@article{4070,
abstract = {Let S be a set of n closed intervals on the x-axis. A ranking assigns to each interval, s, a distinct rank, p(s) [1, 2,…,n]. We say that s can see t if p(s)<p(t) and there is a point ps∩t so that pu for all u with p(s)<p(u)<p(t). It is shown that a ranking can be found in time O(n log n) such that each interval sees at most three other intervals. It is also shown that a ranking that minimizes the average number of endpoints visible from an interval can be computed in time O(n 5/2). The results have applications to intersection problems for intervals, as well as to channel routing problems which arise in layouts of VLSI circuits.},
author = {Herbert Edelsbrunner and Overmars, Mark H and Welzl, Emo and Hartman, Irith Ben-Arroyo and Feldman,Jack A},
journal = {International Journal of Computer Mathematics},
number = {3-4},
pages = {129 -- 144},
publisher = {Taylor & Francis},
title = {{Ranking intervals under visibility constraints}},
doi = {10.1080/00207169008803871},
volume = {34},
year = {1990},
}
@inproceedings{4071,
abstract = {We show that a triangulation of a set of n points in the plane that minimizes the maximum angle can be computed in time O(n2 log n) and space O(n). In the same amount of time and space we can also handle the constrained case where edges are prescribed. The algorithm iteratively improves an arbitrary initial triangulation and is fairly easy to implement.},
author = {Herbert Edelsbrunner and Tan, Tiow Seng and Waupotitsch, Roman},
pages = {44 -- 52},
publisher = {ACM},
title = {{An O(n^2log n) time algorithm for the MinMax angle triangulation}},
doi = {10.1145/98524.98535},
year = {1990},
}
@article{4072,
abstract = {We show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m 2/3– n 2/3+2 +n) for any>0. The proof takes an algorithmic approach, that is, we describe an algorithm for the calculation of thesem faces and derive the upper bound from the analysis of the algorithm. The algorithm uses randomization and its expected time complexity isO(m 2/3– n 2/3+2 logn+n logn logm). If instead of lines we have an arrangement ofn line segments, then the maximum number of edges ofm faces isO(m 2/3– n 2/3+2 +n (n) logm) for any>0, where(n) is the functional inverse of Ackermann's function. We give a (randomized) algorithm that produces these faces and takes expected timeO(m 2/3– n 2/3+2 log+n(n) log2 n logm).},
author = {Herbert Edelsbrunner and Guibas, Leonidas J and Sharir, Micha},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {161 -- 196},
publisher = {Springer},
title = {{The complexity and construction of many faces in arrangements of lines and of segments}},
doi = { 10.1007/BF02187784},
volume = {5},
year = {1990},
}
@inproceedings{4073,
abstract = {A number of rendering algorithms in computer graphics sort three-dimensional objects by depth and assume that there is no cycle that makes the sorting impossible. One way to resolve the problem caused by cycles is to cut the objects into smaller pieces. The problem of estimating how many such cuts are always sufficient is addressed. A few related algorithmic and combinatorial geometry problems are considered},
author = {Chazelle, Bernard and Herbert Edelsbrunner and Guibas, Leonidas J and Pollack, Richard and Seidel, Raimund and Sharir, Micha and Snoeyink, Jack},
pages = {242 -- 251},
publisher = {IEEE},
title = {{Counting and cutting cycles of lines and rods in space}},
doi = {10.1109/FSCS.1990.89543},
year = {1990},
}
@article{4074,
author = {Clarkson, Kenneth L and Herbert Edelsbrunner and Guibas, Leonidas J and Sharir, Micha and Welzl, Emo},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {99 -- 160},
publisher = {Springer},
title = {{Combinatorial complexity bounds for arrangements of curves and spheres}},
doi = {10.1007/BF02187783},
volume = {5},
year = {1990},
}
@article{4075,
abstract = {A key problem in computational geometry is the identification of subsets of a point set having particular properties. We study this problem for the properties of convexity and emptiness. We show that finding empty triangles is related to the problem of determining pairs of vertices that see each other in a star-shaped polygon. A linear-time algorithm for this problem which is of independent interest yields an optimal algorithm for finding all empty triangles. This result is then extended to an algorithm for finding empty convex r-gons (r> 3) and for determining a largest empty convex subset. Finally, extensions to higher dimensions are mentioned.},
author = {Dobkin, David P and Herbert Edelsbrunner and Overmars, Mark H},
journal = {Algorithmica},
number = {4},
pages = {561 -- 571},
publisher = {Springer},
title = {{Searching for empty convex polygons}},
doi = {10.1007/BF01840404},
volume = {5},
year = {1990},
}
@inproceedings{4076,
abstract = {We present an algorithm to compute a Euclidean minimum spanning tree of a given set S of n points in Ed in time O(Td(N, N) logd N), where Td(n, m) is the time required to compute a bichromatic closest pair among n red and m blue points in Ed. If Td(N, N) = Ω(N1+ε), for some fixed ε > 0, then the running time improves to O(Td(N, N)). Furthermore, we describe a randomized algorithm to compute a bichromatic closets pair in expected time O((nm log n log m)2/3+m log2 n + n log2 m) in E3, which yields an O(N4/3log4/3 N) expected time algorithm for computing a Euclidean minimum spanning tree of N points in E3.},
author = {Agarwal, Pankaj K and Herbert Edelsbrunner and Schwarzkopf, Otfried and Welzl, Emo},
pages = {203 -- 210},
publisher = {ACM},
title = {{ Euclidean minimum spanning trees and bichromatic closest pairs}},
doi = {10.1145/98524.98567},
year = {1990},
}
@inproceedings{4077,
abstract = {We prove that for any set S of n points in the plane and n3-α triangles spanned by the points of S there exists a point (not necessarily of S) contained in at least n3-3α/(512 log25 n) of the triangles. This implies that any set of n points in three - dimensional space defines at most 6.4n8/3 log5/3 n halving planes.},
author = {Aronov, Boris and Chazelle, Bernard and Herbert Edelsbrunner and Guibas, Leonidas J and Sharir, Micha and Wenger, Rephael},
pages = {112 -- 115},
publisher = {ACM},
title = {{Points and triangles in the plane and halving planes in space}},
doi = {10.1145/98524.98548},
year = {1990},
}
@inproceedings{4078,
abstract = {In this paper we derived combinatorial point selection results for geometric objects defined by pairs of points. In a nutshell, the results say that if many pairs of a set of n points in some fixed dimension each define a geometric object of some type, then there is a point covered by many of these objects. Based on such a result for three-dimensional spheres we show that the combinatorial size of the Delaunay triangulation of a point set in space can be reduced by adding new points. We believe that from a practical point of view this is the most important result of this paper.},
author = {Chazelle, Bernard and Herbert Edelsbrunner and Guibas, Leonidas J and Hershberger, John E and Seidel, Raimund and Sharir, Micha},
pages = {116 -- 127},
publisher = {ACM},
title = {{Slimming down by adding; selecting heavily covered points}},
doi = {10.1145/98524.98551},
year = {1990},
}
@article{2479,
abstract = {Distribution of putative glutamatergic neurons in the lower brainstem and cerebellum of the rat was examined immunocytochemically by using a monoclonal antibody against phosphate-activated glutaminase, which has been proposed to be a major synthetic enzyme of transmitter glutamate and so may serve as a marker for glutamatergic neurons in the central nervous system. Intensely-immunolabeled neuronal cell bodies were densely distributed in the main precerebellar nuclei sending mossy fibers to the cerebellum; in the pontine nuclei, pontine tegmental reticular nucleus of Bechterew, external cuneate nucleus, and lateral reticular nucleus of the medulla oblongata. Phosphate-activated glutaminase-immunoreactive granular deposits were densely seen in the brachium pontis and restiform body, suggesting the immunolabeling of mossy fibers of passage. In the cerebellum, neuropil within the granule cell layer of the cerebellar cortex displayed intense phosphate-activated glutaminase-immunoreactivity, and that within the deep cerebellar nuclei showed moderate immunoreactivity. These results indicate that many mossy fiber terminals originate from phosphate-activated glutaminase-containing neurons and utilize phosphate-activated glutaminase for the synthesis of transmitter glutamate. Intensely-immunostained neuronal cell bodies were further observed in other regions which have been reported to contain neurons sending mossy fibers to the cerebellum; in the dorsal part of the principal sensory trigeminal nucleus, dorsomedial part of the oral subnucleus of the spinal trigeminal nucleus, interpolar subnucleus of the spinal trigeminal nucleus, paratrigeminal nucleus, supragenual nucleus, regions dorsal to the abducens nucleus and genu of the facial nerve, superior and medial vestibular nuclei, cell groups f, x and y, hypoglossal prepositus nucleus, intercalated nucleus, nucleus of Roller, reticular regions intercalated between the motor trigeminal and principal sensory trigeminal nuclei, linear nucleus, and gigantocellular and paramedian reticular formation. Neuronal cell bodies with intense phosphate-activated glutaminase-immunoreactivity were also found in other brainstem regions, such as the paracochlear glial substance, posterior ventral cochlear nucleus, and cell group e. Although it is still controversial whether all glutamatergic neurons use phosphate-activated glutaminase in a transmitter-related process and whether phosphate-activated glutaminase is involved in other metabolism-related processes, the neurons showing intense phosphate-activated glutaminase-immuno-reactivity in the present study were suggested to be putative glutamatergic neurons.},
author = {Kaneko, Takeshi and Itoh, Kazuo and Ryuichi Shigemoto and Mizuno, Noboru},
journal = {Neuroscience},
number = {1},
pages = {79 -- 98},
publisher = {Elsevier},
title = {{Glutaminase-like immunoreactivity in the lower brainstem and cerebellum of the adult rat}},
doi = {10.1016/0306-4522(89)90109-7},
volume = {32},
year = {1989},
}
@article{2525,
abstract = {This paper describes the amino acid sequence of the rat substance P receptor and its comparison with that of the rat substance K receptor on the basis of molecular cloning and sequence analysis. From a rat brain cDNA library constructed with an RNA expression vector, we identified a cDNA mixture containing a functional substance P receptor cDNA by examining electrophysiologically a receptor expression following injection of the mRNAs synthesized in vitro into Xenopus oocytes. A receptor cDNA clone was then isolated by cross-hybridization with the bovine substance K receptor DNA. The clone was confirmed by selective binding of substance P to the cloned receptor expressed in mammalian COS cells. The deduced amino acid sequence (407 amino acid residues) possesses seven putative membrane spanning domains and shows a sequence similarity to the members of G-protein-coupled receptors. The rat substance P and substance K receptor are very similar in both size and amino acid sequences, particularly in the putative transmembrane similarity is in marked contrast to the sequence divergence in the amino- and carboxyl-terminal regions and the third cytoplasmic loop. The observed sequence similarytity and divergence would thus contribute to the expression of similar but pharmacological regions and the first and second cytoplasmic loops. This distinguishable activities of the two tachykinin receptors.},
author = {Yokota, Yoshifumi and Sasai, Yoshiki and Tanaka, Kohichi and Fujiwara, Tsutomu and Tsuchida, Kunihiro and Ryuichi Shigemoto and Kakizuka, Akira and Ohkubo, Hiroaki and Nakanishi, Shigetada},
journal = {Journal of Biological Chemistry},
number = {30},
pages = {17649 -- 17652},
publisher = {American Society for Biochemistry and Molecular Biology},
title = {{Molecular characterization of a functional cDNA for rat substance P receptor}},
volume = {264},
year = {1989},
}
@article{2526,
abstract = {When WGA-HRP (wheat germ agglutinin-horseradish peroxidase conjugate) or HRP was injected into the regions around the superior central and/or the dorsal raphe nuclei in the cat, cell bodies of a number of non-pyramidal neurons were labeled in Ammon's horn. Thus the existence of direct projections from non-pyramidal neurons in Ammon's horn to the rostral raphe regions in the brainstem was suggested in the cat.},
author = {Ino, Tadashi and Itoh, Kazuo and Kamiya, Hiroto and Kaneko, Takeshi and Ryuichi Shigemoto and Akiguchi, Ichiro and Mizuno, Noboru},
journal = {Brain Research},
number = {1},
pages = {157 -- 161},
publisher = {Elsevier},
title = {{Direct projections from Ammon's horn to the rostral raphe regions in the brainstem of the cat}},
doi = {10.1016/0006-8993(89)91346-2},
volume = {479},
year = {1989},
}
@article{2527,
author = {Akimoto, Masumi and Ryuichi Shigemoto and Kawamura, Makiko and Yamagata, Hideharu and Kurihara, Takeshi and Takata, S and Miwa, Yoko and Akagami, N and Katsu, Kenichi and Yamauchi, D},
journal = {Japanese Journal of Gastroenterology},
number = {11},
publisher = {Japanese Society of Gastroenterology},
title = {{Effect of endothelin on gastric mucosal blood flow in rat}},
doi = {10.11405/nisshoshi1964.86.2627},
volume = {86},
year = {1989},
}
@article{4309,
abstract = {Three methods for estimating the average level of gene flow in natural population are discussed and compared. The three methods are FST, rare alleles, and maximum likelihood. All three methods yield estimates of the combination of parameters (the number of migrants [Nm] in a demic model or the neighborhood size [4πDσ2] in a continuum model) that determines the relative importance of gene flow and genetic drift. We review the theory underlying these methods and derive new analytic results for the expectation of FST in stepping-stone and continuum models when small sets of samples are taken. We also compare the effectiveness of the different methods using a variety of simulated data. We found that the FST and rare-alleles methods yield comparable estimates under a wide variety of conditions when the population being sampled is demographically stable. They are roughly equally sensitive to selection and to variation in population structure, and they approach their equilibrium values at approximately the same rate. We found that two different maximum-likelihood methods tend to yield biased estimates when relatively small numbers of locations are sampled but more accurate estimates when larger numbers are sampled. Our conclusion is that, although FST and rare-alleles methods are expected to be equally effective in analyzing ideal data, practical problems in estimating the frequencies of rare alleles in electrophoretic studies suggest that FST is likely to be more useful under realistic conditions.
},
author = {Slatkin, Montgomery and Nicholas Barton},
journal = {Evolution; International Journal of Organic Evolution},
number = {7},
pages = {1349 -- 1368},
publisher = {Wiley-Blackwell},
title = {{A comparison of three methods for estimating average levels of gene flow}},
volume = {43},
year = {1989},
}
@article{4312,
author = {Nicholas Barton and Turelli, Michael},
journal = {Annual Review of Genetics},
pages = {337 -- 370},
publisher = {Annual Reviews},
title = {{Evolutionary quantitative genetics: how little do we know ?}},
doi = {10.1146/annurev.ge.23.120189.002005},
volume = {23},
year = {1989},
}
@inbook{4313,
author = {Nicholas Barton},
booktitle = {Speciation and its consequences},
editor = {Otte, Daniel and Endler, John A},
publisher = {Sinauer Press},
title = {{Founder effect speciation}},
year = {1989},
}
@article{4314,
abstract = {Polygenic variation can be maintained by a balance between mutation and stabilizing selection. When the alleles responsible for variation are rare, many classes of equilibria may be stable. The rate at which drift causes shifts between equilibria is investigated by integrating the gene frequency distribution W2N II (pq)4N mu-1. This integral can be found exactly, by numerical integration, or can be approximated by assuming that the full distribution of allele frequencies is approximately Gaussian. These methods are checked against simulations. Over a wide range of population sizes, drift will keep the population near an equilibrium which minimizes the genetic variance and the deviation from the selective optimum. Shifts between equilibria in this class occur at an appreciable rate if the product of population size and selection on each locus is small (Ns alpha 2 less than 10). The Gaussian approximation is accurate even when the underlying distribution is strongly skewed. Reproductive isolation evolves as populations shift to new combinations of alleles: however, this process is slow, approaching the neutral rate (approximately mu) in small populations.},
author = {Nicholas Barton},
journal = {Genetical Research},
number = {1},
pages = {59 -- 77},
publisher = {Cambridge University Press},
title = {{The divergence of a polygenic system under stabilising selection, mutation and drift}},
doi = {10.1017/S0016672300028378},
volume = {54},
year = {1989},
}
@inproceedings{4596,
abstract = {A real-time temporal logic for the specification of reactive systems is introduced. The novel feature of the logic, TPTL, is the adoption of temporal operators as quantifiers over time variables; every modality binds a variable to the time(s) it refers to. TPTL is demonstrated to be both a natural specification language and a suitable formalism for verification and synthesis. A tableau-based decision procedure and model-checking algorithm for TPTL are presented. Several generalizations of TPTL are shown to be highly undecidable.},
author = {Alur, Rajeev and Thomas Henzinger},
pages = {164 -- 169},
publisher = {IEEE},
title = {{A really temporal logic}},
doi = {10.1109/SFCS.1989.63473},
year = {1989},
}
@article{3465,
abstract = {Asymmetrical displacement currents and Na currents of single myelinated nerve fibers of Xenopus laevis were studied in the temperature range from 5 to 24 degrees C. The time constant of the on-response at E = 4 mV, tau on, was strongly temperature dependent, whereas the amount of displaced charge at E = 39 mV, Qon, was only slightly temperature dependent. The mean Q10 for tau on-1 was 2.54, the mean Q10 for Qon was 1.07. The time constant of charge immobilization, tau i, at E = 4 mV varied significantly (alpha = 0.001) with temperature. The mean Q10 for tau i-1 was 2.71 +/- 0.38. The time constants of immobilization of gating charge and of fast inactivation of Na permeability were similar in the temperature range from 6 to 22 degrees C. The Qoff/Qon ratio for E = 4 mV pulses of 0.5 msec duration decreased with increasing temperature. The temperature dependence of the time constant of the off-response could not be described by a single Q10 value, since the Q10 depended on the duration of the test pulse. Increasing temperature shifted Qon (E) curves to more negative potentials by 0.51 mV K-1, but shifted PNa (E) curves and h infinity (E) curves to more positive potentials by 0.43 and 0.57 mV K-1, respectively. h infinity (E = -70 mV) increased monotonously with increasing temperature. The present data indicate that considerable entropy changes may occur when the Na channel molecule passes from closed through open to inactivated states.},
author = {Peter Jonas},
journal = {Journal of Membrane Biology},
number = {3},
pages = {277 -- 289},
publisher = {Springer},
title = {{Temperature dependence of gating current in myelinated nerve fibers}},
doi = {10.1007/BF01870958},
volume = {112},
year = {1989},
}
@article{3466,
abstract = {Amphibian myelinated nerve fibers were treated with collagenase and protease. Axons with retraction of the myelin sheath were patch-clamped in the nodal and paranodal region. One type of Na channel was found. It has a single-channel conductance of 11 pS (15 degrees C) and is blocked by tetrodotoxin. Averaged events show the typical activation and inactivation kinetics of macroscopic Na current. Three potential-dependent K channels were identified (I, F, and S channel). The I channel, being the most frequent type, has a single-channel conductance of 23 pS (inward current, 105 mM K on both sides of the membrane), activates between -60 and -30 mV, deactivates with intermediate kinetics, and is sensitive to dendrotoxin. The F channel has a conductance of 30 pS, activates between -40 and 60 mV, and deactivates with fast kinetics. The former inactivates within tens of seconds; the latter inactivates within seconds. The third type, the S channel, has a conductance of 7 pS and deactivates slowly. All three channels can be blocked by external tetraethylammonium chloride. We suggest that these distinct K channel types form the basis for the different components of macroscopic K current described previously.},
author = {Peter Jonas and Bräu, Michael E and Hermsteiner, Markus and Vogel, Werner},
journal = {PNAS},
number = {18},
pages = {7238 -- 7242},
publisher = {National Academy of Sciences},
title = {{Single-channel recording in myelinated nerve fibers reveals one type of Na channel but different K channels}},
volume = {86},
year = {1989},
}