TY - JOUR
AB - The optic tectum (TeO), or superior colliculus, is a multisensory midbrain center that organizes spatially orienting responses to relevant stimuli. To define the stimulus with the highest priority at each moment, a network of reciprocal connections between the TeO and the isthmi promotes competition between concurrent tectal inputs. In the avian midbrain, the neurons mediating enhancement and suppression of tectal inputs are located in separate isthmic nuclei, facilitating the analysis of the neural processes that mediate competition. A specific subset of radial neurons in the intermediate tectal layers relay retinal inputs to the isthmi, but at present it is unclear whether separate neurons innervate individual nuclei or a single neural type sends a common input to several of them. In this study, we used in vitro neural tracing and cell-filling experiments in chickens to show that single neurons innervate, via axon collaterals, the three nuclei that comprise the isthmotectal network. This demonstrates that the input signals representing the strength of the incoming stimuli are simultaneously relayed to the mechanisms promoting both enhancement and suppression of the input signals. By performing in vivo recordings in anesthetized chicks, we also show that this common input generates synchrony between both antagonistic mechanisms, demonstrating that activity enhancement and suppression are closely coordinated. From a computational point of view, these results suggest that these tectal neurons constitute integrative nodes that combine inputs from different sources to drive in parallel several concurrent neural processes, each performing complementary functions within the network through different firing patterns and connectivity.
AU - Garrido-Charad, Florencia
AU - Vega Zuniga, Tomas A
AU - Gutiérrez-Ibáñez, Cristián
AU - Fernandez, Pedro
AU - López-Jury, Luciana
AU - González-Cabrera, Cristian
AU - Karten, Harvey J.
AU - Luksch, Harald
AU - Marín, Gonzalo J.
ID - 6010
IS - 32
JF - Proceedings of the National Academy of Sciences
SN - 0027-8424
TI - “Shepherd’s crook” neurons drive and synchronize the enhancing and suppressive mechanisms of the midbrain stimulus selection network
VL - 115
ER -
TY - CONF
AB - We establish a data-dependent notion of algorithmic stability for Stochastic Gradient Descent (SGD), and employ it to develop novel generalization bounds. This is in contrast to previous distribution-free algorithmic stability results for SGD which depend on the worst-case constants. By virtue of the data-dependent argument, our bounds provide new insights into learning with SGD on convex and non-convex problems. In the convex case, we show that the bound on the generalization error depends on the risk at the initialization point. In the non-convex case, we prove that the expected curvature of the objective function around the initialization point has crucial influence on the generalization error. In both cases, our results suggest a simple data-driven strategy to stabilize SGD by pre-screening its initialization. As a corollary, our results allow us to show optimistic generalization bounds that exhibit fast convergence rates for SGD subject to a vanishing empirical risk and low noise of stochastic gradient.
AU - Kuzborskij, Ilja
AU - Lampert, Christoph
ID - 6011
T2 - Proceedings of the 35 th International Conference on Machine Learning
TI - Data-dependent stability of stochastic gradient descent
VL - 80
ER -
TY - CONF
AB - We present an approach to identify concise equations from data using a shallow neural network approach. In contrast to ordinary black-box regression, this approach allows understanding functional relations and generalizing them from observed data to unseen parts of the parameter space. We show how to extend the class of learnable equations for a recently proposed equation learning network to include divisions, and we improve the learning and model selection strategy to be useful for challenging real-world data. For systems governed by analytical expressions, our method can in many cases identify the true underlying equation and extrapolate to unseen domains. We demonstrate its effectiveness by experiments on a cart-pendulum system, where only 2 random rollouts are required to learn the forward dynamics and successfully achieve the swing-up task.
AU - Sahoo, Subham
AU - Lampert, Christoph
AU - Martius, Georg S
ID - 6012
T2 - Proceedings of the 35th International Conference on Machine Learning
TI - Learning equations for extrapolation and control
VL - 80
ER -
TY - CONF
AB - We introduce Clover, a new library for efficient computation using low-precision data, providing mathematical routines required by fundamental methods in optimization and sparse recovery. Our library faithfully implements variants of stochastic quantization that guarantee convergence at low precision, and supports data formats from 4-bit quantized to 32-bit IEEE-754 on current Intel processors. In particular, we show that 4-bit can be implemented efficiently using Intel AVX despite the lack of native support for this data format. Experimental results with dot product, matrix-vector multiplication (MVM), gradient descent (GD), and iterative hard thresholding (IHT) demonstrate that the attainable speedups are in many cases close to linear with respect to the reduction of precision due to reduced data movement. Finally, for GD and IHT, we show examples of absolute speedup achieved by 4-bit versus 32-bit, by iterating until a given target error is achieved.
AU - Stojanov, Alen
AU - Smith, Tyler Michael
AU - Alistarh, Dan-Adrian
AU - Puschel, Markus
ID - 6031
T2 - 2018 IEEE International Workshop on Signal Processing Systems
TI - Fast quantized arithmetic on x86: Trading compute for data movement
VL - 2018-October
ER -
TY - JOUR
AB - The main result of this article is a generalization of the classical blossom algorithm for finding perfect matchings. Our algorithm can efficiently solve Boolean CSPs where each variable appears in exactly two constraints (we call it edge CSP) and all constraints are even Δ-matroid relations (represented by lists of tuples). As a consequence of this, we settle the complexity classification of planar Boolean CSPs started by Dvorak and Kupec. Using a reduction to even Δ-matroids, we then extend the tractability result to larger classes of Δ-matroids that we call efficiently coverable. It properly includes classes that were known to be tractable before, namely, co-independent, compact, local, linear, and binary, with the following caveat:We represent Δ-matroids by lists of tuples, while the last two use a representation by matrices. Since an n ×n matrix can represent exponentially many tuples, our tractability result is not strictly stronger than the known algorithm for linear and binary Δ-matroids.
AU - Kazda, Alexandr
AU - Kolmogorov, Vladimir
AU - Rolinek, Michal
ID - 6032
IS - 2
JF - ACM Transactions on Algorithms
TI - Even delta-matroids and the complexity of planar boolean CSPs
VL - 15
ER -
TY - JOUR
AB - We establish the existence of a global solution for a new family of fluid-like equations, which are obtained in certain regimes in as the mean-field evolution of the supercurrent density in a (2D section of a) type-II superconductor with pinning and with imposed electric current. We also consider general vortex-sheet initial data, and investigate the uniqueness and regularity properties of the solution. For some choice of parameters, the equation under investigation coincides with the so-called lake equation from 2D shallow water fluid dynamics, and our analysis then leads to a new existence result for rough initial data.
AU - Duerinckx, Mitia
AU - Fischer, Julian L
ID - 606
IS - 5
JF - Annales de l'Institut Henri Poincare (C) Non Linear Analysis
TI - Well-posedness for mean-field evolutions arising in superconductivity
VL - 35
ER -
TY - JOUR
AB - We study the Fokker-Planck equation derived in the large system limit of the Markovian process describing the dynamics of quantitative traits. The Fokker-Planck equation is posed on a bounded domain and its transport and diffusion coefficients vanish on the domain's boundary. We first argue that, despite this degeneracy, the standard no-flux boundary condition is valid. We derive the weak formulation of the problem and prove the existence and uniqueness of its solutions by constructing the corresponding contraction semigroup on a suitable function space. Then, we prove that for the parameter regime with high enough mutation rate the problem exhibits a positive spectral gap, which implies exponential convergence to equilibrium.Next, we provide a simple derivation of the so-called Dynamic Maximum Entropy (DynMaxEnt) method for approximation of observables (moments) of the Fokker-Planck solution, which can be interpreted as a nonlinear Galerkin approximation. The limited applicability of the DynMaxEnt method inspires us to introduce its modified version that is valid for the whole range of admissible parameters. Finally, we present several numerical experiments to demonstrate the performance of both the original and modified DynMaxEnt methods. We observe that in the parameter regimes where both methods are valid, the modified one exhibits slightly better approximation properties compared to the original one.
AU - Bodova, Katarina
AU - Haskovec, Jan
AU - Markowich, Peter
ID - 607
JF - Physica D: Nonlinear Phenomena
TI - Well posedness and maximum entropy approximation for the dynamics of quantitative traits
VL - 376-377
ER -
TY - JOUR
AB - Synthesis is the automated construction of a system from its specification. In real life, hardware and software systems are rarely constructed from scratch. Rather, a system is typically constructed from a library of components. Lustig and Vardi formalized this intuition and studied LTL synthesis from component libraries. In real life, designers seek optimal systems. In this paper we add optimality considerations to the setting. We distinguish between quality considerations (for example, size - the smaller a system is, the better it is), and pricing (for example, the payment to the company who manufactured the component). We study the problem of designing systems with minimal quality-cost and price. A key point is that while the quality cost is individual - the choices of a designer are independent of choices made by other designers that use the same library, pricing gives rise to a resource-allocation game - designers that use the same component share its price, with the share being proportional to the number of uses (a component can be used several times in a design). We study both closed and open settings, and in both we solve the problem of finding an optimal design. In a setting with multiple designers, we also study the game-theoretic problems of the induced resource-allocation game.
AU - Avni, Guy
AU - Kupferman, Orna
ID - 608
JF - Theoretical Computer Science
TI - Synthesis from component libraries with costs
VL - 712
ER -
TY - CHAP
AB - We prove that there is no strongly regular graph (SRG) with parameters (460; 153; 32; 60). The proof is based on a recent lower bound on the number of 4-cliques in a SRG and some applications of Euclidean representation of SRGs.
AU - Bondarenko, Andriy
AU - Mellit, Anton
AU - Prymak, Andriy
AU - Radchenko, Danylo
AU - Viazovska, Maryna
ID - 61
T2 - Contemporary Computational Mathematics
TI - There is no strongly regular graph with parameters (460; 153; 32; 60)
ER -
TY - JOUR
AB - Neuropeptides are ubiquitous modulators of behavior and physiology. They are packaged in specialized secretory organelles called dense core vesicles (DCVs) that are released upon neural stimulation. Unlike synaptic vesicles, which can be recycled and refilled close to release sites, DCVs must be replenished by de novo synthesis in the cell body. Here, we dissect DCV cell biology in vivo in a Caenorhabditis elegans sensory neuron whose tonic activity we can control using a natural stimulus. We express fluorescently tagged neuropeptides in the neuron and define parameters that describe their subcellular distribution. We measure these parameters at high and low neural activity in 187 mutants defective in proteins implicated in membrane traffic, neuroendocrine secretion, and neuronal or synaptic activity. Using unsupervised hierarchical clustering methods, we analyze these data and identify 62 groups of genes with similar mutant phenotypes. We explore the function of a subset of these groups. We recapitulate many previous findings, validating our paradigm. We uncover a large battery of proteins involved in recycling DCV membrane proteins, something hitherto poorly explored. We show that the unfolded protein response promotes DCV production, which may contribute to intertissue communication of stress. We also find evidence that different mechanisms of priming and exocytosis may operate at high and low neural activity. Our work provides a defined framework to study DCV biology at different neural activity levels.
AU - Laurent, Patrick
AU - Ch’ng, QueeLim
AU - Jospin, Maëlle
AU - Chen, Changchun
AU - Lorenzo, Ramiro
AU - de Bono, Mario
ID - 6109
IS - 29
JF - Proceedings of the National Academy of Sciences
SN - 0027-8424
TI - Genetic dissection of neuropeptide cell biology at high and low activity in a defined sensory neuron
VL - 115
ER -
TY - JOUR
AB - Neurons develop elaborate morphologies that provide a model for understanding cellular architecture. By studying C. elegans sensory dendrites, we previously identified genes that act to promote the extension of ciliated sensory dendrites during embryogenesis. Interestingly, the nonciliated dendrite of the oxygen-sensing neuron URX is not affected by these genes, suggesting it develops through a distinct mechanism. Here, we use a visual forward genetic screen to identify mutants that affect URX dendrite morphogenesis. We find that disruption of the MAP kinase MAPK-15 or the βH-spectrin SMA-1 causes a phenotype opposite to what we had seen before: dendrites extend normally during embryogenesis but begin to overgrow as the animals reach adulthood, ultimately extending up to 150% of their normal length. SMA-1 is broadly expressed and acts non-cell-autonomously, while MAPK-15 is expressed in many sensory neurons including URX and acts cell-autonomously. MAPK-15 acts at the time of overgrowth, localizes at the dendrite ending, and requires its kinase activity, suggesting it acts locally in time and space to constrain dendrite growth. Finally, we find that the oxygen-sensing guanylate cyclase GCY-35, which normally localizes at the dendrite ending, is localized throughout the overgrown region, and that overgrowth can be suppressed by overexpressing GCY-35 or by genetically mimicking elevated cGMP signaling. These results suggest that overgrowth may correspond to expansion of a sensory compartment at the dendrite ending, reminiscent of the remodeling of sensory cilia or dendritic spines. Thus, in contrast to established pathways that promote dendrite growth during early development, our results reveal a distinct mechanism that constrains dendrite growth throughout the life of the animal, possibly by controlling the size of a sensory compartment at the dendrite ending.
AU - McLachlan, Ian G.
AU - Beets, Isabel
AU - de Bono, Mario
AU - Heiman, Maxwell G.
ID - 6111
IS - 6
JF - PLOS Genetics
SN - 1553-7404
TI - A neuronal MAP kinase constrains growth of a Caenorhabditis elegans sensory dendrite throughout the life of the organism
VL - 14
ER -
TY - JOUR
AB - Social insects protect their colonies from infectious disease through collective defences that result in social immunity. In ants, workers first try to prevent infection of colony members. Here, we show that if this fails and a pathogen establishes an infection, ants employ an efficient multicomponent behaviour − "destructive disinfection" − to prevent further spread of disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, relying on chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a body that specifically targets and eliminates infected cells, this social immunity measure sacrifices infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, the same principles of disease defence apply at different levels of biological organisation.
AU - Pull, Christopher
AU - Ugelvig, Line V
AU - Wiesenhofer, Florian
AU - Grasse, Anna V
AU - Tragust, Simon
AU - Schmitt, Thomas
AU - Brown, Mark
AU - Cremer, Sylvia
ID - 616
JF - eLife
TI - Destructive disinfection of infected brood prevents systemic disease spread in ant colonies
VL - 7
ER -
TY - CONF
AB - In this paper, we propose an algorithm to build discrete spherical shell having integer center and real-valued inner and outer radii on the face-centered cubic (FCC) grid. We address the problem by mapping it to a 2D scenario and building the shell layer by layer on hexagonal grids with additive manufacturing in mind. The layered hexagonal grids get shifted according to need as we move from one layer to another and forms the FCC grid in 3D. However, we restrict our computation strictly to 2D in order to utilize symmetry and simplicity.
AU - Koshti, Girish
AU - Biswas, Ranita
AU - Largeteau-Skapin, Gaëlle
AU - Zrour, Rita
AU - Andres, Eric
AU - Bhowmick, Partha
ID - 6164
SN - 0302-9743
T2 - Lecture Notes in Computer Science
TI - Sphere construction on the FCC grid interpreted as layered hexagonal grids in 3D
VL - 11255
ER -
TY - JOUR
AB - Insects are exposed to a variety of potential pathogens in their environment, many of which can severely impact fitness and health. Consequently, hosts have evolved resistance and tolerance strategies to suppress or cope with infections. Hosts utilizing resistance improve fitness by clearing or reducing pathogen loads, and hosts utilizing tolerance reduce harmful fitness effects per pathogen load. To understand variation in, and selective pressures on, resistance and tolerance, we asked to what degree they are shaped by host genetic background, whether plasticity in these responses depends upon dietary environment, and whether there are interactions between these two factors. Females from ten wild-type Drosophila melanogaster genotypes were kept on high- or low-protein (yeast) diets and infected with one of two opportunistic bacterial pathogens, Lactococcus lactis or Pseudomonas entomophila. We measured host resistance as the inverse of bacterial load in the early infection phase. The relationship (slope) between fly fecundity and individual-level bacteria load provided our fecundity tolerance measure. Genotype and dietary yeast determined host fecundity and strongly affected survival after infection with pathogenic P. entomophila. There was considerable genetic variation in host resistance, a commonly found phenomenon resulting from for example varying resistance costs or frequency-dependent selection. Despite this variation and the reproductive cost of higher P. entomophila loads, fecundity tolerance did not vary across genotypes. The absence of genetic variation in tolerance may suggest that at this early infection stage, fecundity tolerance is fixed or that any evolved tolerance mechanisms are not expressed under these infection conditions.
AU - Kutzer, Megan
AU - Kurtz, Joachim
AU - Armitage, Sophie
ID - 617
IS - 1
JF - Journal of Evolutionary Biology
TI - Genotype and diet affect resistance, survival, and fecundity but not fecundity tolerance
VL - 31
ER -
TY - GEN
AB - We study the unique solution $m$ of the Dyson equation \[ -m(z)^{-1} = z - a
+ S[m(z)] \] on a von Neumann algebra $\mathcal{A}$ with the constraint
$\mathrm{Im}\,m\geq 0$. Here, $z$ lies in the complex upper half-plane, $a$ is
a self-adjoint element of $\mathcal{A}$ and $S$ is a positivity-preserving
linear operator on $\mathcal{A}$. We show that $m$ is the Stieltjes transform
of a compactly supported $\mathcal{A}$-valued measure on $\mathbb{R}$. Under
suitable assumptions, we establish that this measure has a uniformly
$1/3$-H\"{o}lder continuous density with respect to the Lebesgue measure, which
is supported on finitely many intervals, called bands. In fact, the density is
analytic inside the bands with a square-root growth at the edges and internal
cubic root cusps whenever the gap between two bands vanishes. The shape of
these singularities is universal and no other singularity may occur. We give a
precise asymptotic description of $m$ near the singular points. These
asymptotics generalize the analysis at the regular edges given in the companion
paper on the Tracy-Widom universality for the edge eigenvalue statistics for
correlated random matrices [arXiv:1804.07744] and they play a key role in the
proof of the Pearcey universality at the cusp for Wigner-type matrices
[arXiv:1809.03971,arXiv:1811.04055]. We also extend the finite dimensional band
mass formula from [arXiv:1804.07744] to the von Neumann algebra setting by
showing that the spectral mass of the bands is topologically rigid under
deformations and we conclude that these masses are quantized in some important
cases.
AU - Alt, Johannes
AU - Erdös, László
AU - Krüger, Torben H
ID - 6183
T2 - arXiv
TI - The Dyson equation with linear self-energy: Spectral bands, edges and cusps
ER -
TY - CONF
AB - In the context of robotic manipulation and grasping, the shift from a view that is static (force closure of a single posture) and contact-deprived (only contact for force closure is allowed, everything else is obstacle) towards a view that is dynamic and contact-rich (soft manipulation) has led to an increased interest in soft hands. These hands can easily exploit environmental constraints and object surfaces without risk, and safely interact with humans, but present also some challenges. Designing them is difficult, as well as predicting, modelling, and “programming” their interactions with the objects and the environment. This paper tackles the problem of simulating them in a fast and effective way, leveraging on novel and existing simulation technologies. We present a triple-layered simulation framework where dynamic properties such as stiffness are determined from slow but accurate FEM simulation data once, and then condensed into a lumped parameter model that can be used to fast simulate soft fingers and soft hands. We apply our approach to the simulation of soft pneumatic fingers.
AU - Pozzi, Maria
AU - Miguel Villalba, Eder
AU - Deimel, Raphael
AU - Malvezzi, Monica
AU - Bickel, Bernd
AU - Brock, Oliver
AU - Prattichizzo, Domenico
ID - 6195
SN - 9781538630815
TI - Efficient FEM-based simulation of soft robots modeled as kinematic chains
ER -
TY - JOUR
AB - Imaging is a dominant strategy for data collection in neuroscience, yielding stacks of images that often scale to gigabytes of data for a single experiment. Machine learning algorithms from computer vision can serve as a pair of virtual eyes that tirelessly processes these images, automatically detecting and identifying microstructures. Unlike learning methods, our Flexible Learning-free Reconstruction of Imaged Neural volumes (FLoRIN) pipeline exploits structure-specific contextual clues and requires no training. This approach generalizes across different modalities, including serially-sectioned scanning electron microscopy (sSEM) of genetically labeled and contrast enhanced processes, spectral confocal reflectance (SCoRe) microscopy, and high-energy synchrotron X-ray microtomography (μCT) of large tissue volumes. We deploy the FLoRIN pipeline on newly published and novel mouse datasets, demonstrating the high biological fidelity of the pipeline’s reconstructions. FLoRIN reconstructions are of sufficient quality for preliminary biological study, for example examining the distribution and morphology of cells or extracting single axons from functional data. Compared to existing supervised learning methods, FLoRIN is one to two orders of magnitude faster and produces high-quality reconstructions that are tolerant to noise and artifacts, as is shown qualitatively and quantitatively.
AU - Shabazi, Ali
AU - Kinnison, Jeffery
AU - Vescovi, Rafael
AU - Du, Ming
AU - Hill, Robert
AU - Jösch, Maximilian A
AU - Takeno, Marc
AU - Zeng, Hongkui
AU - Da Costa, Nuno
AU - Grutzendler, Jaime
AU - Kasthuri, Narayanan
AU - Scheirer, Walter
ID - 62
IS - 1
JF - Scientific Reports
TI - Flexible learning-free segmentation and reconstruction of neural volumes
VL - 8
ER -
TY - JOUR
AB - Clathrin-mediated endocytosis requires the coordinated assembly of various endocytic proteins and lipids at the plasma membrane. Accumulating evidence demonstrates a crucial role for phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) in endocytosis, but specific roles for PtdIns(4)P other than as the biosynthetic precursor of PtdIns(4,5)P2 have not been clarified. In this study we investigated the role of PtdIns(4)P or PtdIns(4,5)P2 in receptor-mediated endocytosis through the construction of temperature-sensitive (ts) mutants for the PI 4-kinases Stt4p and Pik1p and the PtdIns(4) 5-kinase Mss4p. Quantitative analyses of endocytosis revealed that both the stt4(ts)pik1(ts) and mss4(ts) mutants have a severe defect in endocytic internalization. Live-cell imaging of endocytic protein dynamics in stt4(ts)pik1(ts) and mss4(ts) mutants revealed that PtdIns(4)P is required for the recruitment of the alpha-factor receptor Ste2p to clathrin-coated pits whereas PtdIns(4,5)P2 is required for membrane internalization. We also found that the localization to endocytic sites of the ENTH/ANTH domain-bearing clathrin adaptors, Ent1p/Ent2p and Yap1801p/Yap1802p, is significantly impaired in the stt4(ts)pik1(ts) mutant, but not in the mss4(ts) mutant. These results suggest distinct roles in successive steps for PtdIns(4)P and PtdIns(4,5)P2 during receptor-mediated endocytosis.
AU - Yamamoto, Wataru
AU - Wada, Suguru
AU - Nagano, Makoto
AU - Aoshima, Kaito
AU - Siekhaus, Daria E
AU - Toshima, Junko
AU - Toshima, Jiro
ID - 620
IS - 1
JF - Journal of Cell Science
TI - Distinct roles for plasma membrane PtdIns 4 P and PtdIns 4 5 P2 during yeast receptor mediated endocytosis
VL - 131
ER -
TY - JOUR
AB - African cichlids display a remarkable assortment of jaw morphologies, pigmentation patterns, and mating behaviors. In addition to this previously documented diversity, recent studies have documented a rich diversity of sex chromosomes within these fishes. Here we review the known sex-determination network within vertebrates, and the extraordinary number of sex chromosomes systems segregating in African cichlids. We also propose a model for understanding the unusual number of sex chromosome systems within this clade.
AU - Gammerdinger, William J
AU - Kocher, Thomas
ID - 63
IS - 10
JF - Genes
TI - Unusual diversity of sex chromosomes in African cichlid fishes
VL - 9
ER -
TY - JOUR
AB - We introduce a diagrammatic Monte Carlo approach to angular momentum properties of quantum many-particle systems possessing a macroscopic number of degrees of freedom. The treatment is based on a diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach is applicable at arbitrary coupling, is free of systematic errors and of finite-size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model; however, the method is quite general and can be applied to a broad variety of systems in which particles exchange quantum angular momentum with their many-body environment.
AU - Bighin, Giacomo
AU - Tscherbul, Timur
AU - Lemeshko, Mikhail
ID - 6339
IS - 16
JF - Physical Review Letters
TI - Diagrammatic Monte Carlo approach to angular momentum in quantum many-particle systems
VL - 121
ER -