TY - JOUR AB - Metallic nanoparticles co-functionalised with monolayers of UV- and CO2-sensitive ligands were prepared and shown to respond to these two types of stimuli reversibly and in an orthogonal fashion. The composition of the coating could be tailored to yield nanoparticles capable of aggregating exclusively when both UV and CO2 were applied at the same time, analogously to the behaviour of an AND logic gate. AU - Lee, Ji-Woong AU - Klajn, Rafal ID - 13395 IS - 11 JF - Chemical Communications KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces KW - Coatings and Films KW - General Chemistry KW - Ceramics and Composites KW - Electronic KW - Optical and Magnetic Materials KW - Catalysis SN - 1359-7345 TI - Dual-responsive nanoparticles that aggregate under the simultaneous action of light and CO2 VL - 51 ER - TY - JOUR AB - Photoswitching in densely packed azobenzene self-assembled monolayers (SAMs) is strongly affected by steric constraints and excitonic coupling between neighboring chromophores. Therefore, control of the chromophore density is essential for enhancing and manipulating the photoisomerization yield. We systematically compare two methods to achieve this goal: First, we assemble monocomponent azobenzene–alkanethiolate SAMs on gold nanoparticles of varying size. Second, we form mixed SAMs of azobenzene–alkanethiolates and “dummy” alkanethiolates on planar substrates. Both methods lead to a gradual decrease of the chromophore density and enable efficient photoswitching with low-power light sources. X-ray spectroscopy reveals that coadsorption from solution yields mixtures with tunable composition. The orientation of the chromophores with respect to the surface normal changes from a tilted to an upright position with increasing azobenzene density. For both systems, optical spectroscopy reveals a pronounced excitonic shift that increases with the chromophore density. In spite of exciting the optical transition of the monomer, the main spectral change in mixed SAMs occurs in the excitonic band. In addition, the photoisomerization yield decreases only slightly by increasing the azobenzene–alkanethiolate density, and we observed photoswitching even with minor dilutions. Unlike in solution, azobenzene in the planar SAM can be switched back almost completely by optical excitation from the cis to the original trans state within a short time scale. These observations indicate cooperativity in the photoswitching process of mixed SAMs. AU - Moldt, Thomas AU - Brete, Daniel AU - Przyrembel, Daniel AU - Das, Sanjib AU - Goldman, Joel R. AU - Kundu, Pintu K. AU - Gahl, Cornelius AU - Klajn, Rafal AU - Weinelt, Martin ID - 13396 IS - 3 JF - Langmuir KW - Electrochemistry KW - Spectroscopy KW - Surfaces and Interfaces KW - Condensed Matter Physics KW - General Materials Science SN - 0743-7463 TI - Tailoring the properties of surface-immobilized azobenzenes by monolayer dilution and surface curvature VL - 31 ER - TY - JOUR AB - Self-assembly of inorganic nanoparticles has been studied extensively for particles having different sizes and compositions. However, relatively little attention has been devoted to how the shape and surface chemistry of magnetic nanoparticles affects their self-assembly properties. Here, we undertook a combined experiment–theory study aimed at better understanding of the self-assembly of cubic magnetite (Fe3O4) particles. We demonstrated that, depending on the experimental parameters, such as the direction of the magnetic field and nanoparticle density, a variety of superstructures can be obtained, including one-dimensional filaments and helices, as well as C-shaped assemblies described here for the first time. Furthermore, we functionalized the surfaces of the magnetic nanocubes with light-sensitive ligands. Using these modified nanoparticles, we were able to achieve orthogonal control of self-assembly using a magnetic field and light. AU - Singh, Gurvinder AU - Chan, Henry AU - Udayabhaskararao, T. AU - Gelman, Elijah AU - Peddis, Davide AU - Baskin, Artem AU - Leitus, Gregory AU - Král, Petr AU - Klajn, Rafal ID - 13397 JF - Faraday Discussions KW - Physical and Theoretical Chemistry SN - 1359-6640 TI - Magnetic field-induced self-assembly of iron oxide nanocubes VL - 181 ER - TY - JOUR AU - Sun, Yugang AU - Scarabelli, Leonardo AU - Kotov, Nicholas AU - Tebbe, Moritz AU - Lin, Xiao-Min AU - Brullot, Ward AU - Isa, Lucio AU - Schurtenberger, Peter AU - Moehwald, Helmuth AU - Fedin, Igor AU - Velev, Orlin AU - Faivre, Damien AU - Sorensen, Christopher AU - Perzynski, Régine AU - Chanana, Munish AU - Li, Zhihai AU - Bresme, Fernando AU - Král, Petr AU - Firlar, Emre AU - Schiffrin, David AU - Souza Junior, Joao Batista AU - Fery, Andreas AU - Shevchenko, Elena AU - Tarhan, Ozgur AU - Alivisatos, Armand Paul AU - Disch, Sabrina AU - Klajn, Rafal AU - Ghosh, Suvojit ID - 13398 JF - Faraday Discussions KW - Physical and Theoretical Chemistry SN - 1359-6640 TI - Field-assisted self-assembly process: General discussion VL - 181 ER - TY - JOUR AB - The detection of electron motion and electronic wave-packet dynamics is one of the core goals of attosecond science. Recently, choosing the nitric oxide molecule as an example, we have introduced and demonstrated an experimental approach to measure coupled valence electronic and rotational wave packets using high-order-harmonic-generation (HHG) spectroscopy [Kraus et al., Phys. Rev. Lett. 111, 243005 (2013)]. A short outline of the theory to describe the combination of the pump and HHG probe process was published together with an extensive discussion of experimental results [Baykusheva et al., Faraday Discuss. 171, 113 (2014)]. The comparison of theory and experiment showed good agreement on a quantitative level. Here, we present the theory in detail, which is based on a generalized density-matrix approach that describes the pump process and the subsequent probing of the wave packets by a semiclassical quantitative rescattering approach. An in-depth analysis of the different Raman scattering contributions to the creation of the coupled rotational and electronic spin-orbit wave packets is made. We present results for parallel and perpendicular linear polarizations of the pump and probe laser pulses. Furthermore, an analysis of the combined rotational-electronic density matrix in terms of irreducible components is presented that facilitates interpretation of the results. AU - Zhang, Song Bin AU - Baykusheva, Denitsa Rangelova AU - Kraus, Peter M. AU - Wörner, Hans Jakob AU - Rohringer, Nina ID - 14017 IS - 2 JF - Physical Review A KW - Atomic and Molecular Physics KW - and Optics SN - 1050-2947 TI - Theoretical study of molecular electronic and rotational coherences by high-order-harmonic generation VL - 91 ER - TY - JOUR AB - All attosecond time-resolved measurements have so far relied on the use of intense near-infrared laser pulses. In particular, attosecond streaking, laser-induced electron diffraction and high-harmonic generation all make use of non-perturbative light–matter interactions. Remarkably, the effect of the strong laser field on the studied sample has often been neglected in previous studies. Here we use high-harmonic spectroscopy to measure laser-induced modifications of the electronic structure of molecules. We study high-harmonic spectra of spatially oriented CH3F and CH3Br as generic examples of polar polyatomic molecules. We accurately measure intensity ratios of even and odd-harmonic orders, and of the emission from aligned and unaligned molecules. We show that these robust observables reveal a substantial modification of the molecular electronic structure by the external laser field. Our insights offer new challenges and opportunities for a range of emerging strong-field attosecond spectroscopies. AU - Kraus, P. M. AU - Tolstikhin, O. I. AU - Baykusheva, Denitsa Rangelova AU - Rupenyan, A. AU - Schneider, J. AU - Bisgaard, C. Z. AU - Morishita, T. AU - Jensen, F. AU - Madsen, L. B. AU - Wörner, H. J. ID - 14016 JF - Nature Communications KW - General Physics and Astronomy KW - General Biochemistry KW - Genetics and Molecular Biology KW - General Chemistry KW - Multidisciplinary TI - Observation of laser-induced electronic structure in oriented polyatomic molecules VL - 6 ER - TY - JOUR AB - The ultrafast motion of electrons and holes after light-matter interaction is fundamental to a broad range of chemical and biophysical processes. We advanced high-harmonic spectroscopy to resolve spatially and temporally the migration of an electron hole immediately after ionization of iodoacetylene while simultaneously demonstrating extensive control over the process. A multidimensional approach, based on the measurement and accurate theoretical description of both even and odd harmonic orders, enabled us to reconstruct both quantum amplitudes and phases of the electronic states with a resolution of ~100 attoseconds. We separately reconstructed quasi-field-free and laser-controlled charge migration as a function of the spatial orientation of the molecule and determined the shape of the hole created by ionization. Our technique opens the prospect of laser control over electronic primary processes. AU - Kraus, P. M. AU - Mignolet, B. AU - Baykusheva, Denitsa Rangelova AU - Rupenyan, A. AU - Horný, L. AU - Penka, E. F. AU - Grassi, G. AU - Tolstikhin, O. I. AU - Schneider, J. AU - Jensen, F. AU - Madsen, L. B. AU - Bandrauk, A. D. AU - Remacle, F. AU - Wörner, H. J. ID - 14013 IS - 6262 JF - Science KW - Multidisciplinary SN - 0036-8075 TI - Measurement and laser control of attosecond charge migration in ionized iodoacetylene VL - 350 ER - TY - JOUR AB - We advance high-harmonic spectroscopy to resolve molecular charge migration in time and space and simultaneously demonstrate extensive control over the process. A multidimensional approach enables us to reconstruct both quantum amplitudes and phases with a resolution of better than 100 attoseconds and to separately reconstruct field-free and laser- driven charge migration. Our techniques make charge migration in molecules measurable on the attosecond time scale and open new avenues for laser control of electronic primary processes. AU - Kraus, P M AU - Mignolet, B AU - Baykusheva, Denitsa Rangelova AU - Rupenyan, A AU - Horný, L AU - Penka, E F AU - Tolstikhin, O I AU - Schneider, J AU - Jensen, F AU - Madsen, L B AU - Bandrauk, A D AU - Remacle, F AU - Wörner, H J ID - 14015 IS - 11 JF - Journal of Physics: Conference Series KW - General Physics and Astronomy SN - 1742-6588 TI - Attosecond charge migration and its laser control VL - 635 ER - TY - JOUR AB - We have studied a coupled electronic-nuclear wave packet in nitric oxide using time-resolved strong-field photoelectron holography and rescattering. We show that the electronic dynamics mainly appears in the holographic structures whereas nuclear motion strongly modulates the angular distribution of the rescattered photoelectrons. AU - Walt, Samuel G AU - Ram, N Bhargava AU - von Conta, Aaron AU - Baykusheva, Denitsa Rangelova AU - Atala, Marcos AU - Wörner, Hans Jakob ID - 14014 IS - 11 JF - Journal of Physics: Conference Series KW - General Physics and Astronomy SN - 1742-6588 TI - Resolving the dynamics of valence-shell electrons and nuclei through laser-induced diffraction and holography VL - 635 ER - TY - GEN AB - Parasitism creates selection for resistance mechanisms in host populations and is hypothesized to promote increased host evolvability. However, the influence of these traits on host evolution when parasites are no longer present is unclear. We used experimental evolution and whole-genome sequencing of Escherichia coli to determine the effects of past and present exposure to parasitic viruses (phages) on the spread of mutator alleles, resistance, and bacterial competitive fitness. We found that mutator alleles spread rapidly during adaptation to any of four different phage species, and this pattern was even more pronounced with multiple phages present simultaneously. However, hypermutability did not detectably accelerate adaptation in the absence of phages and recovery of fitness costs associated with resistance. Several lineages evolved phage resistance through elevated mucoidy, and during subsequent evolution in phage-free conditions they rapidly reverted to nonmucoid, phage-susceptible phenotypes. Genome sequencing revealed that this phenotypic reversion was achieved by additional genetic changes rather than by genotypic reversion of the initial resistance mutations. Insertion sequence (IS) elements played a key role in both the acquisition of resistance and adaptation in the absence of parasites; unlike single nucleotide polymorphisms, IS insertions were not more frequent in mutator lineages. Our results provide a genetic explanation for rapid reversion of mucoidy, a phenotype observed in other bacterial species including human pathogens. Moreover, this demonstrates that the types of genetic change underlying adaptation to fitness costs, and consequently the impact of evolvability mechanisms such as increased point-mutation rates, depend critically on the mechanism of resistance. AU - Wielgoss, Sébastien AU - Bergmiller, Tobias AU - Bischofberger, Anna M. AU - Hall, Alex R. ID - 9719 TI - Data from: Adaptation to parasites and costs of parasite resistance in mutator and non-mutator bacteria ER -