TY - GEN AU - Gómez Sicilia, Àngel AU - Sikora, Mateusz K AU - Cieplak, Marek AU - Carrión Vázquez, Mariano ID - 9714 TI - An exploration of the universe of polyglutamine structures - submission to PLOS journals ER - TY - GEN AU - Trubenova, Barbora AU - Novak, Sebastian AU - Hager, Reinmar ID - 9715 TI - Mathematical inference of the results ER - TY - JOUR AB - The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. AU - Konrad, Matthias AU - Grasse, Anna V AU - Tragust, Simon AU - Cremer, Sylvia ID - 1993 IS - 1799 JF - Proceedings of the Royal Society of London Series B Biological Sciences SN - 0962-8452 TI - Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host VL - 282 ER - TY - GEN AB - Repeated pathogen exposure is a common threat in colonies of social insects, posing selection pressures on colony members to respond with improved disease-defense performance. We here tested whether experience gained by repeated tending of low-level fungus-exposed (Metarhizium robertsii) larvae may alter the performance of sanitary brood care in the clonal ant, Platythyrea punctata. We trained ants individually over nine consecutive trials to either sham-treated or fungus-exposed larvae. We then compared the larval grooming behavior of naive and trained ants and measured how effectively they removed infectious fungal conidiospores from the fungus-exposed larvae. We found that the ants changed the duration of larval grooming in response to both, larval treatment and their level of experience: (1) sham-treated larvae received longer grooming than the fungus-exposed larvae and (2) trained ants performed less self-grooming but longer larval grooming than naive ants, which was true for both, ants trained to fungus-exposed and also to sham-treated larvae. Ants that groomed the fungus-exposed larvae for longer periods removed a higher number of fungal conidiospores from the surface of the fungus-exposed larvae. As experienced ants performed longer larval grooming, they were more effective in fungal removal, thus making them better caretakers under pathogen attack of the colony. By studying this clonal ant, we can thus conclude that even in the absence of genetic variation between colony members, differences in experience levels of brood care may affect performance of sanitary brood care in social insects. AU - Westhus, Claudia AU - Ugelvig, Line V AU - Tourdot, Edouard AU - Heinze, Jürgen AU - Doums, Claudie AU - Cremer, Sylvia ID - 9742 TI - Data from: Increased grooming after repeated brood care provides sanitary benefits in a clonal ant ER - TY - GEN AU - Chevereau, Guillaume AU - Lukacisinova, Marta AU - Batur, Tugce AU - Guvenek, Aysegul AU - Ayhan, Dilay Hazal AU - Toprak, Erdal AU - Bollenbach, Mark Tobias ID - 9765 TI - Gene ontology enrichment analysis for the most sensitive gene deletion strains for all drugs ER - TY - JOUR AB - The hydrology of high-elevation watersheds of the Hindu Kush-Himalaya region (HKH) is poorly known. The correct representation of internal states and process dynamics in glacio-hydrological models can often not be verified due to missing in situ measurements. We use a new set of detailed ground data from the upper Langtang valley in Nepal to systematically guide a state-of-the art glacio-hydrological model through a parameter assigning process with the aim to understand the hydrology of the catchment and contribution of snow and ice processes to runoff. 14 parameters are directly calculated on the basis of local data, and 13 parameters are calibrated against 5 different datasets of in situ or remote sensing data. Spatial fields of debris thickness are reconstructed through a novel approach that employs data from an Unmanned Aerial Vehicle (UAV), energy balance modeling and statistical techniques. The model is validated against measured catchment runoff (Nash–Sutcliffe efficiency 0.87) and modeled snow cover is compared to Landsat snow cover. The advanced representation of processes allowed assessing the role played by avalanching for runoff for the first time for a Himalayan catchment (5% of annual water inputs to the hydrological system are due to snow redistribution) and to quantify the hydrological significance of sub-debris ice melt (9% of annual water inputs). Snowmelt is the most important contributor to total runoff during the hydrological year 2012/2013 (representing 40% of all sources), followed by rainfall (34%) and ice melt (26%). A sensitivity analysis is used to assess the efficiency of the monitoring network and identify the timing and location of field measurements that constrain model uncertainty. The methodology to set up a glacio-hydrological model in high-elevation regions presented in this study can be regarded as a benchmark for modelers in the HKH seeking to evaluate their calibration approach, their experimental setup and thus to reduce the predictive model uncertainty. AU - Ragettli, S. AU - Pellicciotti, Francesca AU - Immerzeel, W.W. AU - Miles, E.S. AU - Petersen, L. AU - Heynen, M. AU - Shea, J.M. AU - Stumm, D. AU - Joshi, S. AU - Shrestha, A. ID - 12630 IS - 4 JF - Advances in Water Resources KW - Water Science and Technology SN - 0309-1708 TI - Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model VL - 78 ER - TY - JOUR AB - Thick debris cover on glaciers can significantly reduce ice melt. However, several studies have suggested that debris-covered glaciers in the Himalaya might have lost mass at a rate similar to debris-free glaciers. We reconstruct elevation and mass changes for the debris-covered glaciers of the upper Langtang valley, Nepalese Himalaya, using a digital elevation model (DEM) from 1974 stereo Hexagon satellite data and the 2000 SRTM (Shuttle Radar Topography Mission) DEM. Uncertainties are high in the accumulation areas, due to data gaps in the SRTM and difficulties with delineation of the glacier borders. Even with these uncertainties, we obtain thinning rates comparable to those of several other studies in the Himalaya. In particular, we obtain a total mass balance for the investigated debris-covered glaciers of the basin of –0.32 ± 0.18 m w.e. a−1. However, there are major spatial differences both between glaciers and within any single glacier, exhibiting a very distinct nonlinear mass-balance profile with elevation. Through analysis of surface velocities derived from Landsat ETM+ imagery, we show that thinning occurs in areas of low velocity and low slope. These areas are prone to a general, dynamic decay of surface features and to the development of supraglacial lakes and ice cliffs, which may be responsible for a considerable increase in overall glacier ablation. AU - Pellicciotti, Francesca AU - Stephan, Christa AU - Miles, Evan AU - Herreid, Sam AU - Immerzeel, Walter W. AU - Bolch, Tobias ID - 12628 IS - 226 JF - Journal of Glaciology KW - Earth-Surface Processes SN - 0022-1430 TI - Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999 VL - 61 ER - TY - JOUR AB - Air temperature is one of the most relevant input variables for snow and ice melt calculations. However, local meteorological conditions, complex topography, and logistical concerns in glacierized regions make the measuring and modeling of air temperature a difficult task. In this study, we investigate the spatial distribution of 2 m air temperature over mountain glaciers and propose a modification to an existing model to improve its representation. Spatially distributed meteorological data from Haut Glacier d'Arolla (Switzerland), Place (Canada), and Juncal Norte (Chile) Glaciers are used to examine approximate flow line temperatures during their respective ablation seasons. During warm conditions (off-glacier temperatures well above 0°C), observed air temperatures in the upper reaches of Place Glacier and Haut Glacier d'Arolla decrease down glacier along the approximate flow line. At Juncal Norte and Haut Glacier d'Arolla, an increase in air temperature is observed over the glacier tongue. While the temperature behavior over the upper part can be explained by the cooling effect of the glacier surface, the temperature increase over the glacier tongue may be caused by several processes induced by the surrounding warm atmosphere. In order to capture the latter effect, we add an additional term to the Greuell and Böhm (GB) thermodynamic glacier wind model. For high off-glacier temperatures, the modified GB model reduces root-mean-square error up to 32% and provides a new approach for distributing air temperature over mountain glaciers as a function of off-glacier temperatures and approximate glacier flow lines. AU - Ayala, A. AU - Pellicciotti, Francesca AU - Shea, J. M. ID - 12631 IS - 8 JF - Journal of Geophysical Research: Atmospheres KW - Space and Planetary Science KW - Earth and Planetary Sciences (miscellaneous) KW - Atmospheric Science KW - Geophysics SN - 2169-897X TI - Modeling 2 m air temperatures over mountain glaciers: Exploring the influence of katabatic cooling and external warming VL - 120 ER - TY - JOUR AB - Meteorological studies in high-mountain environments form the basis of our understanding of catchment hydrology and glacier accumulation and melt processes, yet high-altitude (>4000 m above sea level, asl) observatories are rare. This research presents meteorological data recorded between December 2012 and November 2013 at seven stations in Nepal, ranging in elevation from 3860 to 5360 m asl. Seasonal and diurnal cycles in air temperature, vapour pressure, incoming short-wave and long-wave radiation, atmospheric transmissivity, wind speed, and precipitation are compared between sites. Solar radiation strongly affects diurnal temperature and vapour pressure cycles, but local topography and valley-scale circulations alter wind speed and precipitation cycles. The observed diurnal variability in vertical temperature gradients in all seasons highlights the importance of in situ measurements for melt modelling. The monsoon signal (progressive onset and sharp end) is visible in all data-sets, and the passage of the remnants of Typhoon Phailin in mid-October 2013 provides an interesting case study on the possible effects of such storms on glaciers in the region. AU - Shea, J.M. AU - Wagnon, P. AU - Immerzeel, W.W. AU - Biron, R. AU - Brun, F. AU - Pellicciotti, Francesca ID - 12629 IS - 2 JF - International Journal of Water Resources Development KW - Water Science and Technology KW - Development SN - 0790-0627 TI - A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya VL - 31 ER - TY - JOUR AB - Ice cliffs have been identified as a reason for higher ablation rates on debris-covered glaciers than are implied by the insulation effects of the debris. This study aims to improve our understanding of cliff backwasting, and the role of radiative fluxes in particular. An energy-balance model is forced with new data gathered in May and October 2013 on Lirung Glacier, Nepalese Himalaya. Observations show substantial variability in melt between cliffs, between locations on any cliff and between seasons. Using a high-resolution digital elevation model we calculate longwave fluxes incident to the cliff from surrounding terrain and include the effect of local shading on shortwave radiation. This is an advance over previous studies, that made simplified assumptions on cliff geometry and radiative fluxes. Measured melt rates varied between 3.25 and 8.6 cm d−1 in May and 0.18 and 1.34 cm d−1 in October. Model results reproduce the strong variability in space and time, suggesting considerable differences in radiative fluxes over one cliff. In October the model fails to reproduce stake readings, probably due to the lack of a refreezing component. Disregarding local topography can lead to overestimation of melt at the point scale by up to ∼9%. AU - Steiner, Jakob F. AU - Pellicciotti, Francesca AU - Buri, Pascal AU - Miles, Evan S. AU - Immerzeel, Walter W. AU - Reid, Tim D. ID - 12626 IS - 229 JF - Journal of Glaciology SN - 0022-1430 TI - Modelling ice-cliff backwasting on a debris-covered glacier in the Nepalese Himalaya VL - 61 ER -