TY - GEN AB - in the research article "Efficiency and resilience of cooperation in asymmetric social dilemmas" (by Valentin Hübner, Manuel Staab, Christian Hilbe, Krishnendu Chatterjee, and Maria Kleshnina). We used different implementations for the case of two and three players, both described below. AU - Hübner, Valentin AU - Kleshnina, Maria ID - 15108 TI - Computer code for "Efficiency and resilience of cooperation in asymmetric social dilemmas" ER - TY - JOUR AB - Global storm-resolving models (GSRMs) use strongly refined horizontal grids compared with the climate models typically used in the Coupled Model Intercomparison Project (CMIP) but employ comparable vertical grid spacings. Here, we study how changes in the vertical grid spacing and adjustments to the integration time step affect the basic climate quantities simulated by the ICON-Sapphire atmospheric GSRM. Simulations are performed over a 45 d period for five different vertical grids with between 55 and 540 vertical layers and maximum tropospheric vertical grid spacings of between 800 and 50 m, respectively. The effects of changes in the vertical grid spacing are compared with the effects of reducing the horizontal grid spacing from 5 to 2.5 km. For most of the quantities considered, halving the vertical grid spacing has a smaller effect than halving the horizontal grid spacing, but it is not negligible. Each halving of the vertical grid spacing, along with the necessary reductions in time step length, increases cloud liquid water by about 7 %, compared with an approximate 16 % decrease for halving the horizontal grid spacing. The effect is due to both the vertical grid refinement and the time step reduction. There is no tendency toward convergence in the range of grid spacings tested here. The cloud ice amount also increases with a refinement in the vertical grid, but it is hardly affected by the time step length and does show a tendency to converge. While the effect on shortwave radiation is globally dominated by the altered reflection due to the change in the cloud liquid water content, the effect on longwave radiation is more difficult to interpret because changes in the cloud ice concentration and cloud fraction are anticorrelated in some regions. The simulations show that using a maximum tropospheric vertical grid spacing larger than 400 m would increase the truncation error strongly. Computing time investments in a further vertical grid refinement can affect the truncation errors of GSRMs similarly to comparable investments in horizontal refinement, because halving the vertical grid spacing is generally cheaper than halving the horizontal grid spacing. However, convergence of boundary layer cloud properties cannot be expected, even for the smallest maximum tropospheric grid spacing of 50 m used in this study. AU - Schmidt, Hauke AU - Rast, Sebastian AU - Bao, Jiawei AU - Cassim, Amrit AU - Fang, Shih Wei AU - Jimenez-De La Cuesta, Diego AU - Keil, Paul AU - Kluft, Lukas AU - Kroll, Clarissa AU - Lang, Theresa AU - Niemeier, Ulrike AU - Schneidereit, Andrea AU - Williams, Andrew I.L. AU - Stevens, Bjorn ID - 15097 IS - 4 JF - Geoscientific Model Development SN - 1991-959X TI - Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model VL - 17 ER - TY - JOUR AB - In this note, we prove a formula for the cancellation exponent kv,n between division polynomials ψn and ϕn associated with a sequence {nP}n∈N of points on an elliptic curve E defined over a discrete valuation field K. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields. AU - Naskręcki, Bartosz AU - Verzobio, Matteo ID - 12311 JF - Proceedings of the Royal Society of Edinburgh Section A: Mathematics KW - Elliptic curves KW - Néron models KW - division polynomials KW - height functions KW - discrete valuation rings SN - 0308-2105 TI - Common valuations of division polynomials ER - TY - JOUR AB - Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems. AU - Johannesson, Kerstin AU - Faria, Rui AU - Le Moan, Alan AU - Rafajlović, Marina AU - Westram, Anja M AU - Butlin, Roger K. AU - Stankowski, Sean ID - 15099 JF - Trends in Genetics SN - 0168-9525 TI - Diverse pathways to speciation revealed by marine snails ER - TY - JOUR AB - The paper is devoted to the analysis of the global well-posedness and the interior regularity of the 2D Navier–Stokes equations with inhomogeneous stochastic boundary conditions. The noise, white in time and coloured in space, can be interpreted as the physical law describing the driving mechanism on the atmosphere–ocean interface, i.e. as a balance of the shear stress of the ocean and the horizontal wind force. AU - Agresti, Antonio AU - Luongo, Eliseo ID - 15098 JF - Mathematische Annalen SN - 0025-5831 TI - Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions ER - TY - JOUR AB - The coupling between Ca2+ channels and release sensors is a key factor defining the signaling properties of a synapse. However, the coupling nanotopography at many synapses remains unknown, and it is unclear how it changes during development. To address these questions, we examined coupling at the cerebellar inhibitory basket cell (BC)-Purkinje cell (PC) synapse. Biophysical analysis of transmission by paired recording and intracellular pipette perfusion revealed that the effects of exogenous Ca2+ chelators decreased during development, despite constant reliance of release on P/Q-type Ca2+ channels. Structural analysis by freeze-fracture replica labeling (FRL) and transmission electron microscopy (EM) indicated that presynaptic P/Q-type Ca2+ channels formed nanoclusters throughout development, whereas docked vesicles were only clustered at later developmental stages. Modeling suggested a developmental transformation from a more random to a more clustered coupling nanotopography. Thus, presynaptic signaling developmentally approaches a point-to-point configuration, optimizing speed, reliability, and energy efficiency of synaptic transmission. AU - Chen, JingJing AU - Kaufmann, Walter AU - Chen, Chong AU - Arai, Itaru AU - Kim, Olena AU - Shigemoto, Ryuichi AU - Jonas, Peter M ID - 14843 JF - Neuron SN - 0896-6273 TI - Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse ER - TY - THES AU - Chen, JingJing ID - 15101 SN - 2663 - 337X TI - Developmental transformation of nanodomain coupling between Ca2+ channels and release sensors at a central GABAergic synapse ER - TY - JOUR AB - Quantum computers are increasing in size and quality but are still very noisy. Error mitigation extends the size of the quantum circuits that noisy devices can meaningfully execute. However, state-of-the-art error mitigation methods are hard to implement and the limited qubit connectivity in superconducting qubit devices restricts most applications to the hardware's native topology. Here we show a quantum approximate optimization algorithm (QAOA) on nonplanar random regular graphs with up to 40 nodes enabled by a machine learning-based error mitigation. We use a swap network with careful decision-variable-to-qubit mapping and a feed-forward neural network to optimize a depth-two QAOA on up to 40 qubits. We observe a meaningful parameter optimization for the largest graph which requires running quantum circuits with 958 two-qubit gates. Our paper emphasizes the need to mitigate samples, and not only expectation values, in quantum approximate optimization. These results are a step towards executing quantum approximate optimization at a scale that is not classically simulable. Reaching such system sizes is key to properly understanding the true potential of heuristic algorithms like QAOA. AU - Sack, Stefan AU - Egger, Daniel J. ID - 15122 IS - 1 JF - Physical Review Research SN - 2643-1564 TI - Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation VL - 6 ER - TY - JOUR AB - Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea. AU - Nußbaum, Phillip AU - Kureisaite-Ciziene, Danguole AU - Bellini, Dom AU - Van Der Does, Chris AU - Kojic, Marko AU - Taib, Najwa AU - Yeates, Anna AU - Tourte, Maxime AU - Gribaldo, Simonetta AU - Loose, Martin AU - Löwe, Jan AU - Albers, Sonja Verena ID - 15118 IS - 3 JF - Nature Microbiology TI - Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division VL - 9 ER - TY - JOUR AB - In this paper we consider an SPDE where the leading term is a second order operator with periodic boundary conditions, coefficients which are measurable in (t,ω) , and Hölder continuous in space. Assuming stochastic parabolicity conditions, we prove Lp((0,T)×Ω,tκdt;Hσ,q(Td)) -estimates. The main novelty is that we do not require p=q . Moreover, we allow arbitrary σ∈R and weights in time. Such mixed regularity estimates play a crucial role in applications to nonlinear SPDEs which is clear from our previous work. To prove our main results we develop a general perturbation theory for SPDEs. Moreover, we prove a new result on pointwise multiplication in spaces with fractional smoothness. AU - Agresti, Antonio AU - Veraar, Mark ID - 15119 IS - 1 JF - Annales de l'institut Henri Poincare Probability and Statistics SN - 0246-0203 TI - Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions VL - 60 ER -