TY - CONF
AB - We settle the complexity of the (Δ+1)-coloring and (Δ+1)-list coloring problems in the CONGESTED CLIQUE model by presenting a simple deterministic algorithm for both problems running in a constant number of rounds. This matches the complexity of the recent breakthrough randomized constant-round (Δ+1)-list coloring algorithm due to Chang et al. (PODC'19), and significantly improves upon the state-of-the-art O(logΔ)-round deterministic (Δ+1)-coloring bound of Parter (ICALP'18).
A remarkable property of our algorithm is its simplicity. Whereas the state-of-the-art randomized algorithms for this problem are based on the quite involved local coloring algorithm of Chang et al. (STOC'18), our algorithm can be described in just a few lines. At a high level, it applies a careful derandomization of a recursive procedure which partitions the nodes and their respective palettes into separate bins. We show that after O(1) recursion steps, the remaining uncolored subgraph within each bin has linear size, and thus can be solved locally by collecting it to a single node. This algorithm can also be implemented in the Massively Parallel Computation (MPC) model provided that each machine has linear (in n, the number of nodes in the input graph) space.
We also show an extension of our algorithm to the MPC regime in which machines have sublinear space: we present the first deterministic (Δ+1)-list coloring algorithm designed for sublinear-space MPC, which runs in O(logΔ+loglogn) rounds.
AU - Czumaj, Artur
AU - Davies, Peter
AU - Parter, Merav
ID - 7803
T2 - Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing
TI - Simple, deterministic, constant-round coloring in the congested clique
ER -
TY - JOUR
AB - Besides pro-inflammatory roles, the ancient cytokine interleukin-17 (IL-17) modulates neural circuit function. We investigate IL-17 signaling in neurons, and the extent it can alter organismal phenotypes. We combine immunoprecipitation and mass spectrometry to biochemically characterize endogenous signaling complexes that function downstream of IL-17 receptors in C. elegans neurons. We identify the paracaspase MALT-1 as a critical output of the pathway. MALT1 mediates signaling from many immune receptors in mammals, but was not previously implicated in IL-17 signaling or nervous system function. C. elegans MALT-1 forms a complex with homologs of Act1 and IRAK and appears to function both as a scaffold and a protease. MALT-1 is expressed broadly in the C. elegans nervous system, and neuronal IL-17–MALT-1 signaling regulates multiple phenotypes, including escape behavior, associative learning, immunity and longevity. Our data suggest MALT1 has an ancient role modulating neural circuit function downstream of IL-17 to remodel physiology and behavior.
AU - Flynn, Sean M.
AU - Chen, Changchun
AU - Artan, Murat
AU - Barratt, Stephen
AU - Crisp, Alastair
AU - Nelson, Geoffrey M.
AU - Peak-Chew, Sew Yeu
AU - Begum, Farida
AU - Skehel, Mark
AU - De Bono, Mario
ID - 7804
JF - Nature Communications
TI - MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity
VL - 11
ER -
TY - JOUR
AB - Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.
AU - Hurny, Andrej
AU - Cuesta, Candela
AU - Cavallari, Nicola
AU - Ötvös, Krisztina
AU - Duclercq, Jerome
AU - Dokládal, Ladislav
AU - Montesinos López, Juan C
AU - Gallemi, Marçal
AU - Semeradova, Hana
AU - Rauter, Thomas
AU - Stenzel, Irene
AU - Persiau, Geert
AU - Benade, Freia
AU - Bhalearo, Rishikesh
AU - Sýkorová, Eva
AU - Gorzsás, András
AU - Sechet, Julien
AU - Mouille, Gregory
AU - Heilmann, Ingo
AU - De Jaeger, Geert
AU - Ludwig-Müller, Jutta
AU - Benková, Eva
ID - 7805
JF - Nature Communications
TI - Synergistic on Auxin and Cytokinin 1 positively regulates growth and attenuates soil pathogen resistance
VL - 11
ER -
TY - CONF
AB - We consider the following decision problem EMBEDk→d in computational topology (where k ≤ d are fixed positive integers): Given a finite simplicial complex K of dimension k, does there exist a (piecewise-linear) embedding of K into ℝd?
The special case EMBED1→2 is graph planarity, which is decidable in linear time, as shown by Hopcroft and Tarjan. In higher dimensions, EMBED2→3 and EMBED3→3 are known to be decidable (as well as NP-hard), and recent results of Čadek et al. in computational homotopy theory, in combination with the classical Haefliger–Weber theorem in geometric topology, imply that EMBEDk→d can be solved in polynomial time for any fixed pair (k, d) of dimensions in the so-called metastable range .
Here, by contrast, we prove that EMBEDk→d is algorithmically undecidable for almost all pairs of dimensions outside the metastable range, namely for . This almost completely resolves the decidability vs. undecidability of EMBEDk→d in higher dimensions and establishes a sharp dichotomy between polynomial-time solvability and undecidability.
Our result complements (and in a wide range of dimensions strengthens) earlier results of Matoušek, Tancer, and the second author, who showed that EMBEDk→d is undecidable for 4 ≤ k ϵ {d – 1, d}, and NP-hard for all remaining pairs (k, d) outside the metastable range and satisfying d ≥ 4.
AU - Filakovský, Marek
AU - Wagner, Uli
AU - Zhechev, Stephan Y
ID - 7806
SN - 9781611975994
T2 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
TI - Embeddability of simplicial complexes is undecidable
VL - 2020-January
ER -
TY - CONF
AB - In a straight-line embedded triangulation of a point set P in the plane, removing an inner edge and—provided the resulting quadrilateral is convex—adding the other diagonal is called an edge flip. The (edge) flip graph has all triangulations as vertices, and a pair of triangulations is adjacent if they can be obtained from each other by an edge flip. The goal of this paper is to contribute to a better understanding of the flip graph, with an emphasis on its connectivity.
For sets in general position, it is known that every triangulation allows at least edge flips (a tight bound) which gives the minimum degree of any flip graph for n points. We show that for every point set P in general position, the flip graph is at least -vertex connected. Somewhat more strongly, we show that the vertex connectivity equals the minimum degree occurring in the flip graph, i.e. the minimum number of flippable edges in any triangulation of P, provided P is large enough. Finally, we exhibit some of the geometry of the flip graph by showing that the flip graph can be covered by 1-skeletons of polytopes of dimension (products of associahedra).
A corresponding result ((n – 3)-vertex connectedness) can be shown for the bistellar flip graph of partial triangulations, i.e. the set of all triangulations of subsets of P which contain all extreme points of P. This will be treated separately in a second part.
AU - Wagner, Uli
AU - Welzl, Emo
ID - 7807
SN - 9781611975994
T2 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
TI - Connectivity of triangulation flip graphs in the plane (Part I: Edge flips)
VL - 2020-January
ER -
TY - CONF
AB - Quantization converts neural networks into low-bit fixed-point computations which can be carried out by efficient integer-only hardware, and is standard practice for the deployment of neural networks on real-time embedded devices. However, like their real-numbered counterpart, quantized networks are not immune to malicious misclassification caused by adversarial attacks. We investigate how quantization affects a network’s robustness to adversarial attacks, which is a formal verification question. We show that neither robustness nor non-robustness are monotonic with changing the number of bits for the representation and, also, neither are preserved by quantization from a real-numbered network. For this reason, we introduce a verification method for quantized neural networks which, using SMT solving over bit-vectors, accounts for their exact, bit-precise semantics. We built a tool and analyzed the effect of quantization on a classifier for the MNIST dataset. We demonstrate that, compared to our method, existing methods for the analysis of real-numbered networks often derive false conclusions about their quantizations, both when determining robustness and when detecting attacks, and that existing methods for quantized networks often miss attacks. Furthermore, we applied our method beyond robustness, showing how the number of bits in quantization enlarges the gender bias of a predictor for students’ grades.
AU - Giacobbe, Mirco
AU - Henzinger, Thomas A
AU - Lechner, Mathias
ID - 7808
SN - 03029743
T2 - International Conference on Tools and Algorithms for the Construction and Analysis of Systems
TI - How many bits does it take to quantize your neural network?
VL - 12079
ER -
TY - JOUR
AB - Scientific research is to date largely restricted to wealthy laboratories in developed nations due to the necessity of complex and expensive equipment. This inequality limits the capacity of science to be used as a diplomatic channel. Maker movements use open-source technologies including additive manufacturing (3D printing) and laser cutting, together with low-cost computers for developing novel products. This movement is setting the groundwork for a revolution, allowing scientific equipment to be sourced at a fraction of the cost and has the potential to increase the availability of equipment for scientists around the world. Science education is increasingly recognized as another channel for science diplomacy. In this perspective, we introduce the idea that the Maker movement and open-source technologies have the potential to revolutionize science, technology, engineering and mathematics (STEM) education worldwide. We present an open-source STEM didactic tool called SCOPES (Sparking Curiosity through Open-source Platforms in Education and Science). SCOPES is self-contained, independent of local resources, and cost-effective. SCOPES can be adapted to communicate complex subjects from genetics to neurobiology, perform real-world biological experiments and explore digitized scientific samples. We envision such platforms will enhance science diplomacy by providing a means for scientists to share their findings with classrooms and for educators to incorporate didactic concepts into STEM lessons. By providing students the opportunity to design, perform, and share scientific experiments, students also experience firsthand the benefits of a multinational scientific community. We provide instructions on how to build and use SCOPES on our webpage: http://scopeseducation.org.
AU - Beattie, Robert J
AU - Hippenmeyer, Simon
AU - Pauler, Florian
ID - 7814
JF - Frontiers in Education
SN - 2504-284X
TI - SCOPES: Sparking curiosity through Open-Source platforms in education and science
VL - 5
ER -
TY - JOUR
AB - Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities nearing 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Here, we reveal two distinct reduction potentials for the chemical environments of 'free' and 'bound' water and that both contribute to SEI formation. Free-water is reduced ~1V above bound water in a hydrogen evolution reaction (HER) and responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability.
AU - Bouchal, Roza
AU - Li, Zhujie
AU - Bongu, Chandra
AU - Le Vot, Steven
AU - Berthelot, Romain
AU - Rotenberg, Benjamin
AU - Favier, Fréderic
AU - Freunberger, Stefan Alexander
AU - Salanne, Mathieu
AU - Fontaine, Olivier
ID - 7847
IS - 37
JF - Angewandte Chemie International Edition
SN - 1433-7851
TI - Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte
VL - 59
ER -
TY - JOUR
AB - Purpose of review: Cancer is one of the leading causes of death and the incidence rates are constantly rising. The heterogeneity of tumors poses a big challenge for the treatment of the disease and natural antibodies additionally affect disease progression. The introduction of engineered mAbs for anticancer immunotherapies has substantially improved progression-free and overall survival of cancer patients, but little efforts have been made to exploit other antibody isotypes than IgG.
Recent findings: In order to improve these therapies, ‘next-generation antibodies’ were engineered to enhance a specific feature of classical antibodies and form a group of highly effective and precise therapy compounds. Advanced antibody approaches include among others antibody-drug conjugates, glyco-engineered and Fc-engineered antibodies, antibody fragments, radioimmunotherapy compounds, bispecific antibodies and alternative (non-IgG) immunoglobulin classes, especially IgE.
Summary: The current review describes solutions for the needs of next-generation antibody therapies through different approaches. Careful selection of the best-suited engineering methodology is a key factor in developing personalized, more specific and more efficient mAbs against cancer to improve the outcomes of cancer patients. We highlight here the large evidence of IgE exploiting a highly cytotoxic effector arm as potential next-generation anticancer immunotherapy.
AU - Singer, Judit
AU - Singer, Josef
AU - Jensen-Jarolim, Erika
ID - 7864
IS - 3
JF - Current opinion in allergy and clinical immunology
TI - Precision medicine in clinical oncology: the journey from IgG antibody to IgE
VL - 20
ER -
TY - JOUR
AB - In this paper, we establish convergence to equilibrium for a drift–diffusion–recombination system modelling the charge transport within certain semiconductor devices. More precisely, we consider a two-level system for electrons and holes which is augmented by an intermediate energy level for electrons in so-called trapped states. The recombination dynamics use the mass action principle by taking into account this additional trap level. The main part of the paper is concerned with the derivation of an entropy–entropy production inequality, which entails exponential convergence to the equilibrium via the so-called entropy method. The novelty of our approach lies in the fact that the entropy method is applied uniformly in a fast-reaction parameter which governs the lifetime of electrons on the trap level. Thus, the resulting decay estimate for the densities of electrons and holes extends to the corresponding quasi-steady-state approximation.
AU - Fellner, Klemens
AU - Kniely, Michael
ID - 7866
JF - Journal of Elliptic and Parabolic Equations
SN - 22969020
TI - Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model
VL - 6
ER -
TY - JOUR
AB - Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence.
AU - Kopf, Aglaja
AU - Renkawitz, Jörg
AU - Hauschild, Robert
AU - Girkontaite, Irute
AU - Tedford, Kerry
AU - Merrin, Jack
AU - Thorn-Seshold, Oliver
AU - Trauner, Dirk
AU - Häcker, Hans
AU - Fischer, Klaus Dieter
AU - Kiermaier, Eva
AU - Sixt, Michael K
ID - 7875
IS - 6
JF - The Journal of Cell Biology
TI - Microtubules control cellular shape and coherence in amoeboid migrating cells
VL - 219
ER -
TY - JOUR
AB - In contrast to lymph nodes, the lymphoid regions of the spleen—the white pulp—are located deep within the organ, yielding the trafficking paths of T cells in the white pulp largely invisible. In an intravital microscopy tour de force reported in this issue of Immunity, Chauveau et al. show that T cells perform unidirectional, perivascular migration through the enigmatic marginal zone bridging channels.
AU - Sixt, Michael K
AU - Lämmermann, Tim
ID - 7876
IS - 5
JF - Immunity
SN - 10747613
TI - T cells: Bridge-and-channel commute to the white pulp
VL - 52
ER -
TY - JOUR
AB - The NIPBL/MAU2 heterodimer loads cohesin onto chromatin. Mutations inNIPBLaccount for most cases ofthe rare developmental disorder Cornelia de Lange syndrome (CdLS). Here we report aMAU2 variant causing CdLS, a deletion of seven amino acids that impairs the interaction between MAU2 and the NIPBL N terminus.Investigating this interaction, we discovered that MAU2 and the NIPBL N terminus are largely dispensable fornormal cohesin and NIPBL function in cells with a NIPBL early truncating mutation. Despite a predicted fataloutcome of an out-of-frame single nucleotide duplication inNIPBL, engineered in two different cell lines,alternative translation initiation yields a form of NIPBL missing N-terminal residues. This form cannot interactwith MAU2, but binds DNA and mediates cohesin loading. Altogether, our work reveals that cohesin loading can occur independently of functional NIPBL/MAU2 complexes and highlights a novel mechanism protectiveagainst out-of-frame mutations that is potentially relevant for other genetic conditions.
AU - Parenti, Ilaria
AU - Diab, Farah
AU - Gil, Sara Ruiz
AU - Mulugeta, Eskeatnaf
AU - Casa, Valentina
AU - Berutti, Riccardo
AU - Brouwer, Rutger W.W.
AU - Dupé, Valerie
AU - Eckhold, Juliane
AU - Graf, Elisabeth
AU - Puisac, Beatriz
AU - Ramos, Feliciano
AU - Schwarzmayr, Thomas
AU - Gines, Macarena Moronta
AU - Van Staveren, Thomas
AU - Van Ijcken, Wilfred F.J.
AU - Strom, Tim M.
AU - Pié, Juan
AU - Watrin, Erwan
AU - Kaiser, Frank J.
AU - Wendt, Kerstin S.
ID - 7877
IS - 7
JF - Cell Reports
TI - MAU2 and NIPBL variants impair the heterodimerization of the cohesin loader subunits and cause Cornelia de Lange syndrome
VL - 31
ER -
TY - JOUR
AB - Type 1 metabotropic glutamate receptors (mGluR1s) are key elements in neuronal signaling. While their function is well documented in slices, requirements for their activation in vivo are poorly understood. We examine this question in adult mice in vivo using 2-photon imaging of cerebellar molecular layer interneurons (MLIs) expressing GCaMP. In anesthetized mice, parallel fiber activation evokes beam-like Cai rises in postsynaptic MLIs which depend on co-activation of mGluR1s and ionotropic glutamate receptors (iGluRs). In awake mice, blocking mGluR1 decreases Cai rises associated with locomotion. In vitro studies and freeze-fracture electron microscopy show that the iGluR-mGluR1 interaction is synergistic and favored by close association of the two classes of receptors. Altogether our results suggest that mGluR1s, acting in synergy with iGluRs, potently contribute to processing cerebellar neuronal signaling under physiological conditions.
AU - Bao, Jin
AU - Graupner, Michael
AU - Astorga, Guadalupe
AU - Collin, Thibault
AU - Jalil, Abdelali
AU - Indriati, Dwi Wahyu
AU - Bradley, Jonathan
AU - Shigemoto, Ryuichi
AU - Llano, Isabel
ID - 7878
JF - eLife
TI - Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo
VL - 9
ER -
TY - JOUR
AB - Following its evoked release, dopamine (DA) signaling is rapidly terminated by presynaptic reuptake, mediated by the cocaine-sensitive DA transporter (DAT). DAT surface availability is dynamically regulated by endocytic trafficking, and direct protein kinase C (PKC) activation acutely diminishes DAT surface expression by accelerating DAT internalization. Previous cell line studies demonstrated that PKC-stimulated DAT endocytosis requires both Ack1 inactivation, which releases a DAT-specific endocytic brake, and the neuronal GTPase, Rit2, which binds DAT. However, it is unknown whether Rit2 is required for PKC-stimulated DAT endocytosis in DAergic terminals or whether there are region- and/or sex-dependent differences in PKC-stimulated DAT trafficking. Moreover, the mechanisms by which Rit2 controls PKC-stimulated DAT endocytosis are unknown. Here, we directly examined these important questions. Ex vivo studies revealed that PKC activation acutely decreased DAT surface expression selectively in ventral, but not dorsal, striatum. AAV-mediated, conditional Rit2 knockdown in DAergic neurons impacted baseline DAT surface:intracellular distribution in DAergic terminals from female ventral, but not dorsal, striatum. Further, Rit2 was required for PKC-stimulated DAT internalization in both male and female ventral striatum. FRET and surface pulldown studies in cell lines revealed that PKC activation drives DAT-Rit2 surface dissociation and that the DAT N terminus is required for both PKC-mediated DAT-Rit2 dissociation and DAT internalization. Finally, we found that Rit2 and Ack1 independently converge on DAT to facilitate PKC-stimulated DAT endocytosis. Together, our data provide greater insight into mechanisms that mediate PKC-regulated DAT internalization and reveal unexpected region-specific differences in PKC-stimulated DAT trafficking in bona fide DAergic terminals.
AU - Fagan, Rita R.
AU - Kearney, Patrick J.
AU - Sweeney, Carolyn G.
AU - Luethi, Dino
AU - Schoot Uiterkamp, Florianne E
AU - Schicker, Klaus
AU - Alejandro, Brian S.
AU - O'Connor, Lauren C.
AU - Sitte, Harald H.
AU - Melikian, Haley E.
ID - 7880
IS - 16
JF - Journal of Biological Chemistry
SN - 00219258
TI - Dopamine transporter trafficking and Rit2 GTPase: Mechanism of action and in vivo impact
VL - 295
ER -
TY - JOUR
AB - A few-body cluster is a building block of a many-body system in a gas phase provided the temperature at most is of the order of the binding energy of this cluster. Here we illustrate this statement by considering a system of tubes filled with dipolar distinguishable particles. We calculate the partition function, which determines the probability to find a few-body cluster at a given temperature. The input for our calculations—the energies of few-body clusters—is estimated using the harmonic approximation. We first describe and demonstrate the validity of our numerical procedure. Then we discuss the results featuring melting of the zero-temperature many-body state into a gas of free particles and few-body clusters. For temperature higher than its binding energy threshold, the dimers overwhelmingly dominate the ensemble, where the remaining probability is in free particles. At very high temperatures free (harmonic oscillator trap-bound) particle dominance is eventually reached. This structure evolution appears both for one and two particles in each layer providing crucial information about the behavior of ultracold dipolar gases. The investigation addresses the transition region between few- and many-body physics as a function of temperature using a system of ten dipoles in five tubes.
AU - Armstrong, Jeremy R.
AU - Jensen, Aksel S.
AU - Volosniev, Artem
AU - Zinner, Nikolaj T.
ID - 7882
IS - 4
JF - Mathematics
TI - Clusters in separated tubes of tilted dipoles
VL - 8
ER -
TY - JOUR
AB - All vertebrates have a spinal cord with dimensions and shape specific to their species. Yet how species‐specific organ size and shape are achieved is a fundamental unresolved question in biology. The formation and sculpting of organs begins during embryonic development. As it develops, the spinal cord extends in anterior–posterior direction in synchrony with the overall growth of the body. The dorsoventral (DV) and apicobasal lengths of the spinal cord neuroepithelium also change, while at the same time a characteristic pattern of neural progenitor subtypes along the DV axis is established and elaborated. At the basis of these changes in tissue size and shape are biophysical determinants, such as the change in cell number, cell size and shape, and anisotropic tissue growth. These processes are controlled by global tissue‐scale regulators, such as morphogen signaling gradients as well as mechanical forces. Current challenges in the field are to uncover how these tissue‐scale regulatory mechanisms are translated to the cellular and molecular level, and how regulation of distinct cellular processes gives rise to an overall defined size. Addressing these questions will help not only to achieve a better understanding of how size is controlled, but also of how tissue size is coordinated with the specification of pattern.
AU - Kuzmicz-Kowalska, Katarzyna
AU - Kicheva, Anna
ID - 7883
JF - Wiley Interdisciplinary Reviews: Developmental Biology
SN - 17597684
TI - Regulation of size and scale in vertebrate spinal cord development
ER -
TY - JOUR
AB - Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces1. Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling. When confined within three-dimensional environments, they use the topographical features of the substrate to propel themselves. Here the retrograde flow of the actin cytoskeleton follows the texture of the substrate, creating retrograde shear forces that are sufficient to drive the cell body forwards. Notably, adhesion-dependent and adhesion-independent migration are not mutually exclusive, but rather are variants of the same principle of coupling retrograde actin flow to the environment and thus can potentially operate interchangeably and simultaneously. As adhesion-free migration is independent of the chemical composition of the environment, it renders cells completely autonomous in their locomotive behaviour.
AU - Reversat, Anne
AU - Gärtner, Florian R
AU - Merrin, Jack
AU - Stopp, Julian A
AU - Tasciyan, Saren
AU - Aguilera Servin, Juan L
AU - De Vries, Ingrid
AU - Hauschild, Robert
AU - Hons, Miroslav
AU - Piel, Matthieu
AU - Callan-Jones, Andrew
AU - Voituriez, Raphael
AU - Sixt, Michael K
ID - 7885
JF - Nature
SN - 00280836
TI - Cellular locomotion using environmental topography
VL - 582
ER -
TY - JOUR
AB - Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order.
AU - Schauer, Alexandra
AU - Nunes Pinheiro, Diana C
AU - Hauschild, Robert
AU - Heisenberg, Carl-Philipp J
ID - 7888
JF - eLife
SN - 2050-084X
TI - Zebrafish embryonic explants undergo genetically encoded self-assembly
VL - 9
ER -
TY - THES
AB - A search problem lies in the complexity class FNP if a solution to the given instance of the problem can be verified efficiently. The complexity class TFNP consists of all search problems in FNP that are total in the sense that a solution is guaranteed to exist. TFNP contains a host of interesting problems from fields such as algorithmic game theory, computational topology, number theory and combinatorics. Since TFNP is a semantic class, it is unlikely to have a complete problem. Instead, one studies its syntactic subclasses which are defined based on the combinatorial principle used to argue totality. Of particular interest is the subclass PPAD, which contains important problems
like computing Nash equilibrium for bimatrix games and computational counterparts of several fixed-point theorems as complete. In the thesis, we undertake the study of averagecase hardness of TFNP, and in particular its subclass PPAD.
Almost nothing was known about average-case hardness of PPAD before a series of recent results showed how to achieve it using a cryptographic primitive called program obfuscation.
However, it is currently not known how to construct program obfuscation from standard cryptographic assumptions. Therefore, it is desirable to relax the assumption under which average-case hardness of PPAD can be shown. In the thesis we take a step in this direction. First, we show that assuming the (average-case) hardness of a numbertheoretic
problem related to factoring of integers, which we call Iterated-Squaring, PPAD is hard-on-average in the random-oracle model. Then we strengthen this result to show that the average-case hardness of PPAD reduces to the (adaptive) soundness of the Fiat-Shamir Transform, a well-known technique used to compile a public-coin interactive protocol into a non-interactive one. As a corollary, we obtain average-case hardness for PPAD in the random-oracle model assuming the worst-case hardness of #SAT. Moreover, the above results can all be strengthened to obtain average-case hardness for the class CLS ⊆ PPAD.
Our main technical contribution is constructing incrementally-verifiable procedures for computing Iterated-Squaring and #SAT. By incrementally-verifiable, we mean that every intermediate state of the computation includes a proof of its correctness, and the proof can be updated and verified in polynomial time. Previous constructions of such procedures relied on strong, non-standard assumptions. Instead, we introduce a technique called recursive proof-merging to obtain the same from weaker assumptions.
AU - Kamath Hosdurg, Chethan
ID - 7896
TI - On the average-case hardness of total search problems
ER -
TY - JOUR
AB - We investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1355–1370, ACM, New York, 2012), and the cohomology stratification algorithm given in Nanda (Found. Comput. Math. 20(2), 195–222, 2020). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (Rev. Mat. Complut. 31(3), 545–593, 2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms.
AU - Brown, Adam
AU - Wang, Bei
ID - 7905
JF - Discrete and Computational Geometry
SN - 0179-5376
TI - Sheaf-theoretic stratification learning from geometric and topological perspectives
ER -
TY - JOUR
AB - Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca2+ currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca2+ currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca2+ influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses.
AU - Wang, Han Ying
AU - Eguchi, Kohgaku
AU - Yamashita, Takayuki
AU - Takahashi, Tomoyuki
ID - 7908
IS - 21
JF - Journal of Neuroscience
TI - Frequency-dependent block of excitatory neurotransmission by isoflurane via dual presynaptic mechanisms
VL - 40
ER -
TY - JOUR
AB - Cell migration entails networks and bundles of actin filaments termed lamellipodia and microspikes or filopodia, respectively, as well as focal adhesions, all of which recruit Ena/VASP family members hitherto thought to antagonize efficient cell motility. However, we find these proteins to act as positive regulators of migration in different murine cell lines. CRISPR/Cas9-mediated loss of Ena/VASP proteins reduced lamellipodial actin assembly and perturbed lamellipodial architecture, as evidenced by changed network geometry as well as reduction of filament length and number that was accompanied by abnormal Arp2/3 complex and heterodimeric capping protein accumulation. Loss of Ena/VASP function also abolished the formation of microspikes normally embedded in lamellipodia, but not of filopodia capable of emanating without lamellipodia. Ena/VASP-deficiency also impaired integrin-mediated adhesion accompanied by reduced traction forces exerted through these structures. Our data thus uncover novel Ena/VASP functions of these actin polymerases that are fully consistent with their promotion of cell migration.
AU - Damiano-Guercio, Julia
AU - Kurzawa, Laëtitia
AU - Müller, Jan
AU - Dimchev, Georgi A
AU - Schaks, Matthias
AU - Nemethova, Maria
AU - Pokrant, Thomas
AU - Brühmann, Stefan
AU - Linkner, Joern
AU - Blanchoin, Laurent
AU - Sixt, Michael K
AU - Rottner, Klemens
AU - Faix, Jan
ID - 7909
JF - eLife
TI - Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion
VL - 9
ER -
TY - JOUR
AB - We explore the time evolution of two impurities in a trapped one-dimensional Bose gas that follows a change of the boson-impurity interaction. We study the induced impurity-impurity interactions and their effect on the quench dynamics. In particular, we report on the size of the impurity cloud, the impurity-impurity entanglement, and the impurity-impurity correlation function. The presented numerical simulations are based upon the variational multilayer multiconfiguration time-dependent Hartree method for bosons. To analyze and quantify induced impurity-impurity correlations, we employ an effective two-body Hamiltonian with a contact interaction. We show that the effective model consistent with the mean-field attraction of two heavy impurities explains qualitatively our results for weak interactions. Our findings suggest that the quench dynamics in cold-atom systems can be a tool for studying impurity-impurity correlations.
AU - Mistakidis, S. I.
AU - Volosniev, Artem
AU - Schmelcher, P.
ID - 7919
JF - Physical Review Research
SN - 2643-1564
TI - Induced correlations between impurities in a one-dimensional quenched Bose gas
VL - 2
ER -
TY - JOUR
AB - In this paper, we introduce a relaxed CQ method with alternated inertial step for solving split feasibility problems. We give convergence of the sequence generated by our method under some suitable assumptions. Some numerical implementations from sparse signal and image deblurring are reported to show the efficiency of our method.
AU - Shehu, Yekini
AU - Gibali, Aviv
ID - 7925
JF - Optimization Letters
SN - 1862-4472
TI - New inertial relaxed method for solving split feasibilities
ER -
TY - JOUR
AB - In the course of sample preparation for Next Generation Sequencing (NGS), DNA is fragmented by various methods. Fragmentation shows a persistent bias with regard to the cleavage rates of various dinucleotides. With the exception of CpG dinucleotides the previously described biases were consistent with results of the DNA cleavage in solution. Here we computed cleavage rates of all dinucleotides including the methylated CpG and unmethylated CpG dinucleotides using data of the Whole Genome Sequencing datasets of the 1000 Genomes project. We found that the cleavage rate of CpG is significantly higher for the methylated CpG dinucleotides. Using this information, we developed a classifier for distinguishing cancer and healthy tissues based on their CpG islands statuses of the fragmentation. A simple Support Vector Machine classifier based on this algorithm shows an accuracy of 84%. The proposed method allows the detection of epigenetic markers purely based on mechanochemical DNA fragmentation, which can be detected by a simple analysis of the NGS sequencing data.
AU - Uroshlev, Leonid A.
AU - Abdullaev, Eldar T.
AU - Umarova, Iren R.
AU - Il’Icheva, Irina A.
AU - Panchenko, Larisa A.
AU - Polozov, Robert V.
AU - Kondrashov, Fyodor
AU - Nechipurenko, Yury D.
AU - Grokhovsky, Sergei L.
ID - 7931
JF - Scientific Reports
TI - A method for identification of the methylation level of CpG islands from NGS data
VL - 10
ER -
TY - JOUR
AB - Pulsating flows through tubular geometries are laminar provided that velocities are moderate. This in particular is also believed to apply to cardiovascular flows where inertial forces are typically too low to sustain turbulence. On the other hand, flow instabilities and fluctuating shear stresses are held responsible for a variety of cardiovascular diseases. Here we report a nonlinear instability mechanism for pulsating pipe flow that gives rise to bursts of turbulence at low flow rates. Geometrical distortions of small, yet finite, amplitude are found to excite a state consisting of helical vortices during flow deceleration. The resulting flow pattern grows rapidly in magnitude, breaks down into turbulence, and eventually returns to laminar when the flow accelerates. This scenario causes shear stress fluctuations and flow reversal during each pulsation cycle. Such unsteady conditions can adversely affect blood vessels and have been shown to promote inflammation and dysfunction of the shear stress-sensitive endothelial cell layer.
AU - Xu, Duo
AU - Varshney, Atul
AU - Ma, Xingyu
AU - Song, Baofang
AU - Riedl, Michael
AU - Avila, Marc
AU - Hof, Björn
ID - 7932
IS - 21
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 00278424
TI - Nonlinear hydrodynamic instability and turbulence in pulsatile flow
VL - 117
ER -
TY - JOUR
AB - We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem, we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a correlation function between the internal and the orbital angular momentum operators. The strong-coupling regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the states that exhibit strong interaction with the surroundings. The results might find applications in such fields as spintronics or topological insulators where spin-orbit coupling is of crucial importance.
AU - Maslov, Mikhail
AU - Lemeshko, Mikhail
AU - Yakaboylu, Enderalp
ID - 7933
IS - 18
JF - Physical Review B
SN - 24699950
TI - Synthetic spin-orbit coupling mediated by a bosonic environment
VL - 101
ER -
TY - CONF
AB - State-of-the-art detection systems are generally evaluated on their ability to exhaustively retrieve objects densely distributed in the image, across a wide variety of appearances and semantic categories. Orthogonal to this, many real-life object detection applications, for example in remote sensing, instead require dealing with large images that contain only a few small objects of a single class, scattered heterogeneously across the space. In addition, they are often subject to strict computational constraints, such as limited battery capacity and computing power.To tackle these more practical scenarios, we propose a novel flexible detection scheme that efficiently adapts to variable object sizes and densities: We rely on a sequence of detection stages, each of which has the ability to predict groups of objects as well as individuals. Similar to a detection cascade, this multi-stage architecture spares computational effort by discarding large irrelevant regions of the image early during the detection process. The ability to group objects provides further computational and memory savings, as it allows working with lower image resolutions in early stages, where groups are more easily detected than individuals, as they are more salient. We report experimental results on two aerial image datasets, and show that the proposed method is as accurate yet computationally more efficient than standard single-shot detectors, consistently across three different backbone architectures.
AU - Royer, Amélie
AU - Lampert, Christoph
ID - 7936
SN - 9781728165530
T2 - IEEE Winter Conference on Applications of Computer Vision
TI - Localizing grouped instances for efficient detection in low-resource scenarios
ER -
TY - CONF
AB - Fine-tuning is a popular way of exploiting knowledge contained in a pre-trained convolutional network for a new visual recognition task. However, the orthogonal setting of transferring knowledge from a pretrained network to a visually different yet semantically close source is rarely considered: This commonly happens with real-life data, which is not necessarily as clean as the training source (noise, geometric transformations, different modalities, etc.).To tackle such scenarios, we introduce a new, generalized form of fine-tuning, called flex-tuning, in which any individual unit (e.g. layer) of a network can be tuned, and the most promising one is chosen automatically. In order to make the method appealing for practical use, we propose two lightweight and faster selection procedures that prove to be good approximations in practice. We study these selection criteria empirically across a variety of domain shifts and data scarcity scenarios, and show that fine-tuning individual units, despite its simplicity, yields very good results as an adaptation technique. As it turns out, in contrast to common practice, rather than the last fully-connected unit it is best to tune an intermediate or early one in many domain- shift scenarios, which is accurately detected by flex-tuning.
AU - Royer, Amélie
AU - Lampert, Christoph
ID - 7937
SN - 9781728165530
T2 - 2020 IEEE Winter Conference on Applications of Computer Vision
TI - A flexible selection scheme for minimum-effort transfer learning
ER -
TY - JOUR
AB - We design fast deterministic algorithms for distance computation in the Congested Clique model. Our key contributions include:
A (2+ϵ)-approximation for all-pairs shortest paths in O(log2n/ϵ) rounds on unweighted undirected graphs. With a small additional additive factor, this also applies for weighted graphs. This is the first sub-polynomial constant-factor approximation for APSP in this model.
A (1+ϵ)-approximation for multi-source shortest paths from O(n−−√) sources in O(log2n/ϵ) rounds on weighted undirected graphs. This is the first sub-polynomial algorithm obtaining this approximation for a set of sources of polynomial size.
Our main techniques are new distance tools that are obtained via improved algorithms for sparse matrix multiplication, which we leverage to construct efficient hopsets and shortest paths. Furthermore, our techniques extend to additional distance problems for which we improve upon the state-of-the-art, including diameter approximation, and an exact single-source shortest paths algorithm for weighted undirected graphs in O~(n1/6) rounds.
AU - Censor-Hillel, Keren
AU - Dory, Michal
AU - Korhonen, Janne
AU - Leitersdorf, Dean
ID - 7939
JF - Distributed Computing
SN - 01782770
TI - Fast approximate shortest paths in the congested clique
ER -
TY - JOUR
AB - We prove that the Yangian associated to an untwisted symmetric affine Kac–Moody Lie algebra is isomorphic to the Drinfeld double of a shuffle algebra. The latter is constructed in [YZ14] as an algebraic formalism of cohomological Hall algebras. As a consequence, we obtain the Poincare–Birkhoff–Witt (PBW) theorem for this class of affine Yangians. Another independent proof of the PBW theorem is given recently by Guay, Regelskis, and Wendlandt [GRW18].
AU - Yang, Yaping
AU - Zhao, Gufang
ID - 7940
JF - Transformation Groups
SN - 10834362
TI - The PBW theorem for affine Yangians
VL - 25
ER -
TY - JOUR
AB - An understanding of the missing antinodal electronic excitations in the pseudogap state is essential for uncovering the physics of the underdoped cuprate high-temperature superconductors1,2,3,4,5,6. The majority of high-temperature experiments performed thus far, however, have been unable to discern whether the antinodal states are rendered unobservable due to their damping or whether they vanish due to their gapping7,8,9,10,11,12,13,14,15,16,17,18. Here, we distinguish between these two scenarios by using quantum oscillations to examine whether the small Fermi surface pocket, found to occupy only 2% of the Brillouin zone in the underdoped cuprates19,20,21,22,23,24, exists in isolation against a majority of completely gapped density of states spanning the antinodes, or whether it is thermodynamically coupled to a background of ungapped antinodal states. We find that quantum oscillations associated with the small Fermi surface pocket exhibit a signature sawtooth waveform characteristic of an isolated two-dimensional Fermi surface pocket25,26,27,28,29,30,31,32. This finding reveals that the antinodal states are destroyed by a hard gap that extends over the majority of the Brillouin zone, placing strong constraints on a drastic underlying origin of quasiparticle disappearance over almost the entire Brillouin zone in the pseudogap regime7,8,9,10,11,12,13,14,15,16,17,18.
AU - Hartstein, Máté
AU - Hsu, Yu Te
AU - Modic, Kimberly A
AU - Porras, Juan
AU - Loew, Toshinao
AU - Tacon, Matthieu Le
AU - Zuo, Huakun
AU - Wang, Jinhua
AU - Zhu, Zengwei
AU - Chan, Mun K.
AU - Mcdonald, Ross D.
AU - Lonzarich, Gilbert G.
AU - Keimer, Bernhard
AU - Sebastian, Suchitra E.
AU - Harrison, Neil
ID - 7942
JF - Nature Physics
SN - 17452473
TI - Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors
VL - 16
ER -
TY - THES
AB - This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph.
For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton.
In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars.
AU - Masárová, Zuzana
ID - 7944
KW - reconfiguration
KW - reconfiguration graph
KW - triangulations
KW - flip
KW - constrained triangulations
KW - shellability
KW - piecewise-linear balls
KW - token swapping
KW - trees
KW - coloured weighted token swapping
SN - 978-3-99078-005-3
TI - Reconfiguration problems
ER -
TY - JOUR
AB - In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule for plant growth, development and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). In addition, our present study shows that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene expression in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing cell wall remodeling required for overlying tissues separation during LRP emergence. Both NRT1.1-mediated repression of TAR2 and LAX3 are suppressed at high nitrate availability, resulting in the nitrate induction of TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously anticipated in regulating the nitrate response of root system architecture.
AU - Maghiaoui, A
AU - Bouguyon, E
AU - Cuesta, Candela
AU - Perrine-Walker, F
AU - Alcon, C
AU - Krouk, G
AU - Benková, Eva
AU - Nacry, P
AU - Gojon, A
AU - Bach, L
ID - 7948
IS - 15
JF - Journal of Experimental Botany
SN - 0022-0957
TI - The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate
VL - 71
ER -
TY - CONF
AB - Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate vector-valued smooth function f: ℝ^d → ℝ^(d-n). A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently fine triangulation 𝒯. This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fréchet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary.
AU - Boissonnat, Jean-Daniel
AU - Wintraecken, Mathijs
ID - 7952
SN - 1868-8969
T2 - 36th International Symposium on Computational Geometry
TI - The topological correctness of PL-approximations of isomanifolds
VL - 164
ER -
TY - CONF
AB - Simple stochastic games are turn-based 2½-player games with a reachability objective. The basic question asks whether one player can ensure reaching a given target with at least a given probability. A natural extension is games with a conjunction of such conditions as objective. Despite a plethora of recent results on the analysis of systems with multiple objectives, the decidability of this basic problem remains open. In this paper, we present an algorithm approximating the Pareto frontier of the achievable values to a given precision. Moreover, it is an anytime algorithm, meaning it can be stopped at any time returning the current approximation and its error bound.
AU - Ashok, Pranav
AU - Chatterjee, Krishnendu
AU - Kretinsky, Jan
AU - Weininger, Maximilian
AU - Winkler, Tobias
ID - 7955
SN - 9781450371049
T2 - Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science
TI - Approximating values of generalized-reachability stochastic games
ER -
TY - JOUR
AB - We introduce dynamically warping grids for adaptive liquid simulation. Our primary contributions are a strategy for dynamically deforming regular grids over the course of a simulation and a method for efficiently utilizing these deforming grids for liquid simulation. Prior work has shown that unstructured grids are very effective for adaptive fluid simulations. However, unstructured grids often lead to complicated implementations and a poor cache hit rate due to inconsistent memory access. Regular grids, on the other hand, provide a fast, fixed memory access pattern and straightforward implementation. Our method combines the advantages of both: we leverage the simplicity of regular grids while still achieving practical and controllable spatial adaptivity. We demonstrate that our method enables adaptive simulations that are fast, flexible, and robust to null-space issues. At the same time, our method is simple to implement and takes advantage of existing highly-tuned algorithms.
AU - Hikaru, Ibayashi
AU - Wojtan, Christopher J
AU - Thuerey, Nils
AU - Igarashi, Takeo
AU - Ando, Ryoichi
ID - 5681
IS - 6
JF - IEEE Transactions on Visualization and Computer Graphics
SN - 10772626
TI - Simulating liquids on dynamically warping grids
VL - 26
ER -
TY - JOUR
AB - We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models.
AU - Alt, Johannes
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6184
IS - 2
JF - Annals of Probability
TI - Correlated random matrices: Band rigidity and edge universality
VL - 48
ER -
TY - JOUR
AB - For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner–Dyson–Mehta universality conjecture for the last remaining universality type in the complex Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp for both symmetry classes. This result is also the key input in the companion paper (Cipolloni et al. in Pure Appl Anal, 2018. arXiv:1811.04055) where the cusp universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is also essential for the recent results on the spectral radius of non-Hermitian random matrices (Alt et al. in Spectral radius of random matrices with independent entries, 2019. arXiv:1907.13631), and the non-Hermitian edge universality (Cipolloni et al. in Edge universality for non-Hermitian random matrices, 2019. arXiv:1908.00969).
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6185
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Cusp universality for random matrices I: Local law and the complex Hermitian case
VL - 378
ER -
TY - JOUR
AB - We study dynamical optimal transport metrics between density matricesassociated to symmetric Dirichlet forms on finite-dimensional C∗-algebras. Our settingcovers arbitrary skew-derivations and it provides a unified framework that simultaneously generalizes recently constructed transport metrics for Markov chains, Lindblad equations, and the Fermi Ornstein–Uhlenbeck semigroup. We develop a non-nommutative differential calculus that allows us to obtain non-commutative Ricci curvature bounds, logarithmic Sobolev inequalities, transport-entropy inequalities, andspectral gap estimates.
AU - Carlen, Eric A.
AU - Maas, Jan
ID - 6358
IS - 2
JF - Journal of Statistical Physics
SN - 00224715
TI - Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems
VL - 178
ER -
TY - JOUR
AB - The strong rate of convergence of the Euler-Maruyama scheme for nondegenerate SDEs with irregular drift coefficients is considered. In the case of α-Hölder drift in the recent literature the rate α/2 was proved in many related situations. By exploiting the regularising effect of the noise more efficiently, we show that the rate is in fact arbitrarily close to 1/2 for all α>0. The result extends to Dini continuous coefficients, while in d=1 also to all bounded measurable coefficients.
AU - Dareiotis, Konstantinos
AU - Gerencser, Mate
ID - 6359
JF - Electronic Journal of Probability
TI - On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift
VL - 25
ER -
TY - JOUR
AB - We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix W˜ and its minor W. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of W˜ and W. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.
AU - Cipolloni, Giorgio
AU - Erdös, László
ID - 6488
IS - 3
JF - Random Matrices: Theory and Application
SN - 20103263
TI - Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices
VL - 9
ER -
TY - JOUR
AB - This paper presents two algorithms. The first decides the existence of a pointed homotopy between given simplicial maps 𝑓,𝑔:𝑋→𝑌, and the second computes the group [𝛴𝑋,𝑌]∗ of pointed homotopy classes of maps from a suspension; in both cases, the target Y is assumed simply connected. More generally, these algorithms work relative to 𝐴⊆𝑋.
AU - Filakovský, Marek
AU - Vokřínek, Lukas
ID - 6563
JF - Foundations of Computational Mathematics
SN - 16153375
TI - Are two given maps homotopic? An algorithmic viewpoint
VL - 20
ER -
TY - JOUR
AB - We consider the monotone variational inequality problem in a Hilbert space and describe a projection-type method with inertial terms under the following properties: (a) The method generates a strongly convergent iteration sequence; (b) The method requires, at each iteration, only one projection onto the feasible set and two evaluations of the operator; (c) The method is designed for variational inequality for which the underline operator is monotone and uniformly continuous; (d) The method includes an inertial term. The latter is also shown to speed up the convergence in our numerical results. A comparison with some related methods is given and indicates that the new method is promising.
AU - Shehu, Yekini
AU - Li, Xiao-Huan
AU - Dong, Qiao-Li
ID - 6593
JF - Numerical Algorithms
SN - 1017-1398
TI - An efficient projection-type method for monotone variational inequalities in Hilbert spaces
VL - 84
ER -
TY - JOUR
AB - While Hartree–Fock theory is well established as a fundamental approximation for interacting fermions, it has been unclear how to describe corrections to it due to many-body correlations. In this paper we start from the Hartree–Fock state given by plane waves and introduce collective particle–hole pair excitations. These pairs can be approximately described by a bosonic quadratic Hamiltonian. We use Bogoliubov theory to construct a trial state yielding a rigorous Gell-Mann–Brueckner–type upper bound to the ground state energy. Our result justifies the random-phase approximation in the mean-field scaling regime, for repulsive, regular interaction potentials.
AU - Benedikter, Niels P
AU - Nam, Phan Thành
AU - Porta, Marcello
AU - Schlein, Benjamin
AU - Seiringer, Robert
ID - 6649
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Optimal upper bound for the correlation energy of a Fermi gas in the mean-field regime
VL - 374
ER -
TY - JOUR
AB - Fitting a function by using linear combinations of a large number N of `simple' components is one of the most fruitful ideas in statistical learning. This idea lies at the core of a variety of methods, from two-layer neural networks to kernel regression, to boosting. In general, the resulting risk minimization problem is non-convex and is solved by gradient descent or its variants. Unfortunately, little is known about global convergence properties of these approaches.
Here we consider the problem of learning a concave function f on a compact convex domain Ω⊆ℝd, using linear combinations of `bump-like' components (neurons). The parameters to be fitted are the centers of N bumps, and the resulting empirical risk minimization problem is highly non-convex. We prove that, in the limit in which the number of neurons diverges, the evolution of gradient descent converges to a Wasserstein gradient flow in the space of probability distributions over Ω. Further, when the bump width δ tends to 0, this gradient flow has a limit which is a viscous porous medium equation. Remarkably, the cost function optimized by this gradient flow exhibits a special property known as displacement convexity, which implies exponential convergence rates for N→∞, δ→0. Surprisingly, this asymptotic theory appears to capture well the behavior for moderate values of δ,N. Explaining this phenomenon, and understanding the dependence on δ,N in a quantitative manner remains an outstanding challenge.
AU - Javanmard, Adel
AU - Mondelli, Marco
AU - Montanari, Andrea
ID - 6748
IS - 6
JF - Annals of Statistics
TI - Analysis of a two-layer neural network via displacement convexity
VL - 48
ER -
TY - JOUR
AB - In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability.
AU - Avni, Guy
AU - Henzinger, Thomas A
AU - Kupferman, Orna
ID - 6761
JF - Theoretical Computer Science
SN - 03043975
TI - Dynamic resource allocation games
VL - 807
ER -
TY - JOUR
AB - Nearby grid cells have been observed to express a remarkable degree of long-rangeorder, which is often idealized as extending potentially to infinity. Yet their strict peri-odic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent grid maps inferred in the lab relevant to chart their way in their natural habitat? We consider spheres as simple models of curved environments and waiting for the appropriate experiments to be performed, we use our adaptation model to predict what grid maps would emerge in a network with the same type of recurrent connections, which on the plane produce coherence among the units. We find that on the sphere such connections distort the maps that single grid units would express on their own, and aggregate them into clusters. When remapping to a different spherical environment, units in each cluster maintain only partial coherence, similar to what is observed in disordered materials, such as spin glasses.
AU - Stella, Federico
AU - Urdapilleta, Eugenio
AU - Luo, Yifan
AU - Treves, Alessandro
ID - 6796
IS - 4
JF - Hippocampus
SN - 10509631
TI - Partial coherence and frustration in self-organizing spherical grids
VL - 30
ER -
TY - JOUR
AB - Super-resolution fluorescence microscopy has become an important catalyst for discovery in the life sciences. In STimulated Emission Depletion (STED) microscopy, a pattern of light drives fluorophores from a signal-emitting on-state to a non-signalling off-state. Only emitters residing in a sub-diffraction volume around an intensity minimum are allowed to fluoresce, rendering them distinguishable from the nearby, but dark fluorophores. STED routinely achieves resolution in the few tens of nanometers range in biological samples and is suitable for live imaging. Here, we review the working principle of STED and provide general guidelines for successful STED imaging. The strive for ever higher resolution comes at the cost of increased light burden. We discuss techniques to reduce light exposure and mitigate its detrimental effects on the specimen. These include specialized illumination strategies as well as protecting fluorophores from photobleaching mediated by high-intensity STED light. This opens up the prospect of volumetric imaging in living cells and tissues with diffraction-unlimited resolution in all three spatial dimensions.
AU - Jahr, Wiebke
AU - Velicky, Philipp
AU - Danzl, Johann G
ID - 6808
IS - 3
JF - Methods
SN - 1046-2023
TI - Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens
VL - 174
ER -
TY - JOUR
AB - We present a unified framework tackling two problems: class-specific 3D reconstruction from a single image, and generation of new 3D shape samples. These tasks have received considerable attention recently; however, most existing approaches rely on 3D supervision, annotation of 2D images with keypoints or poses, and/or training with multiple views of each object instance. Our framework is very general: it can be trained in similar settings to existing approaches, while also supporting weaker supervision. Importantly, it can be trained purely from 2D images, without pose annotations, and with only a single view per instance. We employ meshes as an output representation, instead of voxels used in most prior work. This allows us to reason over lighting parameters and exploit shading information during training, which previous 2D-supervised methods cannot. Thus, our method can learn to generate and reconstruct concave object classes. We evaluate our approach in various settings, showing that: (i) it learns to disentangle shape from pose and lighting; (ii) using shading in the loss improves performance compared to just silhouettes; (iii) when using a standard single white light, our model outperforms state-of-the-art 2D-supervised methods, both with and without pose supervision, thanks to exploiting shading cues; (iv) performance improves further when using multiple coloured lights, even approaching that of state-of-the-art 3D-supervised methods; (v) shapes produced by our model capture smooth surfaces and fine details better than voxel-based approaches; and (vi) our approach supports concave classes such as bathtubs and sofas, which methods based on silhouettes cannot learn.
AU - Henderson, Paul M
AU - Ferrari, Vittorio
ID - 6952
JF - International Journal of Computer Vision
SN - 0920-5691
TI - Learning single-image 3D reconstruction by generative modelling of shape, pose and shading
VL - 128
ER -
TY - JOUR
AB - The central object of investigation of this paper is the Hirzebruch class, a deformation of the Todd class, given by Hirzebruch (for smooth varieties). The generalization for singular varieties is due to Brasselet–Schürmann–Yokura. Following the work of Weber, we investigate its equivariant version for (possibly singular) toric varieties. The local decomposition of the Hirzebruch class to the fixed points of the torus action and a formula for the local class in terms of the defining fan are recalled. After this review part, we prove the positivity of local Hirzebruch classes for all toric varieties, thus proving false the alleged counterexample given by Weber.
AU - Rychlewicz, Kamil P
ID - 6965
JF - Bulletin of the London Mathematical Society
SN - 0024-6093
TI - The positivity of local equivariant Hirzebruch class for toric varieties
ER -
TY - JOUR
AB - Origami is rapidly transforming the design of robots1,2, deployable structures3,4,5,6 and metamaterials7,8,9,10,11,12,13,14. However, as foldability requires a large number of complex compatibility conditions that are difficult to satisfy, the design of crease patterns is limited to heuristics and computer optimization. Here we introduce a systematic strategy that enables intuitive and effective design of complex crease patterns that are guaranteed to fold. First, we exploit symmetries to construct 140 distinct foldable motifs, and represent these as jigsaw puzzle pieces. We then show that when these pieces are fitted together they encode foldable crease patterns. This maps origami design to solving combinatorial problems, which allows us to systematically create, count and classify a vast number of crease patterns. We show that all of these crease patterns are pluripotent—capable of folding into multiple shapes—and solve exactly for the number of possible shapes for each pattern. Finally, we employ our framework to rationally design a crease pattern that folds into two independently defined target shapes, and fabricate such pluripotent origami. Our results provide physicists, mathematicians and engineers with a powerful new design strategy.
AU - Dieleman, Peter
AU - Vasmel, Niek
AU - Waitukaitis, Scott R
AU - van Hecke, Martin
ID - 6976
IS - 1
JF - Nature Physics
SN - 1745-2473
TI - Jigsaw puzzle design of pluripotent origami
VL - 16
ER -
TY - JOUR
AU - Zhang, Yuzhou
AU - Friml, Jiří
ID - 6997
IS - 3
JF - New Phytologist
SN - 0028-646x
TI - Auxin guides roots to avoid obstacles during gravitropic growth
VL - 225
ER -
TY - JOUR
AB - We define an action of the (double of) Cohomological Hall algebra of Kontsevich and Soibelman on the cohomology of the moduli space of spiked instantons of Nekrasov. We identify this action with the one of the affine Yangian of gl(1). Based on that we derive the vertex algebra at the corner Wr1,r2,r3 of Gaiotto and Rapčák. We conjecture that our approach works for a big class of Calabi–Yau categories, including those associated with toric Calabi–Yau 3-folds.
AU - Rapcak, Miroslav
AU - Soibelman, Yan
AU - Yang, Yaping
AU - Zhao, Gufang
ID - 7004
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Cohomological Hall algebras, vertex algebras and instantons
VL - 376
ER -
TY - JOUR
AB - Removal of the Bax gene from mice completely protects the somas of retinal ganglion cells (RGCs) from apoptosis following optic nerve injury. This makes BAX a promising therapeutic target to prevent neurodegeneration. In this study, Bax+/− mice were used to test the hypothesis that lowering the quantity of BAX in RGCs would delay apoptosis following optic nerve injury. RGCs were damaged by performing optic nerve crush (ONC) and then immunostaining for phospho-cJUN, and quantitative PCR were used to monitor the status of the BAX activation mechanism in the months following injury. The apoptotic susceptibility of injured cells was directly tested by virally introducing GFP-BAX into Bax−/− RGCs after injury. The competency of quiescent RGCs to reactivate their BAX activation mechanism was tested by intravitreal injection of the JNK pathway agonist, anisomycin. Twenty-four weeks after ONC, Bax+/− mice had significantly less cell loss in their RGC layer than Bax+/+ mice 3 weeks after ONC. Bax+/− and Bax+/+ RGCs exhibited similar patterns of nuclear phospho-cJUN accumulation immediately after ONC, which persisted in Bax+/− RGCs for up to 7 weeks before abating. The transcriptional activation of BAX-activating genes was similar in Bax+/− and Bax+/+ RGCs following ONC. Intriguingly, cells deactivated their BAX activation mechanism between 7 and 12 weeks after crush. Introduction of GFP-BAX into Bax−/− cells at 4 weeks after ONC showed that these cells had a nearly normal capacity to activate this protein, but this capacity was lost 8 weeks after crush. Collectively, these data suggest that 8–12 weeks after crush, damaged cells no longer displayed increased susceptibility to BAX activation relative to their naïve counterparts. In this same timeframe, retinal glial activation and the signaling of the pro-apoptotic JNK pathway also abated. Quiescent RGCs did not show a timely reactivation of their JNK pathway following intravitreal injection with anisomycin. These findings demonstrate that lowering the quantity of BAX in RGCs is neuroprotective after acute injury. Damaged RGCs enter a quiescent state months after injury and are no longer responsive to an apoptotic stimulus. Quiescent RGCs will require rejuvenation to reacquire functionality.
AU - Donahue, RJ
AU - Maes, Margaret E
AU - Grosser, JA
AU - Nickells, RW
ID - 7033
IS - 2
JF - Molecular Neurobiology
SN - 0893-7648
TI - BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage
VL - 57
ER -
TY - JOUR
AB - The unusual correlated state that emerges in URu2Si2 below THO = 17.5 K is known as “hidden order” because even basic characteristics of the order parameter, such as its dimensionality (whether it has one component or two), are “hidden.” We use resonant ultrasound spectroscopy to measure the symmetry-resolved elastic anomalies across THO. We observe no anomalies in the shear elastic moduli, providing strong thermodynamic evidence for a one-component order parameter. We develop a machine learning framework that reaches this conclusion directly from the raw data, even in a crystal that is too small for traditional resonant ultrasound. Our result rules out a broad class of theories of hidden order based on two-component order parameters, and constrains the nature of the fluctuations from which unconventional superconductivity emerges at lower temperature. Our machine learning framework is a powerful new tool for classifying the ubiquitous competing orders in correlated electron systems.
AU - Ghosh, Sayak
AU - Matty, Michael
AU - Baumbach, Ryan
AU - Bauer, Eric D.
AU - Modic, Kimberly A
AU - Shekhter, Arkady
AU - Mydosh, J. A.
AU - Kim, Eun-Ah
AU - Ramshaw, B. J.
ID - 7084
IS - 10
JF - Science Advances
TI - One-component order parameter in URu2Si2 uncovered by resonant ultrasound spectroscopy and machine learning
VL - 6
ER -
TY - JOUR
AB - We consider dynamical transport metrics for probability measures on discretisations of a bounded convex domain in ℝd. These metrics are natural discrete counterparts to the Kantorovich metric 𝕎2, defined using a Benamou-Brenier type formula. Under mild assumptions we prove an asymptotic upper bound for the discrete transport metric Wt in terms of 𝕎2, as the size of the mesh T tends to 0. However, we show that the corresponding lower bound may fail in general, even on certain one-dimensional and symmetric two-dimensional meshes. In addition, we show that the asymptotic lower bound holds under an isotropy assumption on the mesh, which turns out to be essentially necessary. This assumption is satisfied, e.g., for tilings by convex regular polygons, and it implies Gromov-Hausdorff convergence of the transport metric.
AU - Gladbach, Peter
AU - Kopfer, Eva
AU - Maas, Jan
ID - 71
IS - 3
JF - SIAM Journal on Mathematical Analysis
SN - 00361410
TI - Scaling limits of discrete optimal transport
VL - 52
ER -
TY - JOUR
AB - The phytohormone auxin acts as an amazingly versatile coordinator of plant growth and development. With its morphogen-like properties, auxin controls sites and timing of differentiation and/or growth responses both, in quantitative and qualitative terms. Specificity in the auxin response depends largely on distinct modes of signal transmission, by which individual cells perceive and convert auxin signals into a remarkable diversity of responses. The best understood, or so-called canonical mechanism of auxin perception ultimately results in variable adjustments of the cellular transcriptome, via a short, nuclear signal transduction pathway. Additional findings that accumulated over decades implied that an additional, presumably, cell surface-based auxin perception mechanism mediates very rapid cellular responses and decisively contributes to the cell's overall hormonal response. Recent investigations into both, nuclear and cell surface auxin signalling challenged this assumed partition of roles for different auxin signalling pathways and revealed an unexpected complexity in transcriptional and non-transcriptional cellular responses mediated by auxin.
AU - Gallei, Michelle C
AU - Luschnig, C
AU - Friml, Jiří
ID - 7142
IS - 2
JF - Current Opinion in Plant Biology
SN - 1369-5266
TI - Auxin signalling in growth: Schrödinger's cat out of the bag
VL - 53
ER -
TY - JOUR
AB - In the worldwide endeavor for disruptive quantum technologies, germanium is emerging as a versatile material to realize devices capable of encoding, processing, or transmitting quantum information. These devices leverage special properties of the germanium valence-band states, commonly known as holes, such as their inherently strong spin-orbit coupling and the ability to host superconducting pairing correlations. In this Review, we initially introduce the physics of holes in low-dimensional germanium structures with key insights from a theoretical perspective. We then examine the material science progress underpinning germanium-based planar heterostructures and nanowires. We review the most significant experimental results demonstrating key building blocks for quantum technology, such as an electrically driven universal quantum gate set with spin qubits in quantum dots and superconductor-semiconductor devices for hybrid quantum systems. We conclude by identifying the most promising prospects
toward scalable quantum information processing.
AU - Scappucci, Giordano
AU - Kloeffel, Christoph
AU - Zwanenburg, Floris A.
AU - Loss, Daniel
AU - Myronov, Maksym
AU - Zhang, Jian-Jun
AU - Franceschi, Silvano De
AU - Katsaros, Georgios
AU - Veldhorst, Menno
ID - 8911
JF - Nature Reviews Materials
TI - The germanium quantum information route
ER -
TY - JOUR
AB - Amyotrophic lateral sclerosis (ALS) leads to a loss of specific motor neuron populations in the spinal cord and cortex. Emerging evidence suggests that interneurons may also be affected, but a detailed characterization of interneuron loss and its potential impacts on motor neuron loss and disease progression is lacking. To examine this issue, the fate of V1 inhibitory neurons during ALS was assessed in the ventral spinal cord using the SODG93A mouse model. The V1 population makes up ∼30% of all ventral inhibitory neurons, ∼50% of direct inhibitory synaptic contacts onto motor neuron cell bodies, and is thought to play a key role in modulating motor output, in part through recurrent and reciprocal inhibitory circuits. We find that approximately half of V1 inhibitory neurons are lost in SODG93A mice at late disease stages, but that this loss is delayed relative to the loss of motor neurons and V2a excitatory neurons. We further identify V1 subpopulations based on transcription factor expression that are differentially susceptible to degeneration in SODG93A mice. At an early disease stage, we show that V1 synaptic contacts with motor neuron cell bodies increase, suggesting an upregulation of inhibition before V1 neurons are lost in substantial numbers. These data support a model in which progressive changes in V1 synaptic contacts early in disease, and in select V1 subpopulations at later stages, represent a compensatory upregulation and then deleterious breakdown of specific interneuron circuits within the spinal cord.
AU - Salamatina, Alina
AU - Yang, Jerry H
AU - Brenner-Morton, Susan
AU - Bikoff, Jay B
AU - Fang, Linjing
AU - Kintner, Christopher R
AU - Jessell, Thomas M
AU - Sweeney, Lora Beatrice Jaeger
ID - 8914
JF - Neuroscience
SN - 0306-4522
TI - Differential loss of spinal interneurons in a mouse model of ALS
VL - 450
ER -
TY - JOUR
AB - Maintaining fertility in a fluctuating environment is key to the reproductive success of flowering plants. Meiosis and pollen formation are particularly sensitive to changes in growing conditions, especially temperature. We have previously identified cyclin-dependent kinase G1 (CDKG1) as a master regulator of temperature-dependent meiosis and this may involve the regulation of alternative splicing (AS), including of its own transcript. CDKG1 mRNA can undergo several AS events, potentially producing two protein variants: CDKG1L and CDKG1S, differing in their N-terminal domain which may be involved in co-factor interaction. In leaves, both isoforms have distinct temperature-dependent functions on target mRNA processing, but their role in pollen development is unknown. In the present study, we characterize the role of CDKG1L and CDKG1S in maintaining Arabidopsis fertility. We show that the long (L) form is necessary and sufficient to rescue the fertility defects of the cdkg1-1 mutant, while the short (S) form is unable to rescue fertility. On the other hand, an extra copy of CDKG1L reduces fertility. In addition, mutation of the ATP binding pocket of the kinase indicates that kinase activity is necessary for the function of CDKG1. Kinase mutants of CDKG1L and CDKG1S correctly localize to the cell nucleus and nucleus and cytoplasm, respectively, but are unable to rescue either the fertility or the splicing defects of the cdkg1-1 mutant. Furthermore, we show that there is partial functional overlap between CDKG1 and its paralog CDKG2 that could in part be explained by overlapping gene expression.
AU - Nibau, Candida
AU - Dadarou, Despoina
AU - Kargios, Nestoras
AU - Mallioura, Areti
AU - Fernandez-Fuentes, Narcis
AU - Cavallari, Nicola
AU - Doonan, John H.
ID - 8924
JF - Frontiers in Plant Science
TI - A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis
VL - 11
ER -
TY - JOUR
AB - Bimetallic nanoparticles with tailored size and specific composition have shown promise as stable and selective catalysts for electrochemical reduction of CO2 (CO2R) in batch systems. Yet, limited effort was devoted to understand the effect of ligand coverage and postsynthesis treatments on CO2 reduction, especially under industrially applicable conditions, such as at high currents (>100 mA/cm2) using gas diffusion electrodes (GDE) and flow reactors. In this work, Cu–Ag core–shell nanoparticles (11 ± 2 nm) were prepared with three different surface modes: (i) capped with oleylamine, (ii) capped with monoisopropylamine, and (iii) surfactant-free with a reducing borohydride agent; Cu–Ag (OAm), Cu–Ag (MIPA), and Cu–Ag (NaBH4), respectively. The ligand exchange and removal was evidenced by infrared spectroscopy (ATR-FTIR) analysis, whereas high-resolution scanning transmission electron microscopy (HAADF-STEM) showed their effect on the interparticle distance and nanoparticle rearrangement. Later on, we developed a process-on-substrate method to track these effects on CO2R. Cu–Ag (OAm) gave a lower on-set potential for hydrocarbon production, whereas Cu–Ag (MIPA) and Cu–Ag (NaBH4) promoted syngas production. The electrochemical impedance and surface area analysis on the well-controlled electrodes showed gradual increases in the electrical conductivity and active surface area after each surface treatment. We found that the increasing amount of the triple phase boundaries (the meeting point for the electron–electrolyte–CO2 reactant) affect the required electrode potential and eventually the C+2e̅/C2e̅ product ratio. This study highlights the importance of the electron transfer to those active sites affected by the capping agents—particularly on larger substrates that are crucial for their industrial application.
AU - Irtem, Erdem
AU - Arenas Esteban, Daniel
AU - Duarte, Miguel
AU - Choukroun, Daniel
AU - Lee, Seungho
AU - Ibáñez, Maria
AU - Bals, Sara
AU - Breugelmans, Tom
ID - 8926
IS - 22
JF - ACS Catalysis
TI - Ligand-mode directed selectivity in Cu-Ag core-shell based gas diffusion electrodes for CO2 electroreduction
VL - 10
ER -
TY - DATA
AB - Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial “growth laws,” which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems.
AU - Kavcic, Bor
ID - 8930
KW - Escherichia coli
KW - antibiotic combinations
KW - translation
KW - growth laws
KW - drug interactions
KW - bacterial physiology
KW - translation inhibitors
TI - Analysis scripts and research data for the paper "Minimal biophysical model of combined antibiotic action"
ER -
TY - JOUR
AB - We quantise Whitney’s construction to prove the existence of a triangulation for any C^2 manifold, so that we get an algorithm with explicit bounds. We also give a new elementary proof, which is completely geometric.
AU - Boissonnat, Jean-Daniel
AU - Kachanovich, Siargey
AU - Wintraecken, Mathijs
ID - 8940
JF - Discrete & Computational Geometry
KW - Theoretical Computer Science
KW - Computational Theory and Mathematics
KW - Geometry and Topology
KW - Discrete Mathematics and Combinatorics
SN - 0179-5376
TI - Triangulating submanifolds: An elementary and quantified version of Whitney’s method
ER -
TY - JOUR
AB - The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone salicylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-independent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuticals in plants and provide insights into the molecular mechanism underlying the cellular action of this class of anti-inflammatory compounds.
AU - Tan, Shutang
AU - Di Donato, Martin
AU - Glanc, Matous
AU - Zhang, Xixi
AU - Klíma, Petr
AU - Liu, Jie
AU - Bailly, Aurélien
AU - Ferro, Noel
AU - Petrášek, Jan
AU - Geisler, Markus
AU - Friml, Jiří
ID - 8943
IS - 9
JF - Cell Reports
TI - Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development
VL - 33
ER -
TY - JOUR
AB - Superconductor insulator transition in transverse magnetic field is studied in the highly disordered MoC film with the product of the Fermi momentum and the mean free path kF*l close to unity. Surprisingly, the Zeeman paramagnetic effects dominate over orbital coupling on both sides of the transition. In superconducting state it is evidenced by a high upper critical magnetic field 𝐵𝑐2, by its square root dependence on temperature, as well as by the Zeeman splitting of the quasiparticle density of states (DOS) measured by scanning tunneling microscopy. At 𝐵𝑐2 a logarithmic anomaly in DOS is observed. This anomaly is further enhanced in increasing magnetic field, which is explained by the Zeeman splitting of the Altshuler-Aronov DOS driving
the system into a more insulating or resistive state. Spin dependent Altshuler-Aronov correction is also needed to explain the transport behavior above 𝐵𝑐2.
AU - Zemlicka, Martin
AU - Kopčík, M.
AU - Szabó, P.
AU - Samuely, T.
AU - Kačmarčík, J.
AU - Neilinger, P.
AU - Grajcar, M.
AU - Samuely, P.
ID - 8944
IS - 18
JF - Physical Review B
SN - 24699950
TI - Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field
VL - 102
ER -
TY - JOUR
AB - Development of the nervous system undergoes important transitions, including one from neurogenesis to gliogenesis which occurs late during embryonic gestation. Here we report on clonal analysis of gliogenesis in mice using Mosaic Analysis with Double Markers (MADM) with quantitative and computational methods. Results reveal that developmental gliogenesis in the cerebral cortex occurs in a fraction of earlier neurogenic clones, accelerating around E16.5, and giving rise to both astrocytes and oligodendrocytes. Moreover, MADM-based genetic deletion of the epidermal growth factor receptor (Egfr) in gliogenic clones revealed that Egfr is cell autonomously required for gliogenesis in the mouse dorsolateral cortices. A broad range in the proliferation capacity, symmetry of clones, and competitive advantage of MADM cells was evident in clones that contained one cellular lineage with double dosage of Egfr relative to their environment, while their sibling Egfr-null cells failed to generate glia. Remarkably, the total numbers of glia in MADM clones balance out regardless of significant alterations in clonal symmetries. The variability in glial clones shows stochastic patterns that we define mathematically, which are different from the deterministic patterns in neuronal clones. This study sets a foundation for studying the biological significance of stochastic and deterministic clonal principles underlying tissue development, and identifying mechanisms that differentiate between neurogenesis and gliogenesis.
AU - Zhang, Xuying
AU - Mennicke, Christine V.
AU - Xiao, Guanxi
AU - Beattie, Robert J
AU - Haider, Mansoor
AU - Hippenmeyer, Simon
AU - Ghashghaei, H. Troy
ID - 8949
IS - 12
JF - Cells
SN - 2073-4409
TI - Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage
VL - 9
ER -
TY - JOUR
AB - Skeletal muscle activity is continuously modulated across physiologic states to provide coordination, flexibility and responsiveness to body tasks and external inputs. Despite the central role the muscular system plays in facilitating vital body functions, the network of brain-muscle interactions required to control hundreds of muscles and synchronize their activation in relation to distinct physiologic states has not been investigated. Recent approaches have focused on general associations between individual brain rhythms and muscle activation during movement tasks. However, the specific forms of coupling, the functional network of cortico-muscular coordination, and how network structure and dynamics are modulated by autonomic regulation across physiologic states remains unknown. To identify and quantify the cortico-muscular interaction network and uncover basic features of neuro-autonomic control of muscle function, we investigate the coupling between synchronous bursts in cortical rhythms and peripheral muscle activation during sleep and wake. Utilizing the concept of time delay stability and a novel network physiology approach, we find that the brain-muscle network exhibits complex dynamic patterns of communication involving multiple brain rhythms across cortical locations and different electromyographic frequency bands. Moreover, our results show that during each physiologic state the cortico-muscular network is characterized by a specific profile of network links strength, where particular brain rhythms play role of main mediators of interaction and control. Further, we discover a hierarchical reorganization in network structure across physiologic states, with high connectivity and network link strength during wake, intermediate during REM and light sleep, and low during deep sleep, a sleep-stage stratification that demonstrates a unique association between physiologic states and cortico-muscular network structure. The reported empirical observations are consistent across individual subjects, indicating universal behavior in network structure and dynamics, and high sensitivity of cortico-muscular control to changes in autonomic regulation, even at low levels of physical activity and muscle tone during sleep. Our findings demonstrate previously unrecognized basic principles of brain-muscle network communication and control, and provide new perspectives on the regulatory mechanisms of brain dynamics and locomotor activation, with potential clinical implications for neurodegenerative, movement and sleep disorders, and for developing efficient treatment strategies.
AU - Rizzo, Rossella
AU - Zhang, Xiyun
AU - Wang, Jilin W.J.L.
AU - Lombardi, Fabrizio
AU - Ivanov, Plamen Ch
ID - 8955
JF - Frontiers in Physiology
TI - Network physiology of cortico–muscular interactions
VL - 11
ER -
TY - JOUR
AB - Global tissue tension anisotropy has been shown to trigger stereotypical cell division orientation by elongating mitotic cells along the main tension axis. Yet, how tissue tension elongates mitotic cells despite those cells undergoing mitotic rounding (MR) by globally upregulating cortical actomyosin tension remains unclear. We addressed this question by taking advantage of ascidian embryos, consisting of a small number of interphasic and mitotic blastomeres and displaying an invariant division pattern. We found that blastomeres undergo MR by locally relaxing cortical tension at their apex, thereby allowing extrinsic pulling forces from neighboring interphasic blastomeres to polarize their shape and thus division orientation. Consistently, interfering with extrinsic forces by reducing the contractility of interphasic blastomeres or disrupting the establishment of asynchronous mitotic domains leads to aberrant mitotic cell division orientations. Thus, apical relaxation during MR constitutes a key mechanism by which tissue tension anisotropy controls stereotypical cell division orientation.
AU - Godard, Benoit G
AU - Dumollard, Rémi
AU - Munro, Edwin
AU - Chenevert, Janet
AU - Hebras, Céline
AU - Mcdougall, Alex
AU - Heisenberg, Carl-Philipp J
ID - 8957
IS - 6
JF - Developmental Cell
SN - 15345807
TI - Apical relaxation during mitotic rounding promotes tension-oriented cell division
VL - 55
ER -
TY - THES
AB - The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment.
In this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath.
With this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states.
For the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.
AU - Li, Xiang
ID - 8958
SN - 2663-337X
TI - Rotation of coupled cold molecules in the presence of a many-body environment
ER -
TY - JOUR
AB - During development, a single cell is transformed into a highly complex organism through progressive cell division, specification and rearrangement. An important prerequisite for the emergence of patterns within the developing organism is to establish asymmetries at various scales, ranging from individual cells to the entire embryo, eventually giving rise to the different body structures. This becomes especially apparent during gastrulation, when the earliest major lineage restriction events lead to the formation of the different germ layers. Traditionally, the unfolding of the developmental program from symmetry breaking to germ layer formation has been studied by dissecting the contributions of different signaling pathways and cellular rearrangements in the in vivo context of intact embryos. Recent efforts, using the intrinsic capacity of embryonic stem cells to self-assemble and generate embryo-like structures de novo, have opened new avenues for understanding the many ways by which an embryo can be built and the influence of extrinsic factors therein. Here, we discuss and compare divergent and conserved strategies leading to germ layer formation in embryos as compared to in vitro systems, their upstream molecular cascades and the role of extrinsic factors in this process.
AU - Schauer, Alexandra
AU - Heisenberg, Carl-Philipp J
ID - 8966
JF - Developmental Biology
KW - Developmental Biology
KW - Cell Biology
KW - Molecular Biology
SN - 0012-1606
TI - Reassembling gastrulation
ER -
TY - JOUR
AB - The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation.
AU - Fäßler, Florian
AU - Dimchev, Georgi A
AU - Hodirnau, Victor-Valentin
AU - Wan, William
AU - Schur, Florian KM
ID - 8971
JF - Nature Communications
KW - General Biochemistry
KW - Genetics and Molecular Biology
KW - General Physics and Astronomy
KW - General Chemistry
SN - 2041-1723
TI - Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction
VL - 11
ER -
TY - JOUR
AB - We consider the symmetric simple exclusion process in Zd with quenched bounded dynamic random conductances and prove its hydrodynamic limit in path space. The main tool is the connection, due to the self-duality of the process, between the invariance principle for single particles starting from all points and the macroscopic behavior of the density field. While the hydrodynamic limit at fixed macroscopic times is obtained via a generalization to the time-inhomogeneous context of the strategy introduced in [41], in order to prove tightness for the sequence of empirical density fields we develop a new criterion based on the notion of uniform conditional stochastic continuity, following [50]. In conclusion, we show that uniform elliptic dynamic conductances provide an example of environments in which the so-called arbitrary starting point invariance principle may be derived from the invariance principle of a single particle starting from the origin. Therefore, our hydrodynamics result applies to the examples of quenched environments considered in, e.g., [1], [3], [6] in combination with the hypothesis of uniform ellipticity.
AU - Redig, Frank
AU - Saada, Ellen
AU - Sau, Federico
ID - 8973
JF - Electronic Journal of Probability
TI - Symmetric simple exclusion process in dynamic environment: Hydrodynamics
VL - 25
ER -
TY - JOUR
AB - Mosaic analysis with double markers (MADM) technology enables concomitant fluorescent cell labeling and induction of uniparental chromosome disomy (UPD) with single-cell resolution. In UPD, imprinted genes are either overexpressed 2-fold or are not expressed. Here, the MADM platform is utilized to probe imprinting phenotypes at the transcriptional level. This protocol highlights major steps for the generation and isolation of projection neurons and astrocytes with MADM-induced UPD from mouse cerebral cortex for downstream single-cell and low-input sample RNA-sequencing experiments.
For complete details on the use and execution of this protocol, please refer to Laukoter et al. (2020b).
AU - Laukoter, Susanne
AU - Amberg, Nicole
AU - Pauler, Florian
AU - Hippenmeyer, Simon
ID - 8978
IS - 3
JF - STAR Protocols
SN - 2666-1667
TI - Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy
VL - 1
ER -
TY - THES
AB - Metabolic adaptation is a critical feature of migrating cells. It tunes the metabolic programs of migrating cells to allow them to efficiently exert their crucial roles in development, inflammatory responses and tumor metastasis. Cell migration through physically challenging contexts requires energy. However, how the metabolic reprogramming that underlies in vivo cell invasion is controlled is still unanswered. In my PhD project, I identify a novel conserved metabolic shift in Drosophila melanogaster immune cells that by modulating their bioenergetic potential controls developmentally programmed tissue invasion. We show that this regulation requires a novel conserved nuclear protein, named Atossa. Atossa enhances the transcription of a set of proteins, including an RNA helicase Porthos and two metabolic enzymes, each of which increases the tissue invasion of leading Drosophila macrophages and can rescue the atossa mutant phenotype. Porthos selectively regulates the translational efficiency of a subset of mRNAs containing a 5’-UTR cis-regulatory TOP-like sequence. These 5’TOPL mRNA targets encode mitochondrial-related proteins, including subunits of mitochondrial oxidative phosphorylation (OXPHOS) components III and V and other metabolic-related proteins. Porthos powers up mitochondrial OXPHOS to engender a sufficient ATP supply, which is required for tissue invasion of leading macrophages. Atossa’s two vertebrate orthologs rescue the invasion defect. In my PhD project, I elucidate that Atossa displays a conserved developmental metabolic control to modulate metabolic capacities and the cellular energy state, through altered transcription and translation, to aid the tissue infiltration of leading cells into energy demanding barriers.
AU - Emtenani, Shamsi
ID - 8983
TI - Metabolic regulation of Drosophila macrophage tissue invasion
ER -
TY - JOUR
AB - Flowering plants display the highest diversity among plant species and have notably shaped terrestrial landscapes. Nonetheless, the evolutionary origin of their unprecedented morphological complexity remains largely an enigma. Here, we show that the coevolution of cis-regulatory and coding regions of PIN-FORMED (PIN) auxin transporters confined their expression to certain cell types and directed their subcellular localization to particular cell sides, which together enabled dynamic auxin gradients across tissues critical to the complex architecture of flowering plants. Extensive intraspecies and interspecies genetic complementation experiments with PINs from green alga up to flowering plant lineages showed that PIN genes underwent three subsequent, critical evolutionary innovations and thus acquired a triple function to regulate the development of three essential components of the flowering plant Arabidopsis: shoot/root, inflorescence, and floral organ. Our work highlights the critical role of functional innovations within the PIN gene family as essential prerequisites for the origin of flowering plants.
AU - Zhang, Yuzhou
AU - Rodriguez Solovey, Lesia
AU - Li, Lanxin
AU - Zhang, Xixi
AU - Friml, Jiří
ID - 8986
IS - 50
JF - Science Advances
TI - Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants
VL - 6
ER -
TY - CONF
AB - Currently several projects aim at designing and implementing protocols for privacy preserving automated contact tracing to help fight the current pandemic. Those proposal are quite similar, and in their most basic form basically propose an app for mobile phones which broadcasts frequently changing pseudorandom identifiers via (low energy) Bluetooth, and at the same time, the app stores IDs broadcast by phones in its proximity. Only if a user is tested positive, they upload either the beacons they did broadcast (which is the case in decentralized proposals as DP-3T, east and west coast PACT or Covid watch) or received (as in Popp-PT or ROBERT) during the last two weeks or so.
Vaudenay [eprint 2020/399] observes that this basic scheme (he considers the DP-3T proposal) succumbs to relay and even replay attacks, and proposes more complex interactive schemes which prevent those attacks without giving up too many privacy aspects. Unfortunately interaction is problematic for this application for efficiency and security reasons. The countermeasures that have been suggested so far are either not practical or give up on key privacy aspects. We propose a simple non-interactive variant of the basic protocol that
(security) Provably prevents replay and (if location data is available) relay attacks.
(privacy) The data of all parties (even jointly) reveals no information on the location or time where encounters happened.
(efficiency) The broadcasted message can fit into 128 bits and uses only basic crypto (commitments and secret key authentication).
Towards this end we introduce the concept of “delayed authentication”, which basically is a message authentication code where verification can be done in two steps, where the first doesn’t require the key, and the second doesn’t require the message.
AU - Pietrzak, Krzysztof Z
ID - 8987
SN - 03029743
T2 - Progress in Cryptology
TI - Delayed authentication: Preventing replay and relay attacks in private contact tracing
VL - 12578
ER -
TY - JOUR
AB - In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene-expression levels that is compatible with in vivo and in vitro biophysical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In nonequilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal nonequilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity, and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate,” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in nonequilibrium models is in a trade-off with gene-expression noise, predicting bursty dynamics—an experimentally observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space of nonequilibrium enhancer models to a much smaller subspace that optimally realizes biological function, we deliver a rich class of models that could be tractably inferred from data in the near future.
AU - Grah, Rok
AU - Zoller, Benjamin
AU - Tkačik, Gašper
ID - 9000
IS - 50
JF - PNAS
SN - 00278424
TI - Nonequilibrium models of optimal enhancer function
VL - 117
ER -
TY - JOUR
AB - We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but do so under the best possible scaling of their block length as a function of the gap to capacity. This result exhibits the first known family of binary codes that attain both optimal scaling and quasi-linear complexity of encoding and decoding. Our proof is based on the construction and analysis of binary polar codes with large kernels. When communicating reliably at rates within ε>0 of capacity, the code length n often scales as O(1/εμ), where the constant μ is called the scaling exponent. It is known that the optimal scaling exponent is μ=2, and it is achieved by random linear codes. The scaling exponent of conventional polar codes (based on the 2×2 kernel) on the BEC is μ=3.63. This falls far short of the optimal scaling guaranteed by random codes. Our main contribution is a rigorous proof of the following result: for the BEC, there exist ℓ×ℓ binary kernels, such that polar codes constructed from these kernels achieve scaling exponent μ(ℓ) that tends to the optimal value of 2 as ℓ grows. We furthermore characterize precisely how large ℓ needs to be as a function of the gap between μ(ℓ) and 2. The resulting binary codes maintain the recursive structure of conventional polar codes, and thereby achieve construction complexity O(n) and encoding/decoding complexity O(nlogn).
AU - Fazeli, Arman
AU - Hassani, Hamed
AU - Mondelli, Marco
AU - Vardy, Alexander
ID - 9002
JF - IEEE Transactions on Information Theory
SN - 00189448
TI - Binary linear codes with optimal scaling: Polar codes with large kernels
ER -
TY - JOUR
AB - Motivated by a recent question of Peyre, we apply the Hardy–Littlewood circle method to count “sufficiently free” rational points of bounded height on arbitrary smooth projective hypersurfaces of low degree that are defined over the rationals.
AU - Browning, Timothy D
AU - Sawin, Will
ID - 9007
IS - 4
JF - Commentarii Mathematici Helvetici
SN - 00102571
TI - Free rational points on smooth hypersurfaces
VL - 95
ER -
TY - JOUR
AB - We give a short and self-contained proof for rates of convergence of the Allen--Cahn equation towards mean curvature flow, assuming that a classical (smooth) solution to the latter exists and starting from well-prepared initial data. Our approach is based on a relative entropy technique. In particular, it does not require a stability analysis for the linearized Allen--Cahn operator. As our analysis also does not rely on the comparison principle, we expect it to be applicable to more complex equations and systems.
AU - Fischer, Julian L
AU - Laux, Tim
AU - Simon, Theresa M.
ID - 9039
IS - 6
JF - SIAM Journal on Mathematical Analysis
SN - 00361410
TI - Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies
VL - 52
ER -
TY - CONF
AB - Machine learning and formal methods have complimentary benefits and drawbacks. In this work, we address the controller-design problem with a combination of techniques from both fields. The use of black-box neural networks in deep reinforcement learning (deep RL) poses a challenge for such a combination. Instead of reasoning formally about the output of deep RL, which we call the wizard, we extract from it a decision-tree based model, which we refer to as the magic book. Using the extracted model as an intermediary, we are able to handle problems that are infeasible for either deep RL or formal methods by themselves. First, we suggest, for the first time, a synthesis procedure that is based on a magic book. We synthesize a stand-alone correct-by-design controller that enjoys the favorable performance of RL. Second, we incorporate a magic book in a bounded model checking (BMC) procedure. BMC allows us to find numerous traces of the plant under the control of the wizard, which a user can use to increase the trustworthiness of the wizard and direct further training.
AU - Alamdari, Par Alizadeh
AU - Avni, Guy
AU - Henzinger, Thomas A
AU - Lukina, Anna
ID - 9040
SN - 9783854480426
T2 - Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design
TI - Formal methods with a touch of magic
ER -
TY - JOUR
AB - The fundamental and practical importance of particle stabilization has motivated various characterization methods for studying polymer brushes on particle surfaces. In this work, we show how one can perform sensitive measurements of neutral polymer coating on colloidal particles using a commercial zetameter and salt solutions. By systematically varying the Debye length, we study the mobility of the polymer-coated particles in an applied electric field and show that the electrophoretic mobility of polymer-coated particles normalized by the mobility of non-coated particles is entirely controlled by the polymer brush and independent of the native surface charge, here controlled with pH, or the surface–ion interaction. Our result is rationalized with a simple hydrodynamic model, allowing for the estimation of characteristics of the polymer coating: the brush length L, and the Brinkman length ξ, determined by its resistance to flows. We demonstrate that the Debye layer provides a convenient and faithful probe to the characterization of polymer coatings on particles. Because the method simply relies on a conventional zetameter, it is widely accessible and offers a practical tool to rapidly probe neutral polymer brushes, an asset in the development and utilization of polymer-coated colloidal particles.
AU - Youssef, Mena
AU - Morin, Alexandre
AU - Aubret, Antoine
AU - Sacanna, Stefano
AU - Palacci, Jérémie A
ID - 9054
IS - 17
JF - Soft Matter
KW - General Chemistry
KW - Condensed Matter Physics
SN - 1744-683X
TI - Rapid characterization of neutral polymer brush with a conventional zetameter and a variable pinch of salt
VL - 16
ER -
TY - JOUR
AB - From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces1-4. On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels5-7. Although various systems have been engineered to grow binary crystals8-11, native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information12-18, polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.
AU - Hueckel, Theodore
AU - Hocky, Glen M.
AU - Palacci, Jérémie A
AU - Sacanna, Stefano
ID - 9059
IS - 7804
JF - Nature
KW - Multidisciplinary
SN - 0028-0836
TI - Ionic solids from common colloids
VL - 580
ER -
TY - JOUR
AB - Gadolinium silicide (Gd5Si4) nanoparticles are an interesting class of materials due to their high magnetization, low Curie temperature, low toxicity in biological environments and their multifunctional properties. We report the magnetic and magnetothermal properties of gadolinium silicide (Gd5Si4) nanoparticles prepared by surfactant-assisted ball milling of arc melted bulk ingots of the compound. Using different milling times and speeds, a wide range of crystallite sizes (13–43 nm) could be produced and a reduction in Curie temperature (TC) from 340 K to 317 K was achieved, making these nanoparticles suitable for self-controlled magnetic hyperthermia applications. The magnetothermal effect was measured in applied AC magnetic fields of amplitude 164–239 Oe and frequencies 163–519 kHz. All particles showed magnetic heating with a strong dependence of the specific absorption rate (SAR) on the average crystallite size. The highest SAR of 3.7 W g−1 was measured for 43 nm sized nanoparticles of Gd5Si4. The high SAR and low TC, (within the therapeutic range for magnetothermal therapy) makes the Gd5Si4 behave like self-regulating heat switches that would be suitable for self-controlled magnetic hyperthermia applications after biocompatibility and cytotoxicity tests.
AU - Nauman, Muhammad
AU - Alnasir, Muhammad Hisham
AU - Hamayun, Muhammad Asif
AU - Wang, YiXu
AU - Shatruk, Michael
AU - Manzoor, Sadia
ID - 9067
IS - 47
JF - RSC Advances
KW - General Chemistry
KW - General Chemical Engineering
SN - 2046-2069
TI - Size-dependent magnetic and magnetothermal properties of gadolinium silicide nanoparticles
VL - 10
ER -
TY - JOUR
AB - In the quest for alternate and efficient electrode materials, ternary metal electrocatalysts (TMEs), part of the perovskite family, were synthesized and tested for methanol electro-oxidation in alkaline media. La0.5Ca0.5MO3 (M = Ni, Co, or Mn) was synthesized via sol-gel method. X-ray diffraction analysis revealed that the perovskite crystal structure possesses characteristic sharp and crystalline peaks for all synthesized ternary electrocatalysts. The average particle size calculated using Debye–Scherrer equation was in the order of La0.5Ca0.5NiO3 (LCNO) > La0.5Ca0.5CoO3 (LCCO)> La0.5Ca0.5MnO3 (LCMO). The elemental composition of as prepared sample, LCCO was investigated via x-ray fluorescence spectroscopy. The qualitative and quantitative analysis revealed the presence of La, Ca and Co in parent crystal structure with percentage compositions of 9.0, 3.12 and 87.82% respectively. The particle size distribution was homogenous, as determined by scanning electron and transmission electron microscopes. The electrocatalytic activity of the synthesized ternary electrocatalysts was studied electrochemically by cyclic voltammetry. The calculated diffusion coefficient values showed that electrode surface of LCNO and LCCO have limited efficiency for diffusion related phenomenon. The heterogeneous rate constants inferred better electrode kinetics of LCCO and LCNO which exhibited good electrocatalytic behavior; sharp anodic peaks were observed in the potential range of +0.3 to 0.6 V and +0.6 to 0.8 V, respectively. Methanol electro-oxidation was found minimal in case of LCMO sample. We have observed that Co substitution at B-site of perovskite electrode materials attains better electrochemical properties, thus in relation with reported literature.
AU - Hussain, Tayyaba
AU - Nauman, Muhammad
AU - Sabahat, Sana
AU - Arif, Saira
ID - 9069
IS - 12
JF - Materials Research Express
KW - Electronic
KW - Optical and Magnetic Materials
KW - Surfaces
KW - Coatings and Films
KW - Polymers and Plastics
KW - Metals and Alloys
KW - Biomaterials
SN - 2053-1591
TI - Synthesis of ternary electrocatalysts for exploration of methanol electro-oxidation in alkaline media
VL - 6
ER -
TY - CHAP
AU - Schmid-Hempel, Paul
AU - Cremer, Sylvia M
ED - Starr, C
ID - 9096
SN - 9783319903064
T2 - Encyclopedia of Social Insects
TI - Parasites and Pathogens
ER -
TY - CONF
AB - We introduce LRT-NG, a set of techniques and an associated toolset that computes a reachtube (an over-approximation of the set of reachable states over a given time horizon) of a nonlinear dynamical system. LRT-NG significantly advances the state-of-the-art Langrangian Reachability and its associated tool LRT. From a theoretical perspective, LRT-NG is superior to LRT in three ways. First, it uses for the first time an analytically computed metric for the propagated ball which is proven to minimize the ball’s volume. We emphasize that the metric computation is the centerpiece of all bloating-based techniques. Secondly, it computes the next reachset as the intersection of two balls: one based on the Cartesian metric and the other on the new metric. While the two metrics were previously considered opposing approaches, their joint use considerably tightens the reachtubes. Thirdly, it avoids the "wrapping effect" associated with the validated integration of the center of the reachset, by optimally absorbing the interval approximation in the radius of the next ball. From a tool-development perspective, LRT-NG is superior to LRT in two ways. First, it is a standalone tool that no longer relies on CAPD. This required the implementation of the Lohner method and a Runge-Kutta time-propagation method. Secondly, it has an improved interface, allowing the input model and initial conditions to be provided as external input files. Our experiments on a comprehensive set of benchmarks, including two Neural ODEs, demonstrates LRT-NG’s superior performance compared to LRT, CAPD, and Flow*.
AU - Gruenbacher, Sophie
AU - Cyranka, Jacek
AU - Lechner, Mathias
AU - Islam, Md Ariful
AU - Smolka, Scott A.
AU - Grosu, Radu
ID - 9103
SN - 07431546
T2 - Proceedings of the 59th IEEE Conference on Decision and Control
TI - Lagrangian reachtubes: The next generation
VL - 2020
ER -
TY - JOUR
AB - We consider the free additive convolution of two probability measures μ and ν on the real line and show that μ ⊞ v is supported on a single interval if μ and ν each has single interval support. Moreover, the density of μ ⊞ ν is proven to vanish as a square root near the edges of its support if both μ and ν have power law behavior with exponents between −1 and 1 near their edges. In particular, these results show the ubiquity of the conditions in our recent work on optimal local law at the spectral edges for addition of random matrices [5].
AU - Bao, Zhigang
AU - Erdös, László
AU - Schnelli, Kevin
ID - 9104
JF - Journal d'Analyse Mathematique
SN - 00217670
TI - On the support of the free additive convolution
VL - 142
ER -
TY - JOUR
AB - We study the probabilistic convergence between the mapper graph and the Reeb graph of a topological space X equipped with a continuous function f:X→R. We first give a categorification of the mapper graph and the Reeb graph by interpreting them in terms of cosheaves and stratified covers of the real line R. We then introduce a variant of the classic mapper graph of Singh et al. (in: Eurographics symposium on point-based graphics, 2007), referred to as the enhanced mapper graph, and demonstrate that such a construction approximates the Reeb graph of (X,f) when it is applied to points randomly sampled from a probability density function concentrated on (X,f). Our techniques are based on the interleaving distance of constructible cosheaves and topological estimation via kernel density estimates. Following Munch and Wang (In: 32nd international symposium on computational geometry, volume 51 of Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, Germany, pp 53:1–53:16, 2016), we first show that the mapper graph of (X,f), a constructible R-space (with a fixed open cover), approximates the Reeb graph of the same space. We then construct an isomorphism between the mapper of (X,f) to the mapper of a super-level set of a probability density function concentrated on (X,f). Finally, building on the approach of Bobrowski et al. (Bernoulli 23(1):288–328, 2017b), we show that, with high probability, we can recover the mapper of the super-level set given a sufficiently large sample. Our work is the first to consider the mapper construction using the theory of cosheaves in a probabilistic setting. It is part of an ongoing effort to combine sheaf theory, probability, and statistics, to support topological data analysis with random data.
AU - Brown, Adam
AU - Bobrowski, Omer
AU - Munch, Elizabeth
AU - Wang, Bei
ID - 9111
JF - Journal of Applied and Computational Topology
SN - 2367-1726
TI - Probabilistic convergence and stability of random mapper graphs
ER -
TY - JOUR
AB - Microwave photonics lends the advantages of fiber optics to electronic sensing and communication systems. In contrast to nonlinear optics, electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a microwave mode occupancy as low as 0.025 ± 0.005 and an added output noise of less than or equal to 0.074 photons. This is facilitated by radiative cooling and a triply resonant ultra-low-loss transducer operating at millikelvin temperatures. The high bandwidth of 10.7 MHz and total (internal) photon conversion
efficiency of 0.03% (0.67%) combined with the extremely slow heating rate of 1.1 added output noise photons per second for the highest available pump power of 1.48 mW puts near-unity efficiency pulsed quantum transduction within reach. Together with the non-Gaussian resources of superconducting qubits this might provide the practical foundation to extend the range and scope of current quantum networks in analogy to electrical repeaters in classical fiber optic communication.
AU - Hease, William J
AU - Rueda Sanchez, Alfredo R
AU - Sahu, Rishabh
AU - Wulf, Matthias
AU - Arnold, Georg M
AU - Schwefel, Harald G.L.
AU - Fink, Johannes M
ID - 9114
IS - 2
JF - PRX Quantum
SN - 2691-3399
TI - Bidirectional electro-optic wavelength conversion in the quantum ground state
VL - 1
ER -
TY - CHAP
AB - Inversions are chromosomal rearrangements where the order of genes is reversed. Inversions originate by mutation and can be under positive, negative or balancing selection. Selective effects result from potential disruptive effects on meiosis, gene disruption at inversion breakpoints and, importantly, the effects of inversions as modifiers of recombination rate: Recombination is strongly reduced in individuals heterozygous for an inversion, allowing for alleles at different loci to be inherited as a ‘block’. This may lead to a selective advantage whenever it is favourable to keep certain combinations of alleles associated, for example under local adaptation with gene flow. Inversions can cover a considerable part of a chromosome and contain numerous loci under different selection pressures, so that the resulting overall effects may be complex. Empirical data from various systems show that inversions may have a prominent role in local adaptation, speciation, parallel evolution, the maintenance of polymorphism and sex chromosome evolution.
AU - Westram, Anja M
AU - Faria, Rui
AU - Butlin, Roger
AU - Johannesson, Kerstin
ID - 9123
SN - 9780470016176
T2 - eLS
TI - Inversions and Evolution
ER -
TY - GEN
AB - The couplings among clouds, convection, and circulation in trade-wind regimes remain a fundamental puzzle that limits our ability to constrain future climate change. Radiative heating plays an important role in these couplings. Here we calculate the clear-sky radiative profiles from 2001 in-situ soundings (978 dropsondes and 1023 radiosondes) collected during the EUREC4A field campaign, which took place south and east of Barbados in January–February 2020. We describe the method used to calculate these radiative profiles and present preliminary results sampling variability at multiple scales, from the variability across all soundings to groupings by diurnal cycle and mesoscale organization state, as well as individual soundings associated with elevated moisture layers. This clear-sky radiative profiles data set can provide important missing detail to what can be learned from calculations based on passive remote sensing and help in investigating the role of radiation in dynamic and thermodynamic variability in trade-wind regimes. All data are archived and freely available for public access on AERIS (Albright et al. (2020), https://doi.org/10.25326/78).
AU - Albright, Anna Lea
AU - Fildier, Benjamin
AU - Touzé-Peiffer, Ludovic
AU - Pincus, Robert
AU - Vial, Jessica
AU - MULLER, Caroline J
ID - 9124
T2 - Earth System Science Data
TI - Atmospheric radiative profiles during EUREC4A
ER -
TY - JOUR
AB - This study investigates the feedbacks between an interactive sea surface temperature (SST) and the self‐aggregation of deep convective clouds, using a cloud‐resolving model in nonrotating radiative‐convective equilibrium. The ocean is modeled as one layer slab with a temporally fixed mean but spatially varying temperature. We find that the interactive SST decelerates the aggregation and that the deceleration is larger with a shallower slab, consistent with earlier studies. The surface temperature anomaly in dry regions is positive at first, thus opposing the diverging shallow circulation known to favor self‐aggregation, consistent with the slower aggregation. But surprisingly, the driest columns then have a negative SST anomaly, thus strengthening the diverging shallow circulation and favoring aggregation. This diverging circulation out of dry regions is found to be well correlated with the aggregation speed. It can be linked to a positive surface pressure anomaly (PSFC), itself the consequence of SST anomalies and boundary layer radiative cooling. The latter cools and dries the boundary layer, thus increasing PSFC anomalies through virtual effects and hydrostasy. Sensitivity experiments confirm the key role played by boundary layer radiative cooling in determining PSFC anomalies in dry regions, and thus the shallow diverging circulation and the aggregation speed.
AU - Shamekh, S.
AU - MULLER, Caroline J
AU - Duvel, J.‐P.
AU - D'Andrea, F.
ID - 9125
IS - 11
JF - Journal of Advances in Modeling Earth Systems
KW - Global and Planetary Change
KW - General Earth and Planetary Sciences
KW - Environmental Chemistry
SN - 1942-2466
TI - Self‐aggregation of convective clouds with interactive sea surface temperature
VL - 12
ER -
TY - JOUR
AB - The goal of this study is to understand the mechanisms controlling the isotopic composition of the water vapor near the surface of tropical oceans, at the scale of about a hundred kilometers and a month. In the tropics, it has long been observed that the isotopic compositions of rain and vapor near the surface are more depleted when the precipitation rate is high. This is called the “amount effect.” Previous studies, based on observations or models with parameterized convection, have highlighted the roles of deep convective and mesoscale downdrafts and rain evaporation. But the relative importance of these processes has never been quantified. We hypothesize that it can be quantified using an analytical model constrained by large‐eddy simulations. Results from large‐eddy simulations confirm that the classical amount effect can be simulated only if precipitation rate changes result from changes in the large‐scale circulation. We find that the main process depleting the water vapor compared to the equilibrium with the ocean is the fact that updrafts stem from areas where the water vapor is more enriched. The main process responsible for the amount effect is the fact that when the large‐scale ascent increases, isotopic vertical gradients are steeper, so that updrafts and downdrafts deplete the subcloud layer more efficiently.
AU - Risi, Camille
AU - MULLER, Caroline J
AU - Blossey, Peter
ID - 9126
IS - 8
JF - Journal of Advances in Modeling Earth Systems
KW - Global and Planetary Change
KW - General Earth and Planetary Sciences
KW - Environmental Chemistry
SN - 1942-2466
TI - What controls the water vapor isotopic composition near the surface of tropical oceans? Results from an analytical model constrained by large‐eddy simulations
VL - 12
ER -
TY - JOUR
AB - Nearly all regions in the world are projected to become dryer in a warming climate. Here, we investigate the Mediterranean region, often referred to as a climate change “hot spot”. From regional climate simulations, it is shown that although enhanced warming and drying over land is projected, the spatial pattern displays high variability. Indeed, drying is largely caused by enhanced warming over land. However, in Northern Europe, soil moisture alleviates warming induced drying by up to 50% due to humidity uptake from land. In already arid regions, the Mediterranean Sea is generally the only humidity source, and drying is only due to land warming. However, over Sahara and the Iberian Peninsula, enhanced warming over land is insufficient to explain the extreme drying. These regions are also isolated from humidity advection by heat lows, which are cyclonic circulation anomalies associated with surface heating over land. The cyclonic circulation scales with the temperature gradient between land and ocean which increases with climate change, reinforcing the cyclonic circulation over Sahara and the Iberian Peninsula, both diverting the zonal advection of humidity to the south of the Iberian Peninsula. The dynamics are therefore key in the warming and drying of the Mediterranean region, with extreme aridification over the Sahara and Iberian Peninsula. In these regions, the risk for human health due to the thermal load which accounts for air temperature and humidity is therefore projected to increase significantly with climate change at a level of extreme danger.
AU - Drobinski, Philippe
AU - Da Silva, Nicolas
AU - Bastin, Sophie
AU - Mailler, Sylvain
AU - MULLER, Caroline J
AU - Ahrens, Bodo
AU - Christensen, Ole B.
AU - Lionello, Piero
ID - 9127
IS - 9
JF - Regional Environmental Change
KW - Global and Planetary Change
SN - 1436-3798
TI - How warmer and drier will the Mediterranean region be at the end of the twenty-first century?
VL - 20
ER -
TY - JOUR
AB - This paper reviews recent important advances in our understanding of the response of precipitation extremes to warming from theory and from idealized cloud-resolving simulations. A theoretical scaling for precipitation extremes has been proposed and refined in the past decades, allowing to address separately the contributions from the thermodynamics, the dynamics and the microphysics. Theoretical constraints, as well as remaining uncertainties, associated with each of these three contributions to precipitation extremes, are discussed. Notably, although to leading order precipitation extremes seem to follow the thermodynamic theoretical expectation in idealized simulations, considerable uncertainty remains regarding the response of the dynamics and of the microphysics to warming, and considerable departure from this theoretical expectation is found in observations and in more realistic simulations. We also emphasize key outstanding questions, in particular the response of mesoscale convective organization to warming. Observations suggest that extreme rainfall often comes from an organized system in very moist environments. Improved understanding of the physical processes behind convective organization is needed in order to achieve accurate extreme rainfall prediction in our current, and in a warming climate.
AU - MULLER, Caroline J
AU - Takayabu, Yukari
ID - 9128
IS - 3
JF - Environmental Research Letters
KW - Renewable Energy
KW - Sustainability and the Environment
KW - Public Health
KW - Environmental and Occupational Health
KW - General Environmental Science
SN - 1748-9326
TI - Response of precipitation extremes to warming: What have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned?
VL - 15
ER -
TY - JOUR
AB - We investigate the role of a warm sea surface temperature (SST) anomaly (hot spot of typically 3 to 5 K) on the aggregation of convection using cloud-resolving simulations in a nonrotating framework. It is well known that SST gradients can spatially organize convection. Even with uniform SST, the spontaneous self-aggregation of convection is possible above a critical SST (here 295 K), arising mainly from radiative feedbacks. We investigate how a circular hot spot helps organize convection, and how self-aggregation feedbacks modulate this organization. The hot spot significantly accelerates aggregation, particularly for warmer/larger hot spots, and extends the range of SSTs for which aggregation occurs; however, at cold SST (290 K) the aggregated cluster disaggregates if we remove the hot spot. A large convective instability over the hot spot leads to stronger convection and generates a large-scale circulation which forces the subsidence drying outside the hot spot. Indeed, convection over the hot spot brings the atmosphere toward a warmer temperature. The warmer temperatures are imprinted over the whole domain by gravity waves and subsidence warming. The initial transient warming and concomitant subsidence drying suppress convection outside the hot spot, thus driving the aggregation. The hot-spot-induced large-scale circulation can enforce the aggregation even without radiative feedbacks for hot spots sufficiently large/warm. The strength of the large-scale circulation, which defines the speed of aggregation, is a function of the hot spot fractional area. At equilibrium, once the aggregation is well established, the moist convective region with upward midtropospheric motion, centered over the hot spot, has an area surprisingly independent of the hot spot size.
AU - Shamekh, Sara
AU - MULLER, Caroline J
AU - Duvel, Jean-Philippe
AU - D’Andrea, Fabio
ID - 9129
IS - 11
JF - Journal of the Atmospheric Sciences
KW - Atmospheric Science
SN - 0022-4928
TI - How do ocean warm anomalies favor the aggregation of deep convective clouds?
VL - 77
ER -
TY - CHAP
AB - We see them in our everyday lives. They make skies and sunsets even more beautiful, inspiring painters all over the world. But what are clouds? What are the physical processes occurring within a cloud? Do they all look alike, or are there different types of clouds? Why? Beyond our small human scale, how are clouds distributed at large, planetary scales? How do they couple and interact with the large-scale circulation of the atmosphere? What do the physics of cloud formation tell us about the hydrological cycle, including mean and extreme precipitation, in our current climate and in a warming world? What role do they play in the global energetics of the planet, for instance by reflecting the incoming shortwave radiation from the Sun, and by reducing the outgoing longwave radiation to space, because of their high altitudes and thus cold temperatures? These are the questions that will be addressed in these five lectures.
AU - MULLER, Caroline J
ED - Bouchet, Freddy
ED - Schneider, Tapio
ED - Venaille, Antoine
ED - Salomon, Christophe
ID - 9132
SN - 9780198855217
T2 - Fundamental Aspects of Turbulent Flows in Climate Dynamics
TI - Clouds in current and in a warming climate
VL - 109
ER -