TY - CONF AB - Turn-based stochastic games (aka simple stochastic games) are two-player zero-sum games played on directed graphs with probabilistic transitions. The goal of player-max is to maximize the probability to reach a target state against the adversarial player-min. These games lie in NP ∩ coNP and are among the rare combinatorial problems that belong to this complexity class for which the existence of polynomial-time algorithm is a major open question. While randomized sub-exponential time algorithm exists, all known deterministic algorithms require exponential time in the worst-case. An important open question has been whether faster algorithms can be obtained parametrized by the treewidth of the game graph. Even deterministic sub-exponential time algorithm for constant treewidth turn-based stochastic games has remain elusive. In this work our main result is a deterministic algorithm to solve turn-based stochastic games that, given a game with n states, treewidth at most t, and the bit-complexity of the probabilistic transition function log D, has running time O ((tn2 log D)t log n). In particular, our algorithm is quasi-polynomial time for games with constant or poly-logarithmic treewidth. AU - Chatterjee, Krishnendu AU - Meggendorfer, Tobias AU - Saona Urmeneta, Raimundo J AU - Svoboda, Jakub ID - 12676 SN - 9781611977554 T2 - Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms TI - Faster algorithm for turn-based stochastic games with bounded treewidth ER - TY - CHAP AB - Here we describe the in vivo DNA assembly approach, where molecular cloning procedures are performed using an E. coli recA-independent recombination pathway, which assembles linear fragments of DNA with short homologous termini. This pathway is present in all standard laboratory E. coli strains and, by bypassing the need for in vitro DNA assembly, allows simplified molecular cloning to be performed without the plasmid instability issues associated with specialized recombination-cloning bacterial strains. The methodology requires specific primer design and can perform all standard plasmid modifications (insertions, deletions, mutagenesis, and sub-cloning) in a rapid, simple, and cost-efficient manner, as it does not require commercial kits or specialized bacterial strains. Additionally, this approach can be used to perform complex procedures such as multiple modifications to a plasmid, as up to 6 linear fragments can be assembled in vivo by this recombination pathway. Procedures generally require less than 3 h, involving PCR amplification, DpnI digestion of template DNA, and transformation, upon which circular plasmids are assembled. In this chapter we describe the requirements, procedure, and potential pitfalls when using this technique, as well as protocol variations to overcome the most common issues. AU - Arroyo-Urea, Sandra AU - Watson, Jake AU - García-Nafría, Javier ED - Scarlett, Garry ID - 12720 SN - 1064-3745 T2 - DNA Manipulation and Analysis TI - Molecular Cloning Using In Vivo DNA Assembly VL - 2633 ER - TY - CONF AB - Asynchronous programming has gained significant popularity over the last decade: support for this programming pattern is available in many popular languages via libraries and native language implementations, typically in the form of coroutines or the async/await construct. Instead of programming via shared memory, this concept assumes implicit synchronization through message passing. The key data structure enabling such communication is the rendezvous channel. Roughly, a rendezvous channel is a blocking queue of size zero, so both send(e) and receive() operations wait for each other, performing a rendezvous when they meet. To optimize the message passing pattern, channels are usually equipped with a fixed-size buffer, so sends do not suspend and put elements into the buffer until its capacity is exceeded. This primitive is known as a buffered channel. This paper presents a fast and scalable algorithm for both rendezvous and buffered channels. Similarly to modern queues, our solution is based on an infinite array with two positional counters for send(e) and receive() operations, leveraging the unconditional Fetch-And-Add instruction to update them. Yet, the algorithm requires non-trivial modifications of this classic pattern, in order to support the full channel semantics, such as buffering and cancellation of waiting requests. We compare the performance of our solution to that of the Kotlin implementation, as well as against other academic proposals, showing up to 9.8× speedup. To showcase its expressiveness and performance, we also integrated the proposed algorithm into the standard Kotlin Coroutines library, replacing the previous channel implementations. AU - Koval, Nikita AU - Alistarh, Dan-Adrian AU - Elizarov, Roman ID - 12735 SN - 9798400700156 T2 - Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming TI - Fast and scalable channels in Kotlin Coroutines ER - TY - GEN AB - Although a wide variety of handcrafted concurrent data structures have been proposed, there is considerable interest in universal approaches (Universal Constructions or UCs) for building concurrent data structures. UCs (semi-)automatically convert a sequential data structure into a concurrent one. The simplest approach uses locks [3, 6] that protect a sequential data structure and allow only one process to access it at a time. However, the resulting data structure is blocking. Most work on UCs instead focuses on obtaining non-blocking progress guarantees such as obstruction-freedom, lock-freedom or wait-freedom. Many non-blocking UCs have appeared. Key examples include the seminal wait-free UC [2] by Herlihy, a NUMA-aware UC [10] by Yi et al., and an efficient UC for large objects [1] by Fatourou et al. AU - Aksenov, Vitaly AU - Brown, Trevor A AU - Fedorov, Alexander AU - Kokorin, Ilya ID - 12736 SN - 9798400700156 T2 - Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming TI - Unexpected scaling in path copying trees ER - TY - CONF AB - Dynamic programming (DP) is one of the fundamental paradigms in algorithm design. However, many DP algorithms have to fill in large DP tables, represented by two-dimensional arrays, which causes at least quadratic running times and space usages. This has led to the development of improved algorithms for special cases when the DPs satisfy additional properties like, e.g., the Monge property or total monotonicity. In this paper, we consider a new condition which assumes (among some other technical assumptions) that the rows of the DP table are monotone. Under this assumption, we introduce a novel data structure for computing (1 + ϵ)-approximate DP solutions in near-linear time and space in the static setting, and with polylogarithmic update times when the DP entries change dynamically. To the best of our knowledge, our new condition is incomparable to previous conditions and is the first which allows to derive dynamic algorithms based on existing DPs. Instead of using two-dimensional arrays to store the DP tables, we store the rows of the DP tables using monotone piecewise constant functions. This allows us to store length-n DP table rows with entries in [0, W] using only polylog(n, W) bits, and to perform operations, such as (min, +)-convolution or rounding, on these functions in polylogarithmic time. We further present several applications of our data structure. For bicriteria versions of k-balanced graph partitioning and simultaneous source location, we obtain the first dynamic algorithms with subpolynomial update times, as well as the first static algorithms using only near-linear time and space. Additionally, we obtain the currently fastest algorithm for fully dynamic knapsack. AU - Henzinger, Monika H AU - Neumann, Stefan AU - Räcke, Harald AU - Schmid, Stefan ID - 12760 SN - 1868-8969 T2 - 40th International Symposium on Theoretical Aspects of Computer Science TI - Dynamic maintenance of monotone dynamic programs and applications VL - 254 ER - TY - THES AB - The process of detecting and evaluating sensory information to guide behaviour is termed perceptual decision-making (PDM), and is critical for the ability of an organism to interact with its external world. Individuals with autism, a neurodevelopmental condition primarily characterised by social and communication difficulties, frequently exhibit altered sensory processing and PDM difficulties are widely reported. Recent technological advancements have pushed forward our understanding of the genetic changes accompanying this condition, however our understanding of how these mutations affect the function of specific neuronal circuits and bring about the corresponding behavioural changes remains limited. Here, we use an innate PDM task, the looming avoidance response (LAR) paradigm, to identify a convergent behavioural abnormality across three molecularly distinct genetic mouse models of autism (Cul3, Setd5 and Ptchd1). Although mutant mice can rapidly detect threatening visual stimuli, their responses are consistently delayed, requiring longer to initiate an appropriate response than their wild-type siblings. Mutant animals show abnormal adaptation in both their stimulus- evoked escape responses and exploratory dynamics following repeated stimulus presentations. Similarly delayed behavioural responses are observed in wild-type animals when faced with more ambiguous threats, suggesting the mutant phenotype could arise from a dysfunction in the flexible control of this PDM process. Our knowledge of the core neuronal circuitry mediating the LAR facilitated a detailed dissection of the neuronal mechanisms underlying the behavioural impairment. In vivo extracellular recording revealed that visual responses were unaffected within a key brain region for the rapid processing of visual threats, the superior colliculus (SC), indicating that the behavioural delay was unlikely to originate from sensory impairments. Delayed behavioural responses were recapitulated in the Setd5 model following optogenetic stimulation of the excitatory output neurons of the SC, which are known to mediate escape initiation through the activation of cells in the underlying dorsal periaqueductal grey (dPAG). In vitro patch-clamp recordings of dPAG cells uncovered a stark hypoexcitability phenotype in two out of the three genetic models investigated (Setd5 and Ptchd1), that in Setd5, is mediated by the misregulation of voltage-gated potassium channels. Overall, our results show that the ability to use visual information to drive efficient escape responses is impaired in three diverse genetic mouse models of autism and that, in one of the models studied, this behavioural delay likely originates from differences in the intrinsic excitability of a key subcortical node, the dPAG. Furthermore, this work showcases the use of an innate behavioural paradigm to mechanistically dissect PDM processes in autism. AU - Burnett, Laura ID - 12716 SN - 2663-337X TI - To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism ER - TY - CONF AB - The main idea behind BUBAAK is to run multiple program analyses in parallel and use runtime monitoring and enforcement to observe and control their progress in real time. The analyses send information about (un)explored states of the program and discovered invariants to a monitor. The monitor processes the received data and can force an analysis to stop the search of certain program parts (which have already been analyzed by other analyses), or to make it utilize a program invariant found by another analysis. At SV-COMP 2023, the implementation of data exchange between the monitor and the analyses was not yet completed, which is why BUBAAK only ran several analyses in parallel, without any coordination. Still, BUBAAK won the meta-category FalsificationOverall and placed very well in several other (sub)-categories of the competition. AU - Chalupa, Marek AU - Henzinger, Thomas A ID - 12854 SN - 0302-9743 T2 - Tools and Algorithms for the Construction and Analysis of Systems TI - Bubaak: Runtime monitoring of program verifiers VL - 13994 ER - TY - GEN AB - We present a formula for the signed area of a spherical polygon via prequantization. In contrast to the traditional formula based on the Gauss-Bonnet theorem that requires measuring angles, the new formula mimics Green's theorem and is applicable to a wider range of degenerate spherical curves and polygons. AU - Chern, Albert AU - Ishida, Sadashige ID - 12846 T2 - arXiv TI - Area formula for spherical polygons via prequantization ER - TY - CONF AB - As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both. We present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems. We implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch. AU - Chalupa, Marek AU - Mühlböck, Fabian AU - Muroya Lei, Stefanie AU - Henzinger, Thomas A ID - 12856 SN - 0302-9743 T2 - Fundamental Approaches to Software Engineering TI - Vamos: Middleware for best-effort third-party monitoring VL - 13991 ER - TY - GEN AB - As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both. We present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems. We implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch. AU - Chalupa, Marek AU - Mühlböck, Fabian AU - Muroya Lei, Stefanie AU - Henzinger, Thomas A ID - 12407 KW - runtime monitoring KW - best effort KW - third party TI - VAMOS: Middleware for Best-Effort Third-Party Monitoring ER - TY - CHAP AB - Autism spectrum disorder (ASD) and epilepsy are frequently comorbid neurodevelopmental disorders. Extensive research has demonstrated shared pathological pathways, etiologies, and phenotypes. Many risk factors for these disorders, like genetic mutations and environmental pressures, are linked to changes in childhood brain development, which is a critical period for their manifestation. Decades of research have yielded many signatures for ASD and epilepsy, some shared and others unique or opposing. The anatomical, physiological, and behavioral correlates of these disorders are discussed in this chapter in the context of understanding shared pathological pathways. We end with important takeaways on the presentation, prevention, intervention, and policy changes for ASD and epilepsy. This chapter aims to explore the complexity of these disorders, both in etiology and phenotypes, with the further goal of appreciating the expanse of unknowns still to explore about the brain. AU - Currin, Christopher AU - Beyer, Chad ED - Halpern-Felsher, Bonnie ID - 12866 SN - 9780128188736 T2 - Encyclopedia of Child and Adolescent Health TI - Altered childhood brain development in autism and epilepsy ER - TY - THES AB - Understanding the mechanisms of learning and memory formation has always been one of the main goals in neuroscience. Already Pavlov (1927) in his early days has used his classic conditioning experiments to study the neural mechanisms governing behavioral adaptation. What was not known back then was that the part of the brain that is largely responsible for this type of associative learning is the cerebellum. Since then, plenty of theories on cerebellar learning have emerged. Despite their differences, one thing they all have in common is that learning relies on synaptic and intrinsic plasticity. The goal of my PhD project was to unravel the molecular mechanisms underlying synaptic plasticity in two synapses that have been shown to be implicated in motor learning, in an effort to understand how learning and memory formation are processed in the cerebellum. One of the earliest and most well-known cerebellar theories postulates that motor learning largely depends on long-term depression at the parallel fiber-Purkinje cell (PC-PC) synapse. However, the discovery of other types of plasticity in the cerebellar circuitry, like long-term potentiation (LTP) at the PC-PC synapse, potentiation of molecular layer interneurons (MLIs), and plasticity transfer from the cortex to the cerebellar/ vestibular nuclei has increased the popularity of the idea that multiple sites of plasticity might be involved in learning. Still a lot remains unknown about the molecular mechanisms responsible for these types of plasticity and whether they occur during physiological learning. In the first part of this thesis we have analyzed the variation and nanodistribution of voltagegated calcium channels (VGCCs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid type glutamate receptors (AMPARs) on the parallel fiber-Purkinje cell synapse after vestibuloocular reflex phase reversal adaptation, a behavior that has been suggested to rely on PF-PC LTP. We have found that on the last day of adaptation there is no learning trace in form of VGCCs nor AMPARs variation at the PF-PC synapse, but instead a decrease in the number of PF-PC synapses. These data seem to support the view that learning is only stored in the cerebellar cortex in an initial learning phase, being transferred later to the vestibular nuclei. Next, we have studied the role of MLIs in motor learning using a relatively simple and well characterized behavioral paradigm – horizontal optokinetic reflex (HOKR) adaptation. We have found behavior-induced MLI potentiation in form of release probability increase that could be explained by the increase of VGCCs at the presynaptic side. Our results strengthen the idea of distributed cerebellar plasticity contributing to learning and provide a novel mechanism for release probability increase. AU - Alcarva, Catarina ID - 12809 SN - 2663 - 337X TI - Plasticity in the cerebellum: What molecular mechanisms are behind physiological learning ER - TY - JOUR AB - Background: Plant and animal embryogenesis have conserved and distinct features. Cell fate transitions occur during embryogenesis in both plants and animals. The epigenomic processes regulating plant embryogenesis remain largely elusive. Results: Here, we elucidate chromatin and transcriptomic dynamics during embryogenesis of the most cultivated crop, hexaploid wheat. Time-series analysis reveals stage-specific and proximal–distal distinct chromatin accessibility and dynamics concordant with transcriptome changes. Following fertilization, the remodeling kinetics of H3K4me3, H3K27ac, and H3K27me3 differ from that in mammals, highlighting considerable species-specific epigenomic dynamics during zygotic genome activation. Polycomb repressive complex 2 (PRC2)-mediated H3K27me3 deposition is important for embryo establishment. Later H3K27ac, H3K27me3, and chromatin accessibility undergo dramatic remodeling to establish a permissive chromatin environment facilitating the access of transcription factors to cis-elements for fate patterning. Embryonic maturation is characterized by increasing H3K27me3 and decreasing chromatin accessibility, which likely participates in restricting totipotency while preventing extensive organogenesis. Finally, epigenomic signatures are correlated with biased expression among homeolog triads and divergent expression after polyploidization, revealing an epigenomic contributor to subgenome diversification in an allohexaploid genome. Conclusions: Collectively, we present an invaluable resource for comparative and mechanistic analysis of the epigenomic regulation of crop embryogenesis. AU - Zhao, Long AU - Yang, Yiman AU - Chen, Jinchao AU - Lin, Xuelei AU - Zhang, Hao AU - Wang, Hao AU - Wang, Hongzhe AU - Bie, Xiaomin AU - Jiang, Jiafu AU - Feng, Xiaoqi AU - Fu, Xiangdong AU - Zhang, Xiansheng AU - Du, Zhuo AU - Xiao, Jun ID - 12668 JF - Genome Biology SN - 1474-760X TI - Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat VL - 24 ER - TY - JOUR AB - The multicomponent approach allows to incorporate several functionalities into a single covalent organic framework (COF) and consequently allows the construction of bifunctional materials for cooperative catalysis. The well-defined structure of such multicomponent COFs is furthermore ideally suited for structure-activity relationship studies. We report a series of multicomponent COFs that contain acridine- and 2,2’-bipyridine linkers connected through 1,3,5-benzenetrialdehyde derivatives. The acridine motif is responsible for broad light absorption, while the bipyridine unit enables complexation of nickel catalysts. These features enable the usage of the framework materials as catalysts for light-mediated carbon−heteroatom cross-couplings. Variation of the node units shows that the catalytic activity correlates to the keto-enamine tautomer isomerism. This allows switching between high charge-carrier mobility and persistent, localized charge-separated species depending on the nodes, a tool to tailor the materials for specific reactions. Moreover, nickel-loaded COFs are recyclable and catalyze cross-couplings even using red light irradiation. AU - Traxler, Michael AU - Reischauer, Susanne AU - Vogl, Sarah AU - Roeser, Jérôme AU - Rabeah, Jabor AU - Penschke, Christopher AU - Saalfrank, Peter AU - Pieber, Bartholomäus AU - Thomas, Arne ID - 12920 IS - 4 JF - Chemistry – A European Journal KW - General Chemistry KW - Catalysis KW - Organic Chemistry SN - 0947-6539 TI - Programmable photocatalytic activity of multicomponent covalent organic frameworks used as metallaphotocatalysts VL - 29 ER - TY - JOUR AB - Visible-light photocatalysis provides numerous useful methodologies for synthetic organic chemistry. However, the mechanisms of these reactions are often not fully understood. Common mechanistic experiments mainly aim to characterize excited state properties of photocatalysts and their interaction with other species. Recently, in situ reaction monitoring using dedicated techniques was shown to be well-suited for the identification of intermediates and to obtain kinetic insights, thereby providing more holistic pictures of the reactions of interest. This minireview surveys these technologies and discusses selected examples where reaction monitoring was used to elucidate the mechanism of photocatalytic reactions. AU - Madani, Amiera AU - Pieber, Bartholomäus ID - 12921 IS - 7 JF - ChemCatChem KW - Inorganic Chemistry KW - Organic Chemistry KW - Physical and Theoretical Chemistry KW - Catalysis SN - 1867-3880 TI - In situ reaction monitoring in photocatalytic organic synthesis VL - 15 ER - TY - JOUR AB - We report the visible light photocatalytic cleavage of trityl thioethers or ethers under pH-neutral conditions. The method results in the formation of the respective symmetrical disulfides and alcohols in moderate to excellent yield. The protocol only requires the addition of a suitable photocatalyst and light rendering it orthogonal to several functionalities, including acid labile protective groups. The same conditions can be used to directly convert trityl-protected thiols into unsymmetrical disulfides or selenosulfides, and to cleave trityl resins in solid phase organic synthesis. AU - Murakami, Sho AU - Brudy, Cosima AU - Bachmann, Moritz AU - Takemoto, Yoshiji AU - Pieber, Bartholomäus ID - 12919 IS - 09 JF - Synthesis KW - Organic Chemistry KW - Catalysis SN - 0039-7881 TI - Photocatalytic cleavage of trityl protected thiols and alcohols VL - 55 ER - TY - CONF AB - In this paper we introduce a pruning of the medial axis called the (λ,α)-medial axis (axλα). We prove that the (λ,α)-medial axis of a set K is stable in a Gromov-Hausdorff sense under weak assumptions. More formally we prove that if K and K′ are close in the Hausdorff (dH) sense then the (λ,α)-medial axes of K and K′ are close as metric spaces, that is the Gromov-Hausdorff distance (dGH) between the two is 1/4-Hölder in the sense that dGH (axλα(K),axλα(K′)) ≲ dH(K,K′)1/4. The Hausdorff distance between the two medial axes is also bounded, by dH (axλα(K),λα(K′)) ≲ dH(K,K′)1/2. These quantified stability results provide guarantees for practical computations of medial axes from approximations. Moreover, they provide key ingredients for studying the computability of the medial axis in the context of computable analysis. AU - Lieutier, André AU - Wintraecken, Mathijs ID - 13048 SN - 9781450399135 T2 - Proceedings of the 55th Annual ACM Symposium on Theory of Computing TI - Hausdorff and Gromov-Hausdorff stable subsets of the medial axis ER - TY - CONF AB - Deep neural networks (DNNs) often have to be compressed, via pruning and/or quantization, before they can be deployed in practical settings. In this work we propose a new compression-aware minimizer dubbed CrAM that modifies the optimization step in a principled way, in order to produce models whose local loss behavior is stable under compression operations such as pruning. Thus, dense models trained via CrAM should be compressible post-training, in a single step, without significant accuracy loss. Experimental results on standard benchmarks, such as residual networks for ImageNet classification and BERT models for language modelling, show that CrAM produces dense models that can be more accurate than the standard SGD/Adam-based baselines, but which are stable under weight pruning: specifically, we can prune models in one-shot to 70-80% sparsity with almost no accuracy loss, and to 90% with reasonable (∼1%) accuracy loss, which is competitive with gradual compression methods. Additionally, CrAM can produce sparse models which perform well for transfer learning, and it also works for semi-structured 2:4 pruning patterns supported by GPU hardware. The code for reproducing the results is available at this https URL . AU - Peste, Elena-Alexandra AU - Vladu, Adrian AU - Kurtic, Eldar AU - Lampert, Christoph AU - Alistarh, Dan-Adrian ID - 13053 T2 - 11th International Conference on Learning Representations TI - CrAM: A Compression-Aware Minimizer ER - TY - CONF AB - GIMPS and PrimeGrid are large-scale distributed projects dedicated to searching giant prime numbers, usually of special forms like Mersenne and Proth primes. The numbers in the current search-space are millions of digits large and the participating volunteers need to run resource-consuming primality tests. Once a candidate prime N has been found, the only way for another party to independently verify the primality of N used to be by repeating the expensive primality test. To avoid the need for second recomputation of each primality test, these projects have recently adopted certifying mechanisms that enable efficient verification of performed tests. However, the mechanisms presently in place only detect benign errors and there is no guarantee against adversarial behavior: a malicious volunteer can mislead the project to reject a giant prime as being non-prime. In this paper, we propose a practical, cryptographically-sound mechanism for certifying the non-primality of Proth numbers. That is, a volunteer can – parallel to running the primality test for N – generate an efficiently verifiable proof at a little extra cost certifying that N is not prime. The interactive protocol has statistical soundness and can be made non-interactive using the Fiat-Shamir heuristic. Our approach is based on a cryptographic primitive called Proof of Exponentiation (PoE) which, for a group G, certifies that a tuple (x,y,T)∈G2×N satisfies x2T=y (Pietrzak, ITCS 2019 and Wesolowski, J. Cryptol. 2020). In particular, we show how to adapt Pietrzak’s PoE at a moderate additional cost to make it a cryptographically-sound certificate of non-primality. AU - Hoffmann, Charlotte AU - Hubáček, Pavel AU - Kamath, Chethan AU - Pietrzak, Krzysztof Z ID - 13143 SN - 0302-9743 T2 - Public-Key Cryptography - PKC 2023 TI - Certifying giant nonprimes VL - 13940 ER - TY - CONF AB - Reinforcement learning has received much attention for learning controllers of deterministic systems. We consider a learner-verifier framework for stochastic control systems and survey recent methods that formally guarantee a conjunction of reachability and safety properties. Given a property and a lower bound on the probability of the property being satisfied, our framework jointly learns a control policy and a formal certificate to ensure the satisfaction of the property with a desired probability threshold. Both the control policy and the formal certificate are continuous functions from states to reals, which are learned as parameterized neural networks. While in the deterministic case, the certificates are invariant and barrier functions for safety, or Lyapunov and ranking functions for liveness, in the stochastic case the certificates are supermartingales. For certificate verification, we use interval arithmetic abstract interpretation to bound the expected values of neural network functions. AU - Chatterjee, Krishnendu AU - Henzinger, Thomas A AU - Lechner, Mathias AU - Zikelic, Dorde ID - 13142 SN - 0302-9743 T2 - Tools and Algorithms for the Construction and Analysis of Systems TI - A learner-verifier framework for neural network controllers and certificates of stochastic systems VL - 13993 ER -