TY - JOUR AB - Animals exhibit a variety of behavioural defences against socially transmitted parasites. These defences evolved to increase host fitness by avoiding, resisting or tolerating infection. Because they can occur in both infected individuals and their uninfected social partners, these defences often have important consequences for the social group. Here, we discuss the evolution and ecology of anti-parasite behavioural defences across a taxonomically wide social spectrum, considering colonial groups, stable groups, transitional groups and solitary animals. We discuss avoidance, resistance and tolerance behaviours across these social group structures, identifying how social complexity, group composition and interdependent social relationships may contribute to the expression and evolution of behavioural strategies. Finally, we outline avenues for further investigation such as approaches to quantify group-level responses, and the connection of the physiological and behavioural response to parasites in different social contexts. AU - Stockmaier, Sebastian AU - Ulrich, Yuko AU - Albery, Gregory F. AU - Cremer, Sylvia AU - Lopes, Patricia C. ID - 12765 IS - 4 JF - Functional Ecology SN - 0269-8463 TI - Behavioural defences against parasites across host social structures VL - 37 ER - TY - JOUR AB - The celebrated Erdős–Ko–Rado theorem about the maximal size of an intersecting family of r-element subsets of was extended to the setting of exterior algebra in [5, Theorem 2.3] and in [6, Theorem 1.4]. However, the equality case has not been settled yet. In this short note, we show that the extension of the Erdős–Ko–Rado theorem and the characterization of the equality case therein, as well as those of the Hilton–Milner theorem to the setting of exterior algebra in the simplest non-trivial case of two-forms follow from a folklore puzzle about possible arrangements of an intersecting family of lines. AU - Ivanov, Grigory AU - Köse, Seyda ID - 12680 IS - 6 JF - Discrete Mathematics SN - 0012-365X TI - Erdős-Ko-Rado and Hilton-Milner theorems for two-forms VL - 346 ER - TY - JOUR AB - In the physics literature the spectral form factor (SFF), the squared Fourier transform of the empirical eigenvalue density, is the most common tool to test universality for disordered quantum systems, yet previous mathematical results have been restricted only to two exactly solvable models (Forrester in J Stat Phys 183:33, 2021. https://doi.org/10.1007/s10955-021-02767-5, Commun Math Phys 387:215–235, 2021. https://doi.org/10.1007/s00220-021-04193-w). We rigorously prove the physics prediction on SFF up to an intermediate time scale for a large class of random matrices using a robust method, the multi-resolvent local laws. Beyond Wigner matrices we also consider the monoparametric ensemble and prove that universality of SFF can already be triggered by a single random parameter, supplementing the recently proven Wigner–Dyson universality (Cipolloni et al. in Probab Theory Relat Fields, 2021. https://doi.org/10.1007/s00440-022-01156-7) to larger spectral scales. Remarkably, extensive numerics indicates that our formulas correctly predict the SFF in the entire slope-dip-ramp regime, as customarily called in physics. AU - Cipolloni, Giorgio AU - Erdös, László AU - Schröder, Dominik J ID - 12792 JF - Communications in Mathematical Physics SN - 0010-3616 TI - On the spectral form factor for random matrices VL - 401 ER - TY - JOUR AB - Given a finite set A ⊂ ℝ^d, let Cov_{r,k} denote the set of all points within distance r to at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of spaces that grow larger when r increases or k decreases, called the multicover bifiltration. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors as well. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness. AU - Corbet, René AU - Kerber, Michael AU - Lesnick, Michael AU - Osang, Georg F ID - 12709 JF - Discrete and Computational Geometry SN - 0179-5376 TI - Computing the multicover bifiltration VL - 70 ER - TY - JOUR AB - Kleinjohann (Archiv der Mathematik 35(1):574–582, 1980; Mathematische Zeitschrift 176(3), 327–344, 1981) and Bangert (Archiv der Mathematik 38(1):54–57, 1982) extended the reach rch(S) from subsets S of Euclidean space to the reach rchM(S) of subsets S of Riemannian manifolds M, where M is smooth (we’ll assume at least C3). Bangert showed that sets of positive reach in Euclidean space and Riemannian manifolds are very similar. In this paper we introduce a slight variant of Kleinjohann’s and Bangert’s extension and quantify the similarity between sets of positive reach in Euclidean space and Riemannian manifolds in a new way: Given p∈M and q∈S, we bound the local feature size (a local version of the reach) of its lifting to the tangent space via the inverse exponential map (exp−1p(S)) at q, assuming that rchM(S) and the geodesic distance dM(p,q) are bounded. These bounds are motivated by the importance of the reach and local feature size to manifold learning, topological inference, and triangulating manifolds and the fact that intrinsic approaches circumvent the curse of dimensionality. AU - Boissonnat, Jean Daniel AU - Wintraecken, Mathijs ID - 12763 JF - Journal of Applied and Computational Topology SN - 2367-1726 TI - The reach of subsets of manifolds VL - 7 ER - TY - CONF AB - The safety-liveness dichotomy is a fundamental concept in formal languages which plays a key role in verification. Recently, this dichotomy has been lifted to quantitative properties, which are arbitrary functions from infinite words to partially-ordered domains. We look into harnessing the dichotomy for the specific classes of quantitative properties expressed by quantitative automata. These automata contain finitely many states and rational-valued transition weights, and their common value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum map infinite words into the totallyordered domain of real numbers. In this automata-theoretic setting, we establish a connection between quantitative safety and topological continuity and provide an alternative characterization of quantitative safety and liveness in terms of their boolean counterparts. For all common value functions, we show how the safety closure of a quantitative automaton can be constructed in PTime, and we provide PSpace-complete checks of whether a given quantitative automaton is safe or live, with the exception of LimInfAvg and LimSupAvg automata, for which the safety check is in ExpSpace. Moreover, for deterministic Sup, LimInf, and LimSup automata, we give PTime decompositions into safe and live automata. These decompositions enable the separation of techniques for safety and liveness verification for quantitative specifications. AU - Boker, Udi AU - Henzinger, Thomas A AU - Mazzocchi, Nicolas Adrien AU - Sarac, Naci E ID - 13221 SN - 9783959772990 T2 - 34th International Conference on Concurrency Theory TI - Safety and liveness of quantitative automata VL - 279 ER - TY - JOUR AB - Recently, a concept of generalized multifractality, which characterizes fluctuations and correlations of critical eigenstates, was introduced and explored for all 10 symmetry classes of disordered systems. Here, by using the nonlinear sigma-model ( NL σ M ) field theory, we extend the theory of generalized multifractality to boundaries of systems at criticality. Our numerical simulations on two-dimensional systems of symmetry classes A, C, and AII fully confirm the analytical predictions of pure-scaling observables and Weyl symmetry relations between critical exponents of surface generalized multifractality. This demonstrates the validity of the NL σ M for the description of Anderson-localization critical phenomena, not only in the bulk but also on the boundary. The critical exponents strongly violate generalized parabolicity, in analogy with earlier results for the bulk, corroborating the conclusion that the considered Anderson-localization critical points are not described by conformal field theories. We further derive relations between generalized surface multifractal spectra and linear combinations of Lyapunov exponents of a strip in quasi-one-dimensional geometry, which hold under the assumption of invariance with respect to a logarithmic conformal map. Our numerics demonstrate that these relations hold with an excellent accuracy. Taken together, our results indicate an intriguing situation: the conformal invariance is broken but holds partially at critical points of Anderson localization. AU - Babkin, Serafim AU - Karcher, Jonas F. AU - Burmistrov, Igor S. AU - Mirlin, Alexander D. ID - 14406 IS - 10 JF - Physical Review B SN - 2469-9950 TI - Generalized surface multifractality in two-dimensional disordered systems VL - 108 ER - TY - CONF AB - This paper focuses on the implementation details of the baseline methods and a recent lightweight conditional model extrapolation algorithm LIMES [5] for streaming data under class-prior shift. LIMES achieves superior performance over the baseline methods, especially concerning the minimum-across-day accuracy, which is important for the users of the system. In this work, the key measures to facilitate reproducibility and enhance the credibility of the results are described. AU - Tomaszewska, Paulina AU - Lampert, Christoph ID - 14410 SN - 0302-9743 T2 - International Workshop on Reproducible Research in Pattern Recognition TI - On the implementation of baselines and lightweight conditional model extrapolation (LIMES) under class-prior shift VL - 14068 ER - TY - CONF AB - We introduce hypernode automata as a new specification formalism for hyperproperties of concurrent systems. They are finite automata with nodes labeled with hypernode logic formulas and transitions labeled with actions. A hypernode logic formula specifies relations between sequences of variable values in different system executions. Unlike HyperLTL, hypernode logic takes an asynchronous view on execution traces by constraining the values and the order of value changes of each variable without correlating the timing of the changes. Different execution traces are synchronized solely through the transitions of hypernode automata. Hypernode automata naturally combine asynchronicity at the node level with synchronicity at the transition level. We show that the model-checking problem for hypernode automata is decidable over action-labeled Kripke structures, whose actions induce transitions of the specification automata. For this reason, hypernode automaton is a suitable formalism for specifying and verifying asynchronous hyperproperties, such as declassifying observational determinism in multi-threaded programs. AU - Bartocci, Ezio AU - Henzinger, Thomas A AU - Nickovic, Dejan AU - Oliveira da Costa, Ana ID - 14405 SN - 18688969 T2 - 34th International Conference on Concurrency Theory TI - Hypernode automata VL - 279 ER - TY - JOUR AB - We prove that the mesoscopic linear statistics ∑if(na(σi−z0)) of the eigenvalues {σi}i of large n×n non-Hermitian random matrices with complex centred i.i.d. entries are asymptotically Gaussian for any H20-functions f around any point z0 in the bulk of the spectrum on any mesoscopic scale 0