TY - JOUR AB - We extend the notion of the minimal volume ellipsoid containing a convex body in Rd to the setting of logarithmically concave functions. We consider a vast class of logarithmically concave functions whose superlevel sets are concentric ellipsoids. For a fixed function from this class, we consider the set of all its “affine” positions. For any log-concave function f on Rd, we consider functions belonging to this set of “affine” positions, and find the one with the minimal integral under the condition that it is pointwise greater than or equal to f. We study the properties of existence and uniqueness of the solution to this problem. For any s∈[0,+∞), we consider the construction dual to the recently defined John s-function (Ivanov and Naszódi in Functional John ellipsoids. arXiv preprint: arXiv:2006.09934, 2020). We prove that such a construction determines a unique function and call it the Löwner s-function of f. We study the Löwner s-functions as s tends to zero and to infinity. Finally, extending the notion of the outer volume ratio, we define the outer integral ratio of a log-concave function and give an asymptotically tight bound on it. AU - Ivanov, Grigory AU - Tsiutsiurupa, Igor ID - 9548 JF - Journal of Geometric Analysis SN - 1050-6926 TI - Functional Löwner ellipsoids VL - 31 ER - TY - GEN AB - Data for the manuscript 'Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire' ([2006.01275] Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire (arxiv.org)) We upload a pdf with extended data sets, and the raw data for these extended datasets as well. AU - Puglia, Denise AU - Martinez, Esteban AU - Menard, Gerbold AU - Pöschl, Andreas AU - Gronin, Sergei AU - Gardner, Geoffrey AU - Kallaher, Ray AU - Manfra, Michael AU - Marcus, Charles AU - Higginbotham, Andrew P AU - Casparis, Lucas ID - 13080 TI - Data for 'Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire ER - TY - JOUR AB - We report the synthesis and characterization of graphene functionalized with iron (Fe3+) oxide (G-Fe3O4) nanohybrids for radio-frequency magnetic hyperthermia application. We adopted the wet chemical procedure, using various contents of Fe3O4 (magnetite) from 0–100% for making two-dimensional graphene–Fe3O4 nanohybrids. The homogeneous dispersal of Fe3O4 nanoparticles decorated on the graphene surface combined with their biocompatibility and high thermal conductivity make them an excellent material for magnetic hyperthermia. The morphological and magnetic properties of the nanohybrids were studied using scanning electron microscopy (SEM) and a vibrating sample magnetometer (VSM), respectively. The smart magnetic platforms were exposed to an alternating current (AC) magnetic field of 633 kHz and of strength 9.1 mT for studying their hyperthermic performance. The localized antitumor effects were investigated with artificial neural network modeling. A neural net time-series model was developed for the assessment of the best nanohybrid composition to serve the purpose with an accuracy close to 100%. Six Nonlinear Autoregressive with External Input (NARX) models were obtained, one for each of the components. The assessment of the accuracy of the predicted results has been done on the basis of Mean Squared Error (MSE). The highest Mean Squared Error value was obtained for the nanohybrid containing 45% magnetite and 55% graphene (F45G55) in the training phase i.e., 0.44703, which is where the model achieved optimal results after 71 epochs. The F45G55 nanohybrid was found to be the best for hyperthermia applications in low dosage with the highest specific absorption rate (SAR) and mean squared error values. AU - Dar, M. S. AU - Akram, Khush Bakhat AU - Sohail, Ayesha AU - Arif, Fatima AU - Zabihi, Fatemeh AU - Yang, Shengyuan AU - Munir, Shamsa AU - Zhu, Meifang AU - Abid, M. AU - Nauman, Muhammad ID - 9569 IS - 35 JF - RSC Advances TI - Heat induction in two-dimensional graphene–Fe3O4 nanohybrids for magnetic hyperthermia applications with artificial neural network modeling VL - 11 ER - TY - JOUR AB - We show that turbulent dynamics that arise in simulations of the three-dimensional Navier--Stokes equations in a triply-periodic domain under sinusoidal forcing can be described as transient visits to the neighborhoods of unstable time-periodic solutions. Based on this description, we reduce the original system with more than 10^5 degrees of freedom to a 17-node Markov chain where each node corresponds to the neighborhood of a periodic orbit. The model accurately reproduces long-term averages of the system's observables as weighted sums over the periodic orbits. AU - Yalniz, Gökhan AU - Hof, Björn AU - Budanur, Nazmi B ID - 9558 IS - 24 JF - Physical Review Letters SN - 0031-9007 TI - Coarse graining the state space of a turbulent flow using periodic orbits VL - 126 ER - TY - JOUR AB - While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Numerous analyses conducted to date have clearly identified measures that need to be taken to improve research rigor. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions. EQIPD defines research quality as the extent to which research data are fit for their intended use. Fitness, in this context, is defined by the stakeholders, who are the scientists directly involved in the research, but also their funders, sponsors, publishers, research tool manufacturers and collaboration partners such as peers in a multi-site research project. The essence of the EQIPD Quality System is the set of 18 core requirements that can be addressed flexibly, according to user-specific needs and following a user-defined trajectory. The EQIPD Quality System proposes guidance on expectations for quality-related measures, defines criteria for adequate processes (i.e., performance standards) and provides examples of how such measures can be developed and implemented. However, it does not prescribe any pre-determined solutions. EQIPD has also developed tools (for optional use) to support users in implementing the system and assessment services for those research units that successfully implement the quality system and seek formal accreditation. Building upon the feedback from users and continuous improvement, a sustainable EQIPD Quality System will ultimately serve the entire community of scientists conducting non-regulated preclinical research, by helping them generate reliable data that are fit for their intended use. AU - Bespalov, Anton AU - Bernard, René AU - Gilis, Anja AU - Gerlach, Björn AU - Guillén, Javier AU - Castagné, Vincent AU - Lefevre, Isabel A. AU - Ducrey, Fiona AU - Monk, Lee AU - Bongiovanni, Sandrine AU - Altevogt, Bruce AU - Arroyo-Araujo, María AU - Bikovski, Lior AU - De Bruin, Natasja AU - Castaños-Vélez, Esmeralda AU - Dityatev, Alexander AU - Emmerich, Christoph H. AU - Fares, Raafat AU - Ferland-Beckham, Chantelle AU - Froger-Colléaux, Christelle AU - Gailus-Durner, Valerie AU - Hölter, Sabine M. AU - Hofmann, Martine Cj AU - Kabitzke, Patricia AU - Kas, Martien Jh AU - Kurreck, Claudia AU - Moser, Paul AU - Pietraszek, Malgorzata AU - Popik, Piotr AU - Potschka, Heidrun AU - Prado Montes De Oca, Ernesto AU - Restivo, Leonardo AU - Riedel, Gernot AU - Ritskes-Hoitinga, Merel AU - Samardzic, Janko AU - Schunn, Michael AU - Stöger, Claudia AU - Voikar, Vootele AU - Vollert, Jan AU - Wever, Kimberley E. AU - Wuyts, Kathleen AU - Macleod, Malcolm R. AU - Dirnagl, Ulrich AU - Steckler, Thomas ID - 9607 JF - eLife TI - Introduction to the EQIPD quality system VL - 10 ER - TY - JOUR AB - In mammalian genomes, differentially methylated regions (DMRs) and histone marks including trimethylation of histone 3 lysine 27 (H3K27me3) at imprinted genes are asymmetrically inherited to control parentally-biased gene expression. However, neither parent-of-origin-specific transcription nor imprints have been comprehensively mapped at the blastocyst stage of preimplantation development. Here, we address this by integrating transcriptomic and epigenomic approaches in mouse preimplantation embryos. We find that seventy-one genes exhibit previously unreported parent-of-origin-specific expression in blastocysts (nBiX: novel blastocyst-imprinted expressed). Uniparental expression of nBiX genes disappears soon after implantation. Micro-whole-genome bisulfite sequencing (µWGBS) of individual uniparental blastocysts detects 859 DMRs. We further find that 16% of nBiX genes are associated with a DMR, whereas most are associated with parentally-biased H3K27me3, suggesting a role for Polycomb-mediated imprinting in blastocysts. nBiX genes are clustered: five clusters contained at least one published imprinted gene, and five clusters exclusively contained nBiX genes. These data suggest that early development undergoes a complex program of stage-specific imprinting involving different tiers of regulation. AU - Santini, Laura AU - Halbritter, Florian AU - Titz-Teixeira, Fabian AU - Suzuki, Toru AU - Asami, Maki AU - Ma, Xiaoyan AU - Ramesmayer, Julia AU - Lackner, Andreas AU - Warr, Nick AU - Pauler, Florian AU - Hippenmeyer, Simon AU - Laue, Ernest AU - Farlik, Matthias AU - Bock, Christoph AU - Beyer, Andreas AU - Perry, Anthony C.F. AU - Leeb, Martin ID - 9601 IS - 1 JF - Nature Communications TI - Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3 VL - 12 ER - TY - JOUR AB - An ordered graph is a graph with a linear ordering on its vertex set. We prove that for every positive integer k, there exists a constant ck > 0 such that any ordered graph G on n vertices with the property that neither G nor its complement contains an induced monotone path of size k, has either a clique or an independent set of size at least n^ck . This strengthens a result of Bousquet, Lagoutte, and Thomassé, who proved the analogous result for unordered graphs. A key idea of the above paper was to show that any unordered graph on n vertices that does not contain an induced path of size k, and whose maximum degree is at most c(k)n for some small c(k) > 0, contains two disjoint linear size subsets with no edge between them. This approach fails for ordered graphs, because the analogous statement is false for k ≥ 3, by a construction of Fox. We provide some further examples showing that this statement also fails for ordered graphs avoiding other ordered trees. AU - Pach, János AU - Tomon, István ID - 9602 JF - Journal of Combinatorial Theory. Series B SN - 0095-8956 TI - Erdős-Hajnal-type results for monotone paths VL - 151 ER - TY - JOUR AB - Sound propagation is a macroscopic manifestation of the interplay between the equilibrium thermodynamics and the dynamical transport properties of fluids. Here, for a two-dimensional system of ultracold fermions, we calculate the first and second sound velocities across the whole BCS-BEC crossover, and we analyze the system response to an external perturbation. In the low-temperature regime we reproduce the recent measurements [Phys. Rev. Lett. 124, 240403 (2020)] of the first sound velocity, which, due to the decoupling of density and entropy fluctuations, is the sole mode excited by a density probe. Conversely, a heat perturbation excites only the second sound, which, being sensitive to the superfluid depletion, vanishes in the deep BCS regime and jumps discontinuously to zero at the Berezinskii-Kosterlitz-Thouless superfluid transition. A mixing between the modes occurs only in the finite-temperature BEC regime, where our theory converges to the purely bosonic results. AU - Tononi, A. AU - Cappellaro, Alberto AU - Bighin, Giacomo AU - Salasnich, L. ID - 9606 IS - 6 JF - Physical Review A SN - 24699926 TI - Propagation of first and second sound in a two-dimensional Fermi superfluid VL - 103 ER - TY - JOUR AB - Perineuronal nets (PNNs), components of the extracellular matrix, preferentially coat parvalbumin-positive interneurons and constrain critical-period plasticity in the adult cerebral cortex. Current strategies to remove PNN are long-lasting, invasive, and trigger neuropsychiatric symptoms. Here, we apply repeated anesthetic ketamine as a method with minimal behavioral effect. We find that this paradigm strongly reduces PNN coating in the healthy adult brain and promotes juvenile-like plasticity. Microglia are critically involved in PNN loss because they engage with parvalbumin-positive neurons in their defined cortical layer. We identify external 60-Hz light-flickering entrainment to recapitulate microglia-mediated PNN removal. Importantly, 40-Hz frequency, which is known to remove amyloid plaques, does not induce PNN loss, suggesting microglia might functionally tune to distinct brain frequencies. Thus, our 60-Hz light-entrainment strategy provides an alternative form of PNN intervention in the healthy adult brain. AU - Venturino, Alessandro AU - Schulz, Rouven AU - De Jesús-Cortés, Héctor AU - Maes, Margaret E AU - Nagy, Balint AU - Reilly-Andújar, Francis AU - Colombo, Gloria AU - Cubero, Ryan J AU - Schoot Uiterkamp, Florianne E AU - Bear, Mark F. AU - Siegert, Sandra ID - 9642 IS - 1 JF - Cell Reports TI - Microglia enable mature perineuronal nets disassembly upon anesthetic ketamine exposure or 60-Hz light entrainment in the healthy brain VL - 36 ER - TY - JOUR AB - Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division. AU - Contreras, Ximena AU - Amberg, Nicole AU - Davaatseren, Amarbayasgalan AU - Hansen, Andi H AU - Sonntag, Johanna AU - Andersen, Lill AU - Bernthaler, Tina AU - Streicher, Carmen AU - Heger, Anna-Magdalena AU - Johnson, Randy L. AU - Schwarz, Lindsay A. AU - Luo, Liqun AU - Rülicke, Thomas AU - Hippenmeyer, Simon ID - 9603 IS - 12 JF - Cell Reports TI - A genome-wide library of MADM mice for single-cell genetic mosaic analysis VL - 35 ER - TY - JOUR AB - The control of nonequilibrium quantum dynamics in many-body systems is challenging because interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We investigate nonequilibrium dynamics after rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we show that coherent revivals associated with so-called quantum many-body scars can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating new ways to steer complex dynamics in many-body systems and enabling potential applications in quantum information science. AU - Bluvstein, D. AU - Omran, A. AU - Levine, H. AU - Keesling, A. AU - Semeghini, G. AU - Ebadi, S. AU - Wang, T. T. AU - Michailidis, Alexios AU - Maskara, N. AU - Ho, W. W. AU - Choi, S. AU - Serbyn, Maksym AU - Greiner, M. AU - Vuletić, V. AU - Lukin, M. D. ID - 9618 IS - 6536 JF - Science KW - Multidisciplinary SN - 0036-8075 TI - Controlling quantum many-body dynamics in driven Rydberg atom arrays VL - 371 ER - TY - JOUR AB - To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that is fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia. AU - Gao, Z AU - Chen, Z AU - Cui, Y AU - Ke, M AU - Xu, H AU - Xu, Q AU - Chen, J AU - Li, Y AU - Huang, L AU - Zhao, H AU - Huang, D AU - Mai, S AU - Xu, T AU - Liu, X AU - Li, S AU - Guan, Y AU - Yang, W AU - Friml, Jiří AU - Petrášek, J AU - Zhang, J AU - Chen, X ID - 9657 IS - 9 JF - Plant Cell SN - 1040-4651 TI - GmPIN-dependent polar auxin transport is involved in soybean nodule development VL - 33 ER - TY - JOUR AB - Selection and random drift determine the probability that novel mutations fixate in a population. Population structure is known to affect the dynamics of the evolutionary process. Amplifiers of selection are population structures that increase the fixation probability of beneficial mutants compared to well-mixed populations. Over the past 15 years, extensive research has produced remarkable structures called strong amplifiers which guarantee that every beneficial mutation fixates with high probability. But strong amplification has come at the cost of considerably delaying the fixation event, which can slow down the overall rate of evolution. However, the precise relationship between fixation probability and time has remained elusive. Here we characterize the slowdown effect of strong amplification. First, we prove that all strong amplifiers must delay the fixation event at least to some extent. Second, we construct strong amplifiers that delay the fixation event only marginally as compared to the well-mixed populations. Our results thus establish a tight relationship between fixation probability and time: Strong amplification always comes at a cost of a slowdown, but more than a marginal slowdown is not needed. AU - Tkadlec, Josef AU - Pavlogiannis, Andreas AU - Chatterjee, Krishnendu AU - Nowak, Martin A. ID - 9640 IS - 1 JF - Nature Communications TI - Fast and strong amplifiers of natural selection VL - 12 ER - TY - JOUR AB - Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underly differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, and a crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment. AU - Han, Huibin AU - Adamowski, Maciek AU - Qi, Linlin AU - Alotaibi, SS AU - Friml, Jiří ID - 9656 IS - 2 JF - New Phytologist SN - 0028-646x TI - PIN-mediated polar auxin transport regulations in plant tropic responses VL - 232 ER - TY - JOUR AB - The relative motion of three impenetrable particles on a ring, in our case two identical fermions and one impurity, is isomorphic to a triangular quantum billiard. Depending on the ratio κ of the impurity and fermion masses, the billiards can be integrable or non-integrable (also referred to in the main text as chaotic). To set the stage, we first investigate the energy level distributions of the billiards as a function of 1/κ ∈ [0, 1] and find no evidence of integrable cases beyond the limiting values 1/κ = 1 and 1/κ = 0. Then, we use machine learning tools to analyze properties of probability distributions of individual quantum states. We find that convolutional neural networks can correctly classify integrable and non-integrable states. The decisive features of the wave functions are the normalization and a large number of zero elements, corresponding to the existence of a nodal line. The network achieves typical accuracies of 97%, suggesting that machine learning tools can be used to analyze and classify the morphology of probability densities obtained in theory or experiment. AU - Huber, David AU - Marchukov, Oleksandr V. AU - Hammer, Hans Werner AU - Volosniev, Artem ID - 9679 IS - 6 JF - New Journal of Physics TI - Morphology of three-body quantum states from machine learning VL - 23 ER - TY - JOUR AB - Intestinal organoids derived from single cells undergo complex crypt–villus patterning and morphogenesis. However, the nature and coordination of the underlying forces remains poorly characterized. Here, using light-sheet microscopy and large-scale imaging quantification, we demonstrate that crypt formation coincides with a stark reduction in lumen volume. We develop a 3D biophysical model to computationally screen different mechanical scenarios of crypt morphogenesis. Combining this with live-imaging data and multiple mechanical perturbations, we show that actomyosin-driven crypt apical contraction and villus basal tension work synergistically with lumen volume reduction to drive crypt morphogenesis, and demonstrate the existence of a critical point in differential tensions above which crypt morphology becomes robust to volume changes. Finally, we identified a sodium/glucose cotransporter that is specific to differentiated enterocytes that modulates lumen volume reduction through cell swelling in the villus region. Together, our study uncovers the cellular basis of how cell fate modulates osmotic and actomyosin forces to coordinate robust morphogenesis. AU - Yang, Qiutan AU - Xue, Shi-lei AU - Chan, Chii Jou AU - Rempfler, Markus AU - Vischi, Dario AU - Maurer-Gutierrez, Francisca AU - Hiiragi, Takashi AU - Hannezo, Edouard B AU - Liberali, Prisca ID - 9629 JF - Nature Cell Biology SN - 1465-7392 TI - Cell fate coordinates mechano-osmotic forces in intestinal crypt formation VL - 23 ER - TY - JOUR AB - SnSe, a wide-bandgap semiconductor, has attracted significant attention from the thermoelectric (TE) community due to its outstanding TE performance deriving from the ultralow thermal conductivity and advantageous electronic structures. Here, we promoted the TE performance of n-type SnSe polycrystals through bandgap engineering and vacancy compensation. We found that PbTe can significantly reduce the wide bandgap of SnSe to reduce the impurity transition energy, largely enhancing the carrier concentration. Also, PbTe-induced crystal symmetry promotion increases the carrier mobility, preserving large Seebeck coefficient. Consequently, a maximum ZT of ∼1.4 at 793 K is obtained in Br doped SnSe–13%PbTe. Furthermore, we found that extra Sn in n-type SnSe can compensate for the intrinsic Sn vacancies and form electron donor-like metallic Sn nanophases. The Sn nanophases near the grain boundary could also reduce the intergrain energy barrier which largely enhances the carrier mobility. As a result, a maximum ZT value of ∼1.7 at 793 K and an average ZT (ZTave) of ∼0.58 in 300–793 K are achieved in Br doped Sn1.08Se–13%PbTe. Our findings provide a novel strategy to promote the TE performance in wide-bandgap semiconductors. AU - Su, Lizhong AU - Hong, Tao AU - Wang, Dongyang AU - Wang, Sining AU - Qin, Bingchao AU - Zhang, Mengmeng AU - Gao, Xiang AU - Chang, Cheng AU - Zhao, Li Dong ID - 9626 JF - Materials Today Physics TI - Realizing high doping efficiency and thermoelectric performance in n-type SnSe polycrystals via bandgap engineering and vacancy compensation VL - 20 ER - TY - JOUR AB - The hippocampal mossy fiber synapse is a key synapse of the trisynaptic circuit. Post-tetanic potentiation (PTP) is the most powerful form of plasticity at this synaptic connection. It is widely believed that mossy fiber PTP is an entirely presynaptic phenomenon, implying that PTP induction is input-specific, and requires neither activity of multiple inputs nor stimulation of postsynaptic neurons. To directly test cooperativity and associativity, we made paired recordings between single mossy fiber terminals and postsynaptic CA3 pyramidal neurons in rat brain slices. By stimulating non-overlapping mossy fiber inputs converging onto single CA3 neurons, we confirm that PTP is input-specific and non-cooperative. Unexpectedly, mossy fiber PTP exhibits anti-associative induction properties. EPSCs show only minimal PTP after combined pre- and postsynaptic high-frequency stimulation with intact postsynaptic Ca2+ signaling, but marked PTP in the absence of postsynaptic spiking and after suppression of postsynaptic Ca2+ signaling (10 mM EGTA). PTP is largely recovered by inhibitors of voltage-gated R- and L-type Ca2+ channels, group II mGluRs, and vacuolar-type H+-ATPase, suggesting the involvement of retrograde vesicular glutamate signaling. Transsynaptic regulation of PTP extends the repertoire of synaptic computations, implementing a brake on mossy fiber detonation and a “smart teacher” function of hippocampal mossy fiber synapses. AU - Vandael, David H AU - Okamoto, Yuji AU - Jonas, Peter M ID - 9778 IS - 1 JF - Nature Communications KW - general physics and astronomy KW - general biochemistry KW - genetics and molecular biology KW - general chemistry SN - 2041-1723 TI - Transsynaptic modulation of presynaptic short-term plasticity in hippocampal mossy fiber synapses VL - 12 ER - TY - JOUR AB - Gene expression is regulated by the set of transcription factors (TFs) that bind to the promoter. The ensuing regulating function is often represented as a combinational logic circuit, where output (gene expression) is determined by current input values (promoter bound TFs) only. However, the simultaneous arrival of TFs is a strong assumption, since transcription and translation of genes introduce intrinsic time delays and there is no global synchronisation among the arrival times of different molecular species at their targets. We present an experimentally implementable genetic circuit with two inputs and one output, which in the presence of small delays in input arrival, exhibits qualitatively distinct population-level phenotypes, over timescales that are longer than typical cell doubling times. From a dynamical systems point of view, these phenotypes represent long-lived transients: although they converge to the same value eventually, they do so after a very long time span. The key feature of this toy model genetic circuit is that, despite having only two inputs and one output, it is regulated by twenty-three distinct DNA-TF configurations, two of which are more stable than others (DNA looped states), one promoting and another blocking the expression of the output gene. Small delays in input arrival time result in a majority of cells in the population quickly reaching the stable state associated with the first input, while exiting of this stable state occurs at a slow timescale. In order to mechanistically model the behaviour of this genetic circuit, we used a rule-based modelling language, and implemented a grid-search to find parameter combinations giving rise to long-lived transients. Our analysis shows that in the absence of feedback, there exist path-dependent gene regulatory mechanisms based on the long timescale of transients. The behaviour of this toy model circuit suggests that gene regulatory networks can exploit event timing to create phenotypes, and it opens the possibility that they could use event timing to memorise events, without regulatory feedback. The model reveals the importance of (i) mechanistically modelling the transitions between the different DNA-TF states, and (ii) employing transient analysis thereof. AU - Petrov, Tatjana AU - Igler, Claudia AU - Sezgin, Ali AU - Henzinger, Thomas A AU - Guet, Calin C ID - 9647 JF - Theoretical Computer Science SN - 0304-3975 TI - Long lived transients in gene regulation VL - 893 ER - TY - JOUR AB - The important roles of mitochondrial function and dysfunction in the process of neurodegeneration are widely acknowledged. Retinal ganglion cells (RGCs) appear to be a highly vulnerable neuronal cell type in the central nervous system with respect to mitochondrial dysfunction but the actual reasons for this are still incompletely understood. These cells have a unique circumstance where unmyelinated axons must bend nearly 90° to exit the eye and then cross a translaminar pressure gradient before becoming myelinated in the optic nerve. This region, the optic nerve head, contains some of the highest density of mitochondria present in these cells. Glaucoma represents a perfect storm of events occurring at this location, with a combination of changes in the translaminar pressure gradient and reassignment of the metabolic support functions of supporting glia, which appears to apply increased metabolic stress to the RGC axons leading to a failure of axonal transport mechanisms. However, RGCs themselves are also extremely sensitive to genetic mutations, particularly in genes affecting mitochondrial dynamics and mitochondrial clearance. These mutations, which systemically affect the mitochondria in every cell, often lead to an optic neuropathy as the sole pathologic defect in affected patients. This review summarizes knowledge of mitochondrial structure and function, the known energy demands of neurons in general, and places these in the context of normal and pathological characteristics of mitochondria attributed to RGCs. AU - Muench, Nicole A. AU - Patel, Sonia AU - Maes, Margaret E AU - Donahue, Ryan J. AU - Ikeda, Akihiro AU - Nickells, Robert W. ID - 9761 IS - 7 JF - Cells TI - The influence of mitochondrial dynamics and function on retinal ganglion cell susceptibility in optic nerve disease VL - 10 ER -