and sleep periods, a process associated with memory recall, consolidation, and decision making. It is thought that only fixed, behaviorally relevant patterns can be reactivated, which are stored across hippocampal synaptic connections. To test whether some generalized rules govern reactivation, we examined trajectory reactivation following non-stereotypical exploration of familiar open-field environments. We found that random trajectories of varying lengths and timescales were reactivated, resembling that of Brownian motion of particles. The animals’ behavioral trajectory did not follow Brownian diffusion demonstrating that the exact behavioral experience is not reactivated. Therefore, hippocampal circuits are able to generate random trajectories of any recently active map by following diffusion dynamics. This ability of hippocampal circuits to generate representations of all behavioral outcome combinations, experienced or not, may underlie a wide variety of hippocampal-dependent cognitive functions such as learning, generalization, and planning. AU - Stella, Federico AU - Baracskay, Peter AU - O'Neill, Joseph AU - Csicsvari, Jozsef L ID - 6338 JF - Neuron TI - Hippocampal reactivation of random trajectories resembling Brownian diffusion VL - 102 ER - TY - JOUR AB - We consider the motion of a droplet bouncing on a vibrating bath of the same fluid in the presence of a central potential. We formulate a rotation symmetry-reduced description of this system, which allows for the straightforward application of dynamical systems theory tools. As an illustration of the utility of the symmetry reduction, we apply it to a model of the pilot-wave system with a central harmonic force. We begin our analysis by identifying local bifurcations and the onset of chaos. We then describe the emergence of chaotic regions and their merging bifurcations, which lead to the formation of a global attractor. In this final regime, the droplet’s angular momentum spontaneously changes its sign as observed in the experiments of Perrard et al. AU - Budanur, Nazmi B AU - Fleury, Marc ID - 5878 IS - 1 JF - Chaos: An Interdisciplinary Journal of Nonlinear Science SN - 1054-1500 TI - State space geometry of the chaotic pilot-wave hydrodynamics VL - 29 ER - TY - JOUR AB - Cryo-electron tomography (cryo-ET) provides unprecedented insights into the molecular constituents of biological environments. In combination with an image processing method called subtomogram averaging (STA), detailed 3D structures of biological molecules can be obtained in large, irregular macromolecular assemblies or in situ, without the need for purification. The contextual meta-information these methods also provide, such as a protein’s location within its native environment, can then be combined with functional data. This allows the derivation of a detailed view on the physiological or pathological roles of proteins from the molecular to cellular level. Despite their tremendous potential in in situ structural biology, cryo-ET and STA have been restricted by methodological limitations, such as the low obtainable resolution. Exciting progress now allows one to reach unprecedented resolutions in situ, ranging in optimal cases beyond the nanometer barrier. Here, I review current frontiers and future challenges in routinely determining high-resolution structures in in situ environments using cryo-ET and STA. AU - Schur, Florian KM ID - 6343 IS - 10 JF - Current Opinion in Structural Biology SN - 0959-440X TI - Toward high-resolution in situ structural biology with cryo-electron tomography and subtomogram averaging VL - 58 ER - TY - CONF AB - Safety and security are major concerns in the development of Cyber-Physical Systems (CPS). Signal temporal logic (STL) was proposedas a language to specify and monitor the correctness of CPS relativeto formalized requirements. Incorporating STL into a developmentprocess enables designers to automatically monitor and diagnosetraces, compute robustness estimates based on requirements, andperform requirement falsification, leading to productivity gains inverification and validation activities; however, in its current formSTL is agnostic to the input/output classification of signals, andthis negatively impacts the relevance of the analysis results.In this paper we propose to make the interface explicit in theSTL language by introducing input/output signal declarations. Wethen define new measures of input vacuity and output robustnessthat better reflect the nature of the system and the specification in-tent. The resulting framework, which we call interface-aware signaltemporal logic (IA-STL), aids verification and validation activities.We demonstrate the benefits of IA-STL on several CPS analysisactivities: (1) robustness-driven sensitivity analysis, (2) falsificationand (3) fault localization. We describe an implementation of our en-hancement to STL and associated notions of robustness and vacuityin a prototype extension of Breach, a MATLAB®/Simulink®toolboxfor CPS verification and validation. We explore these methodologi-cal improvements and evaluate our results on two examples fromthe automotive domain: a benchmark powertrain control systemand a hydrogen fuel cell system. AU - Ferrere, Thomas AU - Nickovic, Dejan AU - Donzé, Alexandre AU - Ito, Hisahiro AU - Kapinski, James ID - 6428 SN - 9781450362825 T2 - Proceedings of the 2019 22nd ACM International Conference on Hybrid Systems: Computation and Control TI - Interface-aware signal temporal logic ER - TY - JOUR AB - This paper investigates the use of fundamental solutions for animating detailed linear water surface waves. We first propose an analytical solution for efficiently animating circular ripples in closed form. We then show how to adapt the method of fundamental solutions (MFS) to create ambient waves interacting with complex obstacles. Subsequently, we present a novel wavelet-based discretization which outperforms the state of the art MFS approach for simulating time-varying water surface waves with moving obstacles. Our results feature high-resolution spatial details, interactions with complex boundaries, and large open ocean domains. Our method compares favorably with previous work as well as known analytical solutions. We also present comparisons between our method and real world examples. AU - Schreck, Camille AU - Hafner, Christian AU - Wojtan, Christopher J ID - 6442 IS - 4 JF - ACM Transactions on Graphics TI - Fundamental solutions for water wave animation VL - 38 ER -