TY - JOUR AB - Multicellular development requires coordinated cell polarization relative to body axes, and translation to oriented cell division 1–3 . In plants, it is unknown how cell polarities are connected to organismal axes and translated to division. Here, we identify Arabidopsis SOSEKI proteins that integrate apical–basal and radial organismal axes to localize to polar cell edges. Localization does not depend on tissue context, requires cell wall integrity and is defined by a transferrable, protein-specific motif. A Domain of Unknown Function in SOSEKI proteins resembles the DIX oligomerization domain in the animal Dishevelled polarity regulator. The DIX-like domain self-interacts and is required for edge localization and for influencing division orientation, together with a second domain that defines the polar membrane domain. Our work shows that SOSEKI proteins locally interpret global polarity cues and can influence cell division orientation. Furthermore, this work reveals that, despite fundamental differences, cell polarity mechanisms in plants and animals converge on a similar protein domain. AU - Yoshida, Saiko AU - Van Der Schuren, Alja AU - Van Dop, Maritza AU - Van Galen, Luc AU - Saiga, Shunsuke AU - Adibi, Milad AU - Möller, Barbara AU - Ten Hove, Colette A. AU - Marhavy, Peter AU - Smith, Richard AU - Friml, Jiří AU - Weijers, Dolf ID - 6023 IS - 2 JF - Nature Plants TI - A SOSEKI-based coordinate system interprets global polarity cues in arabidopsis VL - 5 ER - TY - JOUR AB - Recent technical developments in the fields of quantum electromechanics and optomechanics have spawned nanoscale mechanical transducers with the sensitivity to measure mechanical displacements at the femtometre scale and the ability to convert electromagnetic signals at the single photon level. A key challenge in this field is obtaining strong coupling between motion and electromagnetic fields without adding additional decoherence. Here we present an electromechanical transducer that integrates a high-frequency (0.42 GHz) hypersonic phononic crystal with a superconducting microwave circuit. The use of a phononic bandgap crystal enables quantum-level transduction of hypersonic mechanical motion and concurrently eliminates decoherence caused by acoustic radiation. Devices with hypersonic mechanical frequencies provide a natural pathway for integration with Josephson junction quantum circuits, a leading quantum computing technology, and nanophotonic systems capable of optical networking and distributing quantum information. AU - Kalaee, Mahmoud AU - Mirhosseini, Mohammad AU - Dieterle, Paul B. AU - Peruzzo, Matilda AU - Fink, Johannes M AU - Painter, Oskar ID - 6053 IS - 4 JF - Nature Nanotechnology SN - 1748-3387 TI - Quantum electromechanics of a hypersonic crystal VL - 14 ER - TY - JOUR AB - We answer a question of David Hilbert: given two circles it is not possible in general to construct their centers using only a straightedge. On the other hand, we give infinitely many families of pairs of circles for which such construction is possible. AU - Akopyan, Arseniy AU - Fedorov, Roman ID - 6050 JF - Proceedings of the American Mathematical Society TI - Two circles and only a straightedge VL - 147 ER - TY - GEN AU - Merrill, Richard M. AU - Rastas, Pasi AU - Martin, Simon H. AU - Melo Hurtado, Maria C AU - Barker, Sarah AU - Davey, John AU - Mcmillan, W. Owen AU - Jiggins, Chris D. ID - 9801 TI - Raw behavioral data ER - TY - JOUR AB - Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients. AU - Faria, Rui AU - Chaube, Pragya AU - Morales, Hernán E. AU - Larsson, Tomas AU - Lemmon, Alan R. AU - Lemmon, Emily M. AU - Rafajlović, Marina AU - Panova, Marina AU - Ravinet, Mark AU - Johannesson, Kerstin AU - Westram, Anja M AU - Butlin, Roger K. ID - 6095 IS - 6 JF - Molecular Ecology SN - 0962-1083 TI - Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes VL - 28 ER - TY - JOUR AB - In this article it is shown that large systems with many interacting units endowing multiple phases display self-oscillations in the presence of linear feedback between the control and order parameters, where an Andronov–Hopf bifurcation takes over the phase transition. This is simply illustrated through the mean field Landau theory whose feedback dynamics turn out to be described by the Van der Pol equation and it is then validated for the fully connected Ising model following heat bath dynamics. Despite its simplicity, this theory accounts potentially for a rich range of phenomena: here it is applied to describe in a stylized way (i) excess demand-price cycles due to strong herding in a simple agent-based market model; (ii) congestion waves in queuing networks triggered by user feedback to delays in overloaded conditions; and (iii) metabolic network oscillations resulting from cell growth control in a bistable phenotypic landscape. AU - De Martino, Daniele ID - 6049 IS - 4 JF - Journal of Physics A: Mathematical and Theoretical TI - Feedback-induced self-oscillations in large interacting systems subjected to phase transitions VL - 52 ER - TY - JOUR AB - Cortical networks are characterized by sparse connectivity, with synapses found at only a subset of axo-dendritic contacts. Yet within these networks, neurons can exhibit high connection probabilities, suggesting that cell-intrinsic factors, not proximity, determine connectivity. Here, we identify ephrin-B3 (eB3) as a factor that determines synapse density by mediating a cell-cell competition that requires ephrin-B-EphB signaling. In a microisland culture system designed to isolate cell-cell competition, we find that eB3 determines winning and losing neurons in a contest for synapses. In a Mosaic Analysis with Double Markers (MADM) genetic mouse model system in vivo the relative levels of eB3 control spine density in layer 5 and 6 neurons. MADM cortical neurons in vitro reveal that eB3 controls synapse density independently of action potential-driven activity. Our findings illustrate a new class of competitive mechanism mediated by trans-synaptic organizing proteins which control the number of synapses neurons receive relative to neighboring neurons. AU - Henderson, Nathan T. AU - Le Marchand, Sylvain J. AU - Hruska, Martin AU - Hippenmeyer, Simon AU - Luo, Liqun AU - Dalva, Matthew B. ID - 6091 JF - eLife TI - Ephrin-B3 controls excitatory synapse density through cell-cell competition for EphBs VL - 8 ER - TY - JOUR AB - Sudden stress often triggers diverse, temporally structured gene expression responses in microbes, but it is largely unknown how variable in time such responses are and if genes respond in the same temporal order in every single cell. Here, we quantified timing variability of individual promoters responding to sublethal antibiotic stress using fluorescent reporters, microfluidics, and time‐lapse microscopy. We identified lower and upper bounds that put definite constraints on timing variability, which varies strongly among promoters and conditions. Timing variability can be interpreted using results from statistical kinetics, which enable us to estimate the number of rate‐limiting molecular steps underlying different responses. We found that just a few critical steps control some responses while others rely on dozens of steps. To probe connections between different stress responses, we then tracked the temporal order and response time correlations of promoter pairs in individual cells. Our results support that, when bacteria are exposed to the antibiotic nitrofurantoin, the ensuing oxidative stress and SOS responses are part of the same causal chain of molecular events. In contrast, under trimethoprim, the acid stress response and the SOS response are part of different chains of events running in parallel. Our approach reveals fundamental constraints on gene expression timing and provides new insights into the molecular events that underlie the timing of stress responses. AU - Mitosch, Karin AU - Rieckh, Georg AU - Bollenbach, Mark Tobias ID - 6046 IS - 2 JF - Molecular systems biology TI - Temporal order and precision of complex stress responses in individual bacteria VL - 15 ER - TY - JOUR AB - Hosts can alter their strategy towards pathogens during their lifetime; that is, they can show phenotypic plasticity in immunity or life history. Immune priming is one such example, where a previous encounter with a pathogen confers enhanced protection upon secondary challenge, resulting in reduced pathogen load (i.e., resistance) and improved host survival. However, an initial encounter might also enhance tolerance, particularly to less virulent opportunistic pathogens that establish persistent infections. In this scenario, individuals are better able to reduce the negative fecundity consequences that result from a high pathogen burden. Finally, previous exposure may also lead to life‐history adjustments, such as terminal investment into reproduction. Using different Drosophila melanogaster host genotypes and two bacterial pathogens, Lactococcus lactis and Pseudomonas entomophila, we tested whether previous exposure results in resistance or tolerance and whether it modifies immune gene expression during an acute‐phase infection (one day post‐challenge). We then asked whether previous pathogen exposure affects chronic‐phase pathogen persistence and longer‐term survival (28 days post‐challenge). We predicted that previous exposure would increase host resistance to an early stage bacterial infection while it might come at a cost to host fecundity tolerance. We reasoned that resistance would be due in part to stronger immune gene expression after challenge. We expected that previous exposure would improve long‐term survival, that it would reduce infection persistence, and we expected to find genetic variation in these responses. We found that previous exposure to P. entomophila weakened host resistance to a second infection independent of genotype and had no effect on immune gene expression. Fecundity tolerance showed genotypic variation but was not influenced by previous exposure. However, L. lactis persisted as a chronic infection, whereas survivors cleared the more pathogenic P. entomophila infection. To our knowledge, this is the first study that addresses host tolerance to bacteria in relation to previous exposure, taking a multi‐faceted approach to address the topic. Our results suggest that previous exposure comes with transient costs to resistance during the early stage of infection in this host–pathogen system and that infection persistence may be bacterium‐specific. AU - Kutzer, Megan AU - Kurtz, Joachim AU - Armitage, Sophie A.O. ID - 6105 IS - 4 JF - Journal of Animal Ecology SN - 00218790 TI - A multi-faceted approach testing the effects of previous bacterial exposure on resistance and tolerance VL - 88 ER - TY - JOUR AB - P-Glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) are two efflux transporters at the blood–brain barrier (BBB), which effectively restrict brain distribution of diverse drugs, such as tyrosine kinase inhibitors. There is a crucial need for pharmacological ABCB1 and ABCG2 inhibition protocols for a more effective treatment of brain diseases. In the present study, seven marketed drugs (osimertinib, erlotinib, nilotinib, imatinib, lapatinib, pazopanib, and cyclosporine A) and one nonmarketed drug (tariquidar), with known in vitro ABCB1/ABCG2 inhibitory properties, were screened for their inhibitory potency at the BBB in vivo. Positron emission tomography (PET) using the model ABCB1/ABCG2 substrate [11C]erlotinib was performed in mice. Tested inhibitors were administered as i.v. bolus injections at 30 min before the start of the PET scan, followed by a continuous i.v. infusion for the duration of the PET scan. Five of the tested drugs increased total distribution volume of [11C]erlotinib in the brain (VT,brain) compared to vehicle-treated animals (tariquidar, + 69%; erlotinib, + 19% and +23% for the 21.5 mg/kg and the 43 mg/kg dose, respectively; imatinib, + 22%; lapatinib, + 25%; and cyclosporine A, + 49%). For all drugs, increases in [11C]erlotinib brain distribution were lower than in Abcb1a/b(−/−)Abcg2(−/−) mice (+149%), which suggested that only partial ABCB1/ABCG2 inhibition was reached at the mouse BBB. The plasma concentrations of the tested drugs at the time of the PET scan were higher than clinically achievable plasma concentrations. Some of the tested drugs led to significant increases in blood radioactivity concentrations measured at the end of the PET scan (erlotinib, + 103% and +113% for the 21.5 mg/kg and the 43 mg/kg dose, respectively; imatinib, + 125%; and cyclosporine A, + 101%), which was most likely caused by decreased hepatobiliary excretion of radioactivity. Taken together, our data suggest that some marketed tyrosine kinase inhibitors may be repurposed to inhibit ABCB1 and ABCG2 at the BBB. From a clinical perspective, moderate increases in brain delivery despite the administration of high i.v. doses as well as peripheral drug–drug interactions due to transporter inhibition in clearance organs question the translatability of this concept. AU - Traxl, Alexander AU - Mairinger, Severin AU - Filip, Thomas AU - Sauberer, Michael AU - Stanek, Johann AU - Poschner, Stefan AU - Jäger, Walter AU - Zoufal, Viktoria AU - Novarino, Gaia AU - Tournier, Nicolas AU - Bauer, Martin AU - Wanek, Thomas AU - Langer, Oliver ID - 6088 IS - 3 JF - Molecular Pharmaceutics TI - Inhibition of ABCB1 and ABCG2 at the mouse blood-brain barrier with marketed drugs to improve brain delivery of the model ABCB1/ABCG2 substrate [11C]erlotinib VL - 16 ER - TY - JOUR AB - Cell fate specification by lateral inhibition typically involves contact signaling through the Delta-Notch signaling pathway. However, whether this is the only signaling mode mediating lateral inhibition remains unclear. Here we show that in zebrafish oogenesis, a group of cells within the granulosa cell layer at the oocyte animal pole acquire elevated levels of the transcriptional coactivator TAZ in their nuclei. One of these cells, the future micropyle precursor cell (MPC), accumulates increasingly high levels of nuclear TAZ and grows faster than its surrounding cells, mechanically compressing those cells, which ultimately lose TAZ from their nuclei. Strikingly, relieving neighbor-cell compression by MPC ablation or aspiration restores nuclear TAZ accumulation in neighboring cells, eventually leading to MPC re-specification from these cells. Conversely, MPC specification is defective in taz−/− follicles. These findings uncover a novel mode of lateral inhibition in cell fate specification based on mechanical signals controlling TAZ activity. AU - Xia, Peng AU - Gütl, Daniel J AU - Zheden, Vanessa AU - Heisenberg, Carl-Philipp J ID - 6087 IS - 6 JF - Cell TI - Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity VL - 176 ER - TY - GEN AB - 1. Hosts can alter their strategy towards pathogens during their lifetime, i.e., they can show phenotypic plasticity in immunity or life history. Immune priming is one such example, where a previous encounter with a pathogen confers enhanced protection upon secondary challenge, resulting in reduced pathogen load (i.e. resistance) and improved host survival. However, an initial encounter might also enhance tolerance, particularly to less virulent opportunistic pathogens that establish persistent infections. In this scenario, individuals are better able to reduce the negative fitness consequences that result from a high pathogen load. Finally, previous exposure may also lead to life history adjustments, such as terminal investment into reproduction. 2. Using different Drosophila melanogaster host genotypes and two bacterial pathogens, Lactococcus lactis and Pseudomonas entomophila, we tested if previous exposure results in resistance or tolerance and whether it modifies immune gene expression during an acute-phase infection (one day post-challenge). We then asked if previous pathogen exposure affects chronic-phase pathogen persistence and longer-term survival (28 days post-challenge). 3. We predicted that previous exposure would increase host resistance to an early stage bacterial infection while it might come at a cost to host fecundity tolerance. We reasoned that resistance would be due in part to stronger immune gene expression after challenge. We expected that previous exposure would improve long-term survival, that it would reduce infection persistence, and we expected to find genetic variation in these responses. 4. We found that previous exposure to P. entomophila weakened host resistance to a second infection independent of genotype and had no effect on immune gene expression. Fecundity tolerance showed genotypic variation but was not influenced by previous exposure. However, L. lactis persisted as a chronic infection, whereas survivors cleared the more pathogenic P. entomophila infection. 5. To our knowledge, this is the first study that addresses host tolerance to bacteria in relation to previous exposure, taking a multi-faceted approach to address the topic. Our results suggest that previous exposure comes with transient costs to resistance during the early stage of infection in this host-pathogen system and that infection persistence may be bacterium-specific. AU - Kutzer, Megan AU - Kurtz, Joachim AU - Armitage, Sophie A.O. ID - 9806 TI - Data from: A multi-faceted approach testing the effects of previous bacterial exposure on resistance and tolerance ER - TY - JOUR AB - We show that linear analytic cocycles where all Lyapunov exponents are negative infinite are nilpotent. For such one-frequency cocycles we show that they can be analytically conjugated to an upper triangular cocycle or a Jordan normal form. As a consequence, an arbitrarily small analytic perturbation leads to distinct Lyapunov exponents. Moreover, in the one-frequency case where the th Lyapunov exponent is finite and the st negative infinite, we obtain a simple criterion for domination in which case there is a splitting into a nilpotent part and an invertible part. AU - Sadel, Christian AU - Xu, Disheng ID - 6086 IS - 4 JF - Ergodic Theory and Dynamical Systems TI - Singular analytic linear cocycles with negative infinite Lyapunov exponents VL - 39 ER - TY - JOUR AB - Light is a union of electric and magnetic fields, and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures. There, complicated electric and magnetic fields varying over subwavelength scales are generally present, which results in photonic phenomena such as extraordinary optical momentum, superchiral fields, and a complex spatial evolution of optical singularities. An understanding of such phenomena requires nanoscale measurements of the complete optical field vector. Although the sensitivity of near- field scanning optical microscopy to the complete electromagnetic field was recently demonstrated, a separation of different components required a priori knowledge of the sample. Here, we introduce a robust algorithm that can disentangle all six electric and magnetic field components from a single near-field measurement without any numerical modeling of the structure. As examples, we unravel the fields of two prototypical nanophotonic structures: a photonic crystal waveguide and a plasmonic nanowire. These results pave the way for new studies of complex photonic phenomena at the nanoscale and for the design of structures that optimize their optical behavior. AU - Le Feber, B. AU - Sipe, J. E. AU - Wulf, Matthias AU - Kuipers, L. AU - Rotenberg, N. ID - 6102 IS - 1 JF - Light: Science and Applications SN - 20955545 TI - A full vectorial mapping of nanophotonic light fields VL - 8 ER - TY - JOUR AB - Abiotic stress poses constant challenges for plant survival and is a serious problem for global agricultural productivity. On a molecular level, stress conditions result in elevation of reactive oxygen species (ROS) production causing oxidative stress associated with oxidation of proteins and nucleic acids as well as impairment of membrane functions. Adaptation of root growth to ROS accumulation is facilitated through modification of auxin and cytokinin hormone homeostasis. Here, we report that in Arabidopsis root meristem, ROS-induced changes of auxin levels correspond to decreased abundance of PIN auxin efflux carriers at the plasma membrane (PM). Specifically, increase in H2O2 levels affects PIN2 endocytic recycling. We show that the PIN2 intracellular trafficking during adaptation to oxidative stress requires the function of the ADP-ribosylation factor (ARF)-guanine-nucleotide exchange factor (GEF) BEN1, an actin-associated regulator of the trafficking from the PM to early endosomes and, presumably, indirectly, trafficking to the vacuoles. We propose that H2O2 levels affect the actin dynamics thus modulating ARF-GEF-dependent trafficking of PIN2. This mechanism provides a way how root growth acclimates to stress and adapts to a changing environment. AU - Zwiewka, Marta AU - Bielach, Agnieszka AU - Tamizhselvan, Prashanth AU - Madhavan, Sharmila AU - Ryad, Eman Elrefaay AU - Tan, Shutang AU - Hrtyan, Mónika AU - Dobrev, Petre AU - Vanková, Radomira AU - Friml, Jiří AU - Tognetti, Vanesa B. ID - 6104 IS - 2 JF - Plant and Cell Physiology SN - 0032-0781 TI - Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking VL - 60 ER - TY - JOUR AB - The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a two-phase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing’s reaction–diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller–Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis. AU - Recho, Pierre AU - Hallou, Adrien AU - Hannezo, Edouard B ID - 6191 IS - 12 JF - Proceedings of the National Academy of Sciences of the United States of America SN - 00278424 TI - Theory of mechanochemical patterning in biphasic biological tissues VL - 116 ER - TY - JOUR AB - Increased levels of the chemokine CCL2 in cancer patients are associated with poor prognosis. Experimental evidence suggests that CCL2 correlates with inflammatory monocyte recruitment and induction of vascular activation, but the functionality remains open. Here, we show that endothelial Ccr2 facilitates pulmonary metastasis using an endothelial-specific Ccr2-deficient mouse model (Ccr2ecKO). Similar levels of circulating monocytes and equal leukocyte recruitment to metastatic lesions of Ccr2ecKO and Ccr2fl/fl littermates were observed. The absence of endothelial Ccr2 strongly reduced pulmonary metastasis, while the primary tumor growth was unaffected. Despite a comparable cytokine milieu in Ccr2ecKO and Ccr2fl/fl littermates the absence of vascular permeability induction was observed only in Ccr2ecKO mice. CCL2 stimulation of pulmonary endothelial cells resulted in increased phosphorylation of MLC2, endothelial cell retraction, and vascular leakiness that was blocked by an addition of a CCR2 inhibitor. These data demonstrate that endothelial CCR2 expression is required for tumor cell extravasation and pulmonary metastasis. Implications: The findings provide mechanistic insight into how CCL2–CCR2 signaling in endothelial cells promotes their activation through myosin light chain phosphorylation, resulting in endothelial retraction and enhanced tumor cell migration and metastasis. AU - Roblek, Marko AU - Protsyuk, Darya AU - Becker, Paul F. AU - Stefanescu, Cristina AU - Gorzelanny, Christian AU - Glaus Garzon, Jesus F. AU - Knopfova, Lucia AU - Heikenwalder, Mathias AU - Luckow, Bruno AU - Schneider, Stefan W. AU - Borsig, Lubor ID - 6190 IS - 3 JF - Molecular Cancer Research SN - 15417786 TI - CCL2 is a vascular permeability factor inducing CCR2-dependent endothelial retraction during lung metastasis VL - 17 ER - TY - JOUR AB - Great care is needed when interpreting claims about the genetic basis of human variation based on data from genome-wide association studies. AU - Barton, Nicholas H AU - Hermisson, Joachim AU - Nordborg, Magnus ID - 6230 JF - eLife TI - Why structure matters VL - 8 ER - TY - JOUR AB - The boundary behaviour of solutions of stochastic PDEs with Dirichlet boundary conditions can be surprisingly—and in a sense, arbitrarily—bad: as shown by Krylov[ SIAM J. Math. Anal.34(2003) 1167–1182], for any α>0 one can find a simple 1-dimensional constant coefficient linear equation whose solution at the boundary is not α-Hölder continuous.We obtain a positive counterpart of this: under some mild regularity assumptions on the coefficients, solutions of semilinear SPDEs on C1 domains are proved to be α-Hölder continuous up to the boundary with some α>0. AU - Gerencser, Mate ID - 6232 IS - 2 JF - Annals of Probability SN - 00911798 TI - Boundary regularity of stochastic PDEs VL - 47 ER - TY - JOUR AB - Gravitropism is an adaptive response that orients plant growth parallel to the gravity vector. Asymmetric distribution of the phytohormone auxin is a necessary prerequisite to the tropic bending both in roots and shoots. During hypocotyl gravitropic response, the PIN3 auxin transporter polarizes within gravity-sensing cells to redirect intercellular auxin fluxes. First gravity-induced PIN3 polarization to the bottom cell mem- branes leads to the auxin accumulation at the lower side of the organ, initiating bending and, later, auxin feedback-mediated repolarization restores symmetric auxin distribution to terminate bending. Here, we per- formed a forward genetic screen to identify regulators of both PIN3 polarization events during gravitropic response. We searched for mutants with defective PIN3 polarizations based on easy-to-score morphological outputs of decreased or increased gravity-induced hypocotyl bending. We identified the number of hypocotyl reduced bending (hrb) and hypocotyl hyperbending (hhb) mutants, revealing that reduced bending corre- lated typically with defective gravity-induced PIN3 relocation whereas all analyzed hhb mutants showed defects in the second, auxin-mediated PIN3 relocation. Next-generation sequencing-aided mutation map- ping identified several candidate genes, including SCARECROW and ACTIN2, revealing roles of endodermis specification and actin cytoskeleton in the respective gravity- and auxin-induced PIN polarization events. The hypocotyl gravitropism screen thus promises to provide novel insights into mechanisms underlying cell polarity and plant adaptive development. AU - Rakusová, Hana AU - Han, Huibin AU - Valošek, Petr AU - Friml, Jiří ID - 6262 IS - 6 JF - The Plant Journal SN - 0960-7412 TI - Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls VL - 98 ER -