TY - JOUR AB - The bacterial cell wall is composed of the peptidoglycan (PG), a large polymer that maintains the integrity of the bacterial cell. Due to its multi-gigadalton size, heterogeneity, and dynamics, atomic-resolution studies are inherently complex. Solid-state NMR is an important technique to gain insight into its structure, dynamics and interactions. Here, we explore the possibilities to study the PG with ultra-fast (100 kHz) magic-angle spinning NMR. We demonstrate that highly resolved spectra can be obtained, and show strategies to obtain site-specific resonance assignments and distance information. We also explore the use of proton-proton correlation experiments, thus opening the way for NMR studies of intact cell walls without the need for isotope labeling. AU - Bougault, Catherine AU - Ayala, Isabel AU - Vollmer, Waldemar AU - Simorre, Jean-Pierre AU - Schanda, Paul ID - 8409 IS - 1 JF - Journal of Structural Biology KW - Structural Biology SN - 1047-8477 TI - Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency VL - 206 ER - TY - JOUR AU - Schanda, Paul ID - 8407 JF - Journal of Magnetic Resonance KW - Nuclear and High Energy Physics KW - Biophysics KW - Biochemistry KW - Condensed Matter Physics SN - 1090-7807 TI - Relaxing with liquids and solids – A perspective on biomolecular dynamics VL - 306 ER - TY - JOUR AU - Schanda, Paul AU - Chekmenev, Eduard Y. ID - 8410 IS - 2 JF - ChemPhysChem SN - 1439-4235 TI - NMR for Biological Systems VL - 20 ER - TY - CONF AB - This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with linear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In its third edition, seven tools have been applied to solve six different benchmark problems in the category for linear continuous dynamics (in alphabetical order): CORA, CORA/SX, HyDRA, Hylaa, JuliaReach, SpaceEx, and XSpeed. This report is a snapshot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results provide one of the most complete assessments of tools for the safety verification of continuous and hybrid systems with linear continuous dynamics up to this date. AU - Althoff, Matthias AU - Bak, Stanley AU - Forets, Marcelo AU - Frehse, Goran AU - Kochdumper, Niklas AU - Ray, Rajarshi AU - Schilling, Christian AU - Schupp, Stefan ID - 8570 T2 - EPiC Series in Computing TI - ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics VL - 61 ER - TY - JOUR AB - Inhibiting the histone H3–ASF1 (anti‐silencing function 1) protein–protein interaction (PPI) represents a potential approach for treating numerous cancers. As an α‐helix‐mediated PPI, constraining the key histone H3 helix (residues 118–135) is a strategy through which chemical probes might be elaborated to test this hypothesis. In this work, variant H3118–135 peptides bearing pentenylglycine residues at the i and i+4 positions were constrained by olefin metathesis. Biophysical analyses revealed that promotion of a bioactive helical conformation depends on the position at which the constraint is introduced, but that the potency of binding towards ASF1 is unaffected by the constraint and instead that enthalpy–entropy compensation occurs. AU - Bakail, May M AU - Rodriguez‐Marin, Silvia AU - Hegedüs, Zsófia AU - Perrin, Marie E. AU - Ochsenbein, Françoise AU - Wilson, Andrew J. ID - 9016 IS - 7 JF - ChemBioChem SN - 1439-4227 TI - Recognition of ASF1 by using hydrocarbon‐constrained peptides VL - 20 ER - TY - JOUR AB - Molecular motors are essential to the living, generating fluctuations that boost transport and assist assembly. Active colloids, that consume energy to move, hold similar potential for man-made materials controlled by forces generated from within. Yet, their use as a powerhouse in materials science lacks. Here we show a massive acceleration of the annealing of a monolayer of passive beads by moderate addition of self-propelled microparticles. We rationalize our observations with a model of collisions that drive active fluctuations and activate the annealing. The experiment is quantitatively compared with Brownian dynamic simulations that further unveil a dynamical transition in the mechanism of annealing. Active dopants travel uniformly in the system or co-localize at the grain boundaries as a result of the persistence of their motion. Our findings uncover the potential of internal activity to control materials and lay the groundwork for the rise of materials science beyond equilibrium. AU - Ramananarivo, Sophie AU - Ducrot, Etienne AU - Palacci, Jérémie A ID - 9060 IS - 1 JF - Nature Communications KW - General Biochemistry KW - Genetics and Molecular Biology KW - General Physics and Astronomy KW - General Chemistry SN - 2041-1723 TI - Activity-controlled annealing of colloidal monolayers VL - 10 ER - TY - JOUR AB - Epigenetic reprogramming is required for proper regulation of gene expression in eukaryotic organisms. In Arabidopsis, active DNA demethylation is crucial for seed viability, pollen function, and successful reproduction. The DEMETER (DME) DNA glycosylase initiates localized DNA demethylation in vegetative and central cells, so-called companion cells that are adjacent to sperm and egg gametes, respectively. In rice, the central cell genome displays local DNA hypomethylation, suggesting that active DNA demethylation also occurs in rice; however, the enzyme responsible for this process is unknown. One candidate is the rice REPRESSOR OF SILENCING 1a (ROS1a) gene, which is related to DME and is essential for rice seed viability and pollen function. Here, we report genome-wide analyses of DNA methylation in wild-type and ros1a mutant sperm and vegetative cells. We find that the rice vegetative cell genome is locally hypomethylated compared with sperm by a process that requires ROS1a activity. We show that many ROS1a target sequences in the vegetative cell are hypomethylated in the rice central cell, suggesting that ROS1a also demethylates the central cell genome. Similar to Arabidopsis, we show that sperm non-CG methylation is indirectly promoted by DNA demethylation in the vegetative cell. These results reveal that DNA glycosylase-mediated DNA demethylation processes are conserved in Arabidopsis and rice, plant species that diverged 150 million years ago. Finally, although global non-CG methylation levels of sperm and egg differ, the maternal and paternal embryo genomes show similar non-CG methylation levels, suggesting that rice gamete genomes undergo dynamic DNA methylation reprogramming after cell fusion. AU - Kim, M. Yvonne AU - Ono, Akemi AU - Scholten, Stefan AU - Kinoshita, Tetsu AU - Zilberman, Daniel AU - Okamoto, Takashi AU - Fischer, Robert L. ID - 9460 IS - 19 JF - Proceedings of the National Academy of Sciences KW - Multidisciplinary SN - 0027-8424 TI - DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm VL - 116 ER - TY - JOUR AB - A central goal of computational physics and chemistry is to predict material properties by using first-principles methods based on the fundamental laws of quantum mechanics. However, the high computational costs of these methods typically prevent rigorous predictions of macroscopic quantities at finite temperatures, such as heat capacity, density, and chemical potential. Here, we enable such predictions by marrying advanced free-energy methods with data-driven machine-learning interatomic potentials. We show that, for the ubiquitous and technologically essential system of water, a first-principles thermodynamic description not only leads to excellent agreement with experiments, but also reveals the crucial role of nuclear quantum fluctuations in modulating the thermodynamic stabilities of different phases of water. AU - Cheng, Bingqing AU - Engel, Edgar A. AU - Behler, Jörg AU - Dellago, Christoph AU - Ceriotti, Michele ID - 9689 IS - 4 JF - Proceedings of the National Academy of Sciences SN - 0027-8424 TI - Ab initio thermodynamics of liquid and solid water VL - 116 ER - TY - JOUR AB - Glyphosate (N-phosphonomethyl glycine) and its commercial herbicide formulations have been shown to exert toxicity via various mechanisms. It has been asserted that glyphosate substitutes for glycine in polypeptide chains leading to protein misfolding and toxicity. However, as no direct evidence exists for glycine to glyphosate substitution in proteins, including in mammalian organisms, we tested this claim by conducting a proteomics analysis of MDA-MB-231 human breast cancer cells grown in the presence of 100 mg/L glyphosate for 6 days. Protein extracts from three treated and three untreated cell cultures were analysed as one TMT-6plex labelled sample, to highlight a specific pattern (+/+/+/−/−/−) of reporter intensities for peptides bearing true glyphosate treatment induced-post translational modifications as well as allowing an investigation of the total proteome. AU - Antoniou, Michael N. AU - Nicolas, Armel AU - Mesnage, Robin AU - Biserni, Martina AU - Rao, Francesco V. AU - Martin, Cristina Vazquez ID - 6819 JF - BMC Research Notes TI - Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells VL - 12 ER - TY - GEN AB - Additional file 1: Table S1. Kinetics of MDA-MB-231 cell growth in either the presence or absence of 100Â mg/L glyphosate. Cell counts are given at day-1 of seeding flasks and following 6-days of continuous culture. Note: no differences in cell numbers were observed between negative control and glyphosate treated cultures. AU - Antoniou, Michael N. AU - Nicolas, Armel AU - Mesnage, Robin AU - Biserni, Martina AU - Rao, Francesco V. AU - Martin, Cristina Vazquez ID - 9784 TI - MOESM1 of Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells ER -