TY - JOUR AB - Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens. AU - Hurny, Andrej AU - Cuesta, Candela AU - Cavallari, Nicola AU - Ötvös, Krisztina AU - Duclercq, Jerome AU - Dokládal, Ladislav AU - Montesinos López, Juan C AU - Gallemi, Marçal AU - Semeradova, Hana AU - Rauter, Thomas AU - Stenzel, Irene AU - Persiau, Geert AU - Benade, Freia AU - Bhalearo, Rishikesh AU - Sýkorová, Eva AU - Gorzsás, András AU - Sechet, Julien AU - Mouille, Gregory AU - Heilmann, Ingo AU - De Jaeger, Geert AU - Ludwig-Müller, Jutta AU - Benková, Eva ID - 7805 JF - Nature Communications TI - Synergistic on Auxin and Cytokinin 1 positively regulates growth and attenuates soil pathogen resistance VL - 11 ER - TY - JOUR AB - A few-body cluster is a building block of a many-body system in a gas phase provided the temperature at most is of the order of the binding energy of this cluster. Here we illustrate this statement by considering a system of tubes filled with dipolar distinguishable particles. We calculate the partition function, which determines the probability to find a few-body cluster at a given temperature. The input for our calculations—the energies of few-body clusters—is estimated using the harmonic approximation. We first describe and demonstrate the validity of our numerical procedure. Then we discuss the results featuring melting of the zero-temperature many-body state into a gas of free particles and few-body clusters. For temperature higher than its binding energy threshold, the dimers overwhelmingly dominate the ensemble, where the remaining probability is in free particles. At very high temperatures free (harmonic oscillator trap-bound) particle dominance is eventually reached. This structure evolution appears both for one and two particles in each layer providing crucial information about the behavior of ultracold dipolar gases. The investigation addresses the transition region between few- and many-body physics as a function of temperature using a system of ten dipoles in five tubes. AU - Armstrong, Jeremy R. AU - Jensen, Aksel S. AU - Volosniev, Artem AU - Zinner, Nikolaj T. ID - 7882 IS - 4 JF - Mathematics TI - Clusters in separated tubes of tilted dipoles VL - 8 ER - TY - JOUR AB - Besides pro-inflammatory roles, the ancient cytokine interleukin-17 (IL-17) modulates neural circuit function. We investigate IL-17 signaling in neurons, and the extent it can alter organismal phenotypes. We combine immunoprecipitation and mass spectrometry to biochemically characterize endogenous signaling complexes that function downstream of IL-17 receptors in C. elegans neurons. We identify the paracaspase MALT-1 as a critical output of the pathway. MALT1 mediates signaling from many immune receptors in mammals, but was not previously implicated in IL-17 signaling or nervous system function. C. elegans MALT-1 forms a complex with homologs of Act1 and IRAK and appears to function both as a scaffold and a protease. MALT-1 is expressed broadly in the C. elegans nervous system, and neuronal IL-17–MALT-1 signaling regulates multiple phenotypes, including escape behavior, associative learning, immunity and longevity. Our data suggest MALT1 has an ancient role modulating neural circuit function downstream of IL-17 to remodel physiology and behavior. AU - Flynn, Sean M. AU - Chen, Changchun AU - Artan, Murat AU - Barratt, Stephen AU - Crisp, Alastair AU - Nelson, Geoffrey M. AU - Peak-Chew, Sew Yeu AU - Begum, Farida AU - Skehel, Mark AU - De Bono, Mario ID - 7804 JF - Nature Communications TI - MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity VL - 11 ER - TY - JOUR AB - Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence. AU - Kopf, Aglaja AU - Renkawitz, Jörg AU - Hauschild, Robert AU - Girkontaite, Irute AU - Tedford, Kerry AU - Merrin, Jack AU - Thorn-Seshold, Oliver AU - Trauner, Dirk AU - Häcker, Hans AU - Fischer, Klaus Dieter AU - Kiermaier, Eva AU - Sixt, Michael K ID - 7875 IS - 6 JF - The Journal of Cell Biology TI - Microtubules control cellular shape and coherence in amoeboid migrating cells VL - 219 ER - TY - JOUR AB - Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order. AU - Schauer, Alexandra AU - Nunes Pinheiro, Diana C AU - Hauschild, Robert AU - Heisenberg, Carl-Philipp J ID - 7888 JF - eLife SN - 2050-084X TI - Zebrafish embryonic explants undergo genetically encoded self-assembly VL - 9 ER - TY - JOUR AB - The NIPBL/MAU2 heterodimer loads cohesin onto chromatin. Mutations inNIPBLaccount for most cases ofthe rare developmental disorder Cornelia de Lange syndrome (CdLS). Here we report aMAU2 variant causing CdLS, a deletion of seven amino acids that impairs the interaction between MAU2 and the NIPBL N terminus.Investigating this interaction, we discovered that MAU2 and the NIPBL N terminus are largely dispensable fornormal cohesin and NIPBL function in cells with a NIPBL early truncating mutation. Despite a predicted fataloutcome of an out-of-frame single nucleotide duplication inNIPBL, engineered in two different cell lines,alternative translation initiation yields a form of NIPBL missing N-terminal residues. This form cannot interactwith MAU2, but binds DNA and mediates cohesin loading. Altogether, our work reveals that cohesin loading can occur independently of functional NIPBL/MAU2 complexes and highlights a novel mechanism protectiveagainst out-of-frame mutations that is potentially relevant for other genetic conditions. AU - Parenti, Ilaria AU - Diab, Farah AU - Gil, Sara Ruiz AU - Mulugeta, Eskeatnaf AU - Casa, Valentina AU - Berutti, Riccardo AU - Brouwer, Rutger W.W. AU - Dupé, Valerie AU - Eckhold, Juliane AU - Graf, Elisabeth AU - Puisac, Beatriz AU - Ramos, Feliciano AU - Schwarzmayr, Thomas AU - Gines, Macarena Moronta AU - Van Staveren, Thomas AU - Van Ijcken, Wilfred F.J. AU - Strom, Tim M. AU - Pié, Juan AU - Watrin, Erwan AU - Kaiser, Frank J. AU - Wendt, Kerstin S. ID - 7877 IS - 7 JF - Cell Reports TI - MAU2 and NIPBL variants impair the heterodimerization of the cohesin loader subunits and cause Cornelia de Lange syndrome VL - 31 ER - TY - JOUR AB - Type 1 metabotropic glutamate receptors (mGluR1s) are key elements in neuronal signaling. While their function is well documented in slices, requirements for their activation in vivo are poorly understood. We examine this question in adult mice in vivo using 2-photon imaging of cerebellar molecular layer interneurons (MLIs) expressing GCaMP. In anesthetized mice, parallel fiber activation evokes beam-like Cai rises in postsynaptic MLIs which depend on co-activation of mGluR1s and ionotropic glutamate receptors (iGluRs). In awake mice, blocking mGluR1 decreases Cai rises associated with locomotion. In vitro studies and freeze-fracture electron microscopy show that the iGluR-mGluR1 interaction is synergistic and favored by close association of the two classes of receptors. Altogether our results suggest that mGluR1s, acting in synergy with iGluRs, potently contribute to processing cerebellar neuronal signaling under physiological conditions. AU - Bao, Jin AU - Graupner, Michael AU - Astorga, Guadalupe AU - Collin, Thibault AU - Jalil, Abdelali AU - Indriati, Dwi Wahyu AU - Bradley, Jonathan AU - Shigemoto, Ryuichi AU - Llano, Isabel ID - 7878 JF - eLife TI - Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo VL - 9 ER - TY - JOUR AB - Following its evoked release, dopamine (DA) signaling is rapidly terminated by presynaptic reuptake, mediated by the cocaine-sensitive DA transporter (DAT). DAT surface availability is dynamically regulated by endocytic trafficking, and direct protein kinase C (PKC) activation acutely diminishes DAT surface expression by accelerating DAT internalization. Previous cell line studies demonstrated that PKC-stimulated DAT endocytosis requires both Ack1 inactivation, which releases a DAT-specific endocytic brake, and the neuronal GTPase, Rit2, which binds DAT. However, it is unknown whether Rit2 is required for PKC-stimulated DAT endocytosis in DAergic terminals or whether there are region- and/or sex-dependent differences in PKC-stimulated DAT trafficking. Moreover, the mechanisms by which Rit2 controls PKC-stimulated DAT endocytosis are unknown. Here, we directly examined these important questions. Ex vivo studies revealed that PKC activation acutely decreased DAT surface expression selectively in ventral, but not dorsal, striatum. AAV-mediated, conditional Rit2 knockdown in DAergic neurons impacted baseline DAT surface:intracellular distribution in DAergic terminals from female ventral, but not dorsal, striatum. Further, Rit2 was required for PKC-stimulated DAT internalization in both male and female ventral striatum. FRET and surface pulldown studies in cell lines revealed that PKC activation drives DAT-Rit2 surface dissociation and that the DAT N terminus is required for both PKC-mediated DAT-Rit2 dissociation and DAT internalization. Finally, we found that Rit2 and Ack1 independently converge on DAT to facilitate PKC-stimulated DAT endocytosis. Together, our data provide greater insight into mechanisms that mediate PKC-regulated DAT internalization and reveal unexpected region-specific differences in PKC-stimulated DAT trafficking in bona fide DAergic terminals. AU - Fagan, Rita R. AU - Kearney, Patrick J. AU - Sweeney, Carolyn G. AU - Luethi, Dino AU - Schoot Uiterkamp, Florianne E AU - Schicker, Klaus AU - Alejandro, Brian S. AU - O'Connor, Lauren C. AU - Sitte, Harald H. AU - Melikian, Haley E. ID - 7880 IS - 16 JF - Journal of Biological Chemistry SN - 00219258 TI - Dopamine transporter trafficking and Rit2 GTPase: Mechanism of action and in vivo impact VL - 295 ER - TY - JOUR AB - Purpose of review: Cancer is one of the leading causes of death and the incidence rates are constantly rising. The heterogeneity of tumors poses a big challenge for the treatment of the disease and natural antibodies additionally affect disease progression. The introduction of engineered mAbs for anticancer immunotherapies has substantially improved progression-free and overall survival of cancer patients, but little efforts have been made to exploit other antibody isotypes than IgG. Recent findings: In order to improve these therapies, ‘next-generation antibodies’ were engineered to enhance a specific feature of classical antibodies and form a group of highly effective and precise therapy compounds. Advanced antibody approaches include among others antibody-drug conjugates, glyco-engineered and Fc-engineered antibodies, antibody fragments, radioimmunotherapy compounds, bispecific antibodies and alternative (non-IgG) immunoglobulin classes, especially IgE. Summary: The current review describes solutions for the needs of next-generation antibody therapies through different approaches. Careful selection of the best-suited engineering methodology is a key factor in developing personalized, more specific and more efficient mAbs against cancer to improve the outcomes of cancer patients. We highlight here the large evidence of IgE exploiting a highly cytotoxic effector arm as potential next-generation anticancer immunotherapy. AU - Singer, Judit AU - Singer, Josef AU - Jensen-Jarolim, Erika ID - 7864 IS - 3 JF - Current opinion in allergy and clinical immunology TI - Precision medicine in clinical oncology: the journey from IgG antibody to IgE VL - 20 ER - TY - JOUR AB - In contrast to lymph nodes, the lymphoid regions of the spleen—the white pulp—are located deep within the organ, yielding the trafficking paths of T cells in the white pulp largely invisible. In an intravital microscopy tour de force reported in this issue of Immunity, Chauveau et al. show that T cells perform unidirectional, perivascular migration through the enigmatic marginal zone bridging channels. AU - Sixt, Michael K AU - Lämmermann, Tim ID - 7876 IS - 5 JF - Immunity SN - 10747613 TI - T cells: Bridge-and-channel commute to the white pulp VL - 52 ER - TY - JOUR AB - Cell migration entails networks and bundles of actin filaments termed lamellipodia and microspikes or filopodia, respectively, as well as focal adhesions, all of which recruit Ena/VASP family members hitherto thought to antagonize efficient cell motility. However, we find these proteins to act as positive regulators of migration in different murine cell lines. CRISPR/Cas9-mediated loss of Ena/VASP proteins reduced lamellipodial actin assembly and perturbed lamellipodial architecture, as evidenced by changed network geometry as well as reduction of filament length and number that was accompanied by abnormal Arp2/3 complex and heterodimeric capping protein accumulation. Loss of Ena/VASP function also abolished the formation of microspikes normally embedded in lamellipodia, but not of filopodia capable of emanating without lamellipodia. Ena/VASP-deficiency also impaired integrin-mediated adhesion accompanied by reduced traction forces exerted through these structures. Our data thus uncover novel Ena/VASP functions of these actin polymerases that are fully consistent with their promotion of cell migration. AU - Damiano-Guercio, Julia AU - Kurzawa, Laëtitia AU - Müller, Jan AU - Dimchev, Georgi A AU - Schaks, Matthias AU - Nemethova, Maria AU - Pokrant, Thomas AU - Brühmann, Stefan AU - Linkner, Joern AU - Blanchoin, Laurent AU - Sixt, Michael K AU - Rottner, Klemens AU - Faix, Jan ID - 7909 JF - eLife TI - Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion VL - 9 ER - TY - JOUR AB - Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca2+ currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca2+ currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca2+ influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses. AU - Wang, Han Ying AU - Eguchi, Kohgaku AU - Yamashita, Takayuki AU - Takahashi, Tomoyuki ID - 7908 IS - 21 JF - Journal of Neuroscience TI - Frequency-dependent block of excitatory neurotransmission by isoflurane via dual presynaptic mechanisms VL - 40 ER - TY - JOUR AB - In the course of sample preparation for Next Generation Sequencing (NGS), DNA is fragmented by various methods. Fragmentation shows a persistent bias with regard to the cleavage rates of various dinucleotides. With the exception of CpG dinucleotides the previously described biases were consistent with results of the DNA cleavage in solution. Here we computed cleavage rates of all dinucleotides including the methylated CpG and unmethylated CpG dinucleotides using data of the Whole Genome Sequencing datasets of the 1000 Genomes project. We found that the cleavage rate of CpG is significantly higher for the methylated CpG dinucleotides. Using this information, we developed a classifier for distinguishing cancer and healthy tissues based on their CpG islands statuses of the fragmentation. A simple Support Vector Machine classifier based on this algorithm shows an accuracy of 84%. The proposed method allows the detection of epigenetic markers purely based on mechanochemical DNA fragmentation, which can be detected by a simple analysis of the NGS sequencing data. AU - Uroshlev, Leonid A. AU - Abdullaev, Eldar T. AU - Umarova, Iren R. AU - Il’Icheva, Irina A. AU - Panchenko, Larisa A. AU - Polozov, Robert V. AU - Kondrashov, Fyodor AU - Nechipurenko, Yury D. AU - Grokhovsky, Sergei L. ID - 7931 JF - Scientific Reports TI - A method for identification of the methylation level of CpG islands from NGS data VL - 10 ER - TY - JOUR AB - We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem, we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a correlation function between the internal and the orbital angular momentum operators. The strong-coupling regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the states that exhibit strong interaction with the surroundings. The results might find applications in such fields as spintronics or topological insulators where spin-orbit coupling is of crucial importance. AU - Maslov, Mikhail AU - Lemeshko, Mikhail AU - Yakaboylu, Enderalp ID - 7933 IS - 18 JF - Physical Review B SN - 24699950 TI - Synthetic spin-orbit coupling mediated by a bosonic environment VL - 101 ER - TY - JOUR AB - An understanding of the missing antinodal electronic excitations in the pseudogap state is essential for uncovering the physics of the underdoped cuprate high-temperature superconductors1,2,3,4,5,6. The majority of high-temperature experiments performed thus far, however, have been unable to discern whether the antinodal states are rendered unobservable due to their damping or whether they vanish due to their gapping7,8,9,10,11,12,13,14,15,16,17,18. Here, we distinguish between these two scenarios by using quantum oscillations to examine whether the small Fermi surface pocket, found to occupy only 2% of the Brillouin zone in the underdoped cuprates19,20,21,22,23,24, exists in isolation against a majority of completely gapped density of states spanning the antinodes, or whether it is thermodynamically coupled to a background of ungapped antinodal states. We find that quantum oscillations associated with the small Fermi surface pocket exhibit a signature sawtooth waveform characteristic of an isolated two-dimensional Fermi surface pocket25,26,27,28,29,30,31,32. This finding reveals that the antinodal states are destroyed by a hard gap that extends over the majority of the Brillouin zone, placing strong constraints on a drastic underlying origin of quasiparticle disappearance over almost the entire Brillouin zone in the pseudogap regime7,8,9,10,11,12,13,14,15,16,17,18. AU - Hartstein, Máté AU - Hsu, Yu Te AU - Modic, Kimberly A AU - Porras, Juan AU - Loew, Toshinao AU - Tacon, Matthieu Le AU - Zuo, Huakun AU - Wang, Jinhua AU - Zhu, Zengwei AU - Chan, Mun K. AU - Mcdonald, Ross D. AU - Lonzarich, Gilbert G. AU - Keimer, Bernhard AU - Sebastian, Suchitra E. AU - Harrison, Neil ID - 7942 JF - Nature Physics SN - 17452473 TI - Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors VL - 16 ER - TY - JOUR AB - In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule for plant growth, development and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). In addition, our present study shows that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene expression in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing cell wall remodeling required for overlying tissues separation during LRP emergence. Both NRT1.1-mediated repression of TAR2 and LAX3 are suppressed at high nitrate availability, resulting in the nitrate induction of TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously anticipated in regulating the nitrate response of root system architecture. AU - Maghiaoui, A AU - Bouguyon, E AU - Cuesta, Candela AU - Perrine-Walker, F AU - Alcon, C AU - Krouk, G AU - Benková, Eva AU - Nacry, P AU - Gojon, A AU - Bach, L ID - 7948 IS - 15 JF - Journal of Experimental Botany SN - 0022-0957 TI - The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate VL - 71 ER - TY - JOUR AB - We prove that the Yangian associated to an untwisted symmetric affine Kac–Moody Lie algebra is isomorphic to the Drinfeld double of a shuffle algebra. The latter is constructed in [YZ14] as an algebraic formalism of cohomological Hall algebras. As a consequence, we obtain the Poincare–Birkhoff–Witt (PBW) theorem for this class of affine Yangians. Another independent proof of the PBW theorem is given recently by Guay, Regelskis, and Wendlandt [GRW18]. AU - Yang, Yaping AU - Zhao, Gufang ID - 7940 JF - Transformation Groups SN - 10834362 TI - The PBW theorem for affine Yangians VL - 25 ER - TY - GEN AB - This research data supports 'Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors'. A Readme file for plotting each figure is provided. AU - Hartstein, Mate AU - Hsu, Yu-Te AU - Modic, Kimberly A AU - Porras, Juan AU - Loew, Toshinao AU - Le Tacon, Matthieu AU - Zuo, Huakun AU - Wang, Jinhua AU - Zhu, Zengwei AU - Chan, Mun AU - McDonald, Ross AU - Lonzarich, Gilbert AU - Keimer, Bernhard AU - Sebastian, Suchitra AU - Harrison, Neil ID - 9708 TI - Accompanying dataset for 'Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors' ER - TY - CONF AB - Simple stochastic games are turn-based 2½-player games with a reachability objective. The basic question asks whether one player can ensure reaching a given target with at least a given probability. A natural extension is games with a conjunction of such conditions as objective. Despite a plethora of recent results on the analysis of systems with multiple objectives, the decidability of this basic problem remains open. In this paper, we present an algorithm approximating the Pareto frontier of the achievable values to a given precision. Moreover, it is an anytime algorithm, meaning it can be stopped at any time returning the current approximation and its error bound. AU - Ashok, Pranav AU - Chatterjee, Krishnendu AU - Kretinsky, Jan AU - Weininger, Maximilian AU - Winkler, Tobias ID - 7955 SN - 9781450371049 T2 - Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science TI - Approximating values of generalized-reachability stochastic games ER - TY - JOUR AB - Neurodevelopmental disorders (NDDs) are a class of disorders affecting brain development and function and are characterized by wide genetic and clinical variability. In this review, we discuss the multiple factors that influence the clinical presentation of NDDs, with particular attention to gene vulnerability, mutational load, and the two-hit model. Despite the complex architecture of mutational events associated with NDDs, the various proteins involved appear to converge on common pathways, such as synaptic plasticity/function, chromatin remodelers and the mammalian target of rapamycin (mTOR) pathway. A thorough understanding of the mechanisms behind these pathways will hopefully lead to the identification of candidates that could be targeted for treatment approaches. AU - Parenti, Ilaria AU - Garcia Rabaneda, Luis E AU - Schön, Hanna AU - Novarino, Gaia ID - 7957 IS - 8 JF - Trends in Neurosciences SN - 01662236 TI - Neurodevelopmental disorders: From genetics to functional pathways VL - 43 ER -