TY - JOUR AB - Root system growth and development is highly plastic and is influenced by the surrounding environment. Roots frequently grow in heterogeneous environments that include interactions from neighboring plants and physical impediments in the rhizosphere. To investigate how planting density and physical objects affect root system growth, we grew rice in a transparent gel system in close proximity with another plant or a physical object. Root systems were imaged and reconstructed in three dimensions. Root-root interaction strength was calculated using quantitative metrics that characterize the extent towhich the reconstructed root systems overlap each other. Surprisingly, we found the overlap of root systems of the same genotype was significantly higher than that of root systems of different genotypes. Root systems of the same genotype tended to grow toward each other but those of different genotypes appeared to avoid each other. Shoot separation experiments excluded the possibility of aerial interactions, suggesting root communication. Staggered plantings indicated that interactions likely occur at root tips in close proximity. Recognition of obstacles also occurred through root tips, but through physical contact in a size-dependent manner. These results indicate that root systems use two different forms of communication to recognize objects and alter root architecture: root-root recognition, possibly mediated through root exudates, and root-object recognition mediated by physical contact at the root tips. This finding suggests that root tips act as local sensors that integrate rhizosphere information into global root architectural changes. AU - Fang, Suqin AU - Clark, Randy AU - Zheng, Ying AU - Iyer Pascuzzi, Anjali AU - Weitz, Joshua AU - Kochian, Leon AU - Edelsbrunner, Herbert AU - Liao, Hong AU - Benfey, Philip ID - 2887 IS - 7 JF - PNAS TI - Genotypic recognition and spatial responses by rice roots VL - 110 ER - TY - CONF AB - We introduce the M-modes problem for graphical models: predicting the M label configurations of highest probability that are at the same time local maxima of the probability landscape. M-modes have multiple possible applications: because they are intrinsically diverse, they provide a principled alternative to non-maximum suppression techniques for structured prediction, they can act as codebook vectors for quantizing the configuration space, or they can form component centers for mixture model approximation. We present two algorithms for solving the M-modes problem. The first algorithm solves the problem in polynomial time when the underlying graphical model is a simple chain. The second algorithm solves the problem for junction chains. In synthetic and real dataset, we demonstrate how M-modes can improve the performance of prediction. We also use the generated modes as a tool to understand the topography of the probability distribution of configurations, for example with relation to the training set size and amount of noise in the data. AU - Chen, Chao AU - Kolmogorov, Vladimir AU - Yan, Zhu AU - Metaxas, Dimitris AU - Lampert, Christoph ID - 2901 TI - Computing the M most probable modes of a graphical model VL - 31 ER - TY - JOUR AU - Azevedo, Ricardo B AU - Lohaus, Rolf AU - Tiago Paixao ID - 2900 IS - 5 JF - Evolution & Development TI - Networking networks VL - 10 ER - TY - CONF AB - Motivated by an application in cell biology, we describe an extension of the kinetic data structures framework from Delaunay triangulations to fixed-radius alpha complexes. Our algorithm is implemented using CGAL, following the exact geometric computation paradigm. We report on several techniques to accelerate the computation that turn our implementation applicable to the underlying biological problem. AU - Kerber, Michael AU - Edelsbrunner, Herbert ID - 2906 T2 - 2013 Proceedings of the 15th Workshop on Algorithm Engineering and Experiments TI - 3D kinetic alpha complexes and their implementation ER - TY - JOUR AB - Coalescent simulation has become an indispensable tool in population genetics and many complex evolutionary scenarios have been incorporated into the basic algorithm. Despite many years of intense interest in spatial structure, however, there are no available methods to simulate the ancestry of a sample of genes that occupy a spatial continuum. This is mainly due to the severe technical problems encountered by the classical model of isolation by distance. A recently introduced model solves these technical problems and provides a solid theoretical basis for the study of populations evolving in continuous space. We present a detailed algorithm to simulate the coalescent process in this model, and provide an efficient implementation of a generalised version of this algorithm as a freely available Python module. AU - Kelleher, Jerome AU - Barton, Nicholas H AU - Etheridge, Alison ID - 2910 IS - 7 JF - Bioinformatics TI - Coalescent simulation in continuous space VL - 29 ER - TY - JOUR AB - We survey a class of models for spatially structured populations which we have called spatial Λ-Fleming–Viot processes. They arise from a flexible framework for modelling in which the key innovation is that random genetic drift is driven by a Poisson point process of spatial ‘events’. We demonstrate how this overcomes some of the obstructions to modelling populations which evolve in two- (and higher-) dimensional spatial continua, how its predictions match phenomena observed in data and how it fits with classical models. Finally we outline some directions for future research. AU - Barton, Nicholas H AU - Etheridge, Alison AU - Véber, Amandine ID - 2909 IS - 1 JF - Journal of Statistical Mechanics Theory and Experiment TI - Modelling evolution in a spatial continuum VL - 2013 ER - TY - JOUR AB - Hybridization is an almost inevitable component of speciation, and its study can tell us much about that process. However, hybridization itself may have a negligible influence on the origin of species: on the one hand, universally favoured alleles spread readily across hybrid zones, whilst on the other, spatially heterogeneous selection causes divergence despite gene flow. Thus, narrow hybrid zones or occasional hybridisation may hardly affect the process of divergence. AU - Barton, Nicholas H ID - 2908 IS - 2 JF - Journal of Evolutionary Biology TI - Does hybridisation influence speciation? VL - 26 ER - TY - CHAP AB - Sex and recombination are among the most striking features of the living world, and they play a crucial role in allowing the evolution of complex adaptation. The sharing of genomes through the sexual union of different individuals requires elaborate behavioral and physiological adaptations. At the molecular level, the alignment of two DNA double helices, followed by their precise cutting and rejoining, is an extraordinary feat. Sex and recombination have diverse—and often surprising—evolutionary consequences: distinct sexes, elaborate mating displays, selfish genetic elements, and so on. AU - Barton, Nicholas H ID - 2907 SN - 9780691149776 T2 - The Princeton Guide to Evolution TI - Recombination and sex ER - TY - JOUR AB - The ability of an organism to distinguish between various stimuli is limited by the structure and noise in the population code of its sensory neurons. Here we infer a distance measure on the stimulus space directly from the recorded activity of 100 neurons in the salamander retina. In contrast to previously used measures of stimulus similarity, this "neural metric" tells us how distinguishable a pair of stimulus clips is to the retina, based on the similarity between the induced distributions of population responses. We show that the retinal distance strongly deviates from Euclidean, or any static metric, yet has a simple structure: we identify the stimulus features that the neural population is jointly sensitive to, and show the support-vector-machine- like kernel function relating the stimulus and neural response spaces. We show that the non-Euclidean nature of the retinal distance has important consequences for neural decoding. AU - Tkacik, Gasper AU - Granot Atedgi, Einat AU - Segev, Ronen AU - Schneidman, Elad ID - 2913 IS - 5 JF - Physical Review Letters TI - Retinal metric: a stimulus distance measure derived from population neural responses VL - 110 ER - TY - JOUR AB - Oriented mitosis is essential during tissue morphogenesis. The Wnt/planar cell polarity (Wnt/PCP) pathway orients mitosis in a number of developmental systems, including dorsal epiblast cell divisions along the animal-vegetal (A-V) axis during zebrafish gastrulation. How Wnt signalling orients the mitotic plane is, however, unknown. Here we show that, in dorsal epiblast cells, anthrax toxin receptor 2a (Antxr2a) accumulates in a polarized cortical cap, which is aligned with the embryonic A-V axis and forecasts the division plane. Filamentous actin (F-actin) also forms an A-V polarized cap, which depends on Wnt/PCP and its effectors RhoA and Rock2. Antxr2a is recruited to the cap by interacting with actin. Antxr2a also interacts with RhoA and together they activate the diaphanous-related formin zDia2. Mechanistically, Antxr2a functions as a Wnt-dependent polarized determinant, which, through the action of RhoA and zDia2, exerts torque on the spindle to align it with the A-V axis. AU - Castanon, Irinka AU - Abrami, Laurence AU - Holtzer, Laurent AU - Heisenberg, Carl-Philipp J AU - Van Der Goot, Françoise AU - González Gaitán, Marcos ID - 2918 IS - 1 JF - Nature Cell Biology TI - Anthrax toxin receptor 2a controls mitotic spindle positioning VL - 15 ER -