@inproceedings{13262, abstract = {Determining the degree of inherent parallelism in classical sequential algorithms and leveraging it for fast parallel execution is a key topic in parallel computing, and detailed analyses are known for a wide range of classical algorithms. In this paper, we perform the first such analysis for the fundamental Union-Find problem, in which we are given a graph as a sequence of edges, and must maintain its connectivity structure under edge additions. We prove that classic sequential algorithms for this problem are well-parallelizable under reasonable assumptions, addressing a conjecture by [Blelloch, 2017]. More precisely, we show via a new potential argument that, under uniform random edge ordering, parallel union-find operations are unlikely to interfere: T concurrent threads processing the graph in parallel will encounter memory contention O(T2 · log |V| · log |E|) times in expectation, where |E| and |V| are the number of edges and nodes in the graph, respectively. We leverage this result to design a new parallel Union-Find algorithm that is both internally deterministic, i.e., its results are guaranteed to match those of a sequential execution, but also work-efficient and scalable, as long as the number of threads T is O(|E|1 over 3 - ε), for an arbitrarily small constant ε > 0, which holds for most large real-world graphs. We present lower bounds which show that our analysis is close to optimal, and experimental results suggesting that the performance cost of internal determinism is limited.}, author = {Fedorov, Alexander and Hashemi, Diba and Nadiradze, Giorgi and Alistarh, Dan-Adrian}, booktitle = {Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures}, isbn = {9781450395458}, location = {Orlando, FL, United States}, pages = {261--271}, publisher = {Association for Computing Machinery}, title = {{Provably-efficient and internally-deterministic parallel Union-Find}}, doi = {10.1145/3558481.3591082}, year = {2023}, } @article{11479, abstract = {Understanding population divergence that eventually leads to speciation is essential for evolutionary biology. High species diversity in the sea was regarded as a paradox when strict allopatry was considered necessary for most speciation events because geographical barriers seemed largely absent in the sea, and many marine species have high dispersal capacities. Combining genome-wide data with demographic modelling to infer the demographic history of divergence has introduced new ways to address this classical issue. These models assume an ancestral population that splits into two subpopulations diverging according to different scenarios that allow tests for periods of gene flow. Models can also test for heterogeneities in population sizes and migration rates along the genome to account, respectively, for background selection and selection against introgressed ancestry. To investigate how barriers to gene flow arise in the sea, we compiled studies modelling the demographic history of divergence in marine organisms and extracted preferred demographic scenarios together with estimates of demographic parameters. These studies show that geographical barriers to gene flow do exist in the sea but that divergence can also occur without strict isolation. Heterogeneity of gene flow was detected in most population pairs suggesting the predominance of semipermeable barriers during divergence. We found a weak positive relationship between the fraction of the genome experiencing reduced gene flow and levels of genome-wide differentiation. Furthermore, we found that the upper bound of the ‘grey zone of speciation’ for our dataset extended beyond that found before, implying that gene flow between diverging taxa is possible at higher levels of divergence than previously thought. Finally, we list recommendations for further strengthening the use of demographic modelling in speciation research. These include a more balanced representation of taxa, more consistent and comprehensive modelling, clear reporting of results and simulation studies to rule out nonbiological explanations for general results.}, author = {De Jode, Aurélien and Le Moan, Alan and Johannesson, Kerstin and Faria, Rui and Stankowski, Sean and Westram, Anja M and Butlin, Roger K. and Rafajlović, Marina and Fraisse, Christelle}, issn = {1752-4571}, journal = {Evolutionary Applications}, number = {2}, pages = {542--559}, publisher = {Wiley}, title = {{Ten years of demographic modelling of divergence and speciation in the sea}}, doi = {10.1111/eva.13428}, volume = {16}, year = {2023}, } @article{12329, abstract = {In this article, we develop two independent and new approaches to model epidemic spread in a network. Contrary to the most studied models, those developed here allow for contacts with different probabilities of transmitting the disease (transmissibilities). We then examine each of these models using some mean field type approximations. The first model looks at the late-stage effects of an epidemic outbreak and allows for the computation of the probability that a given vertex was infected. This computation is based on a mean field approximation and only depends on the number of contacts and their transmissibilities. This approach shares many similarities with percolation models in networks. The second model we develop is a dynamic model which we analyze using a mean field approximation which highly reduces the dimensionality of the system. In particular, the original system which individually analyses each vertex of the network is reduced to one with as many equations as different transmissibilities. Perhaps the greatest contribution of this article is the observation that, in both these models, the existence and size of an epidemic outbreak are linked to the properties of a matrix which we call the R-matrix. This is a generalization of the basic reproduction number which more precisely characterizes the main routes of infection.}, author = {Gómez, Arturo and Oliveira, Goncalo}, issn = {2045-2322}, journal = {Scientific Reports}, publisher = {Springer Nature}, title = {{New approaches to epidemic modeling on networks}}, doi = {10.1038/s41598-022-19827-9}, volume = {13}, year = {2023}, } @article{9034, abstract = {We determine an asymptotic formula for the number of integral points of bounded height on a blow-up of P3 outside certain planes using universal torsors.}, author = {Wilsch, Florian Alexander}, issn = {1687-0247}, journal = {International Mathematics Research Notices}, number = {8}, pages = {6780--6808}, publisher = {Oxford Academic}, title = {{Integral points of bounded height on a log Fano threefold}}, doi = {10.1093/imrn/rnac048}, volume = {2023}, year = {2023}, } @article{12469, abstract = {Hosts can carry many viruses in their bodies, but not all of them cause disease. We studied ants as a social host to determine both their overall viral repertoire and the subset of actively infecting viruses across natural populations of three subfamilies: the Argentine ant (Linepithema humile, Dolichoderinae), the invasive garden ant (Lasius neglectus, Formicinae) and the red ant (Myrmica rubra, Myrmicinae). We used a dual sequencing strategy to reconstruct complete virus genomes by RNA-seq and to simultaneously determine the small interfering RNAs (siRNAs) by small RNA sequencing (sRNA-seq), which constitute the host antiviral RNAi immune response. This approach led to the discovery of 41 novel viruses in ants and revealed a host ant-specific RNAi response (21 vs. 22 nt siRNAs) in the different ant species. The efficiency of the RNAi response (sRNA/RNA read count ratio) depended on the virus and the respective ant species, but not its population. Overall, we found the highest virus abundance and diversity per population in Li. humile, followed by La. neglectus and M. rubra. Argentine ants also shared a high proportion of viruses between populations, whilst overlap was nearly absent in M. rubra. Only one of the 59 viruses was found to infect two of the ant species as hosts, revealing high host-specificity in active infections. In contrast, six viruses actively infected one ant species, but were found as contaminants only in the others. Disentangling spillover of disease-causing infection from non-infecting contamination across species is providing relevant information for disease ecology and ecosystem management.}, author = {Viljakainen, Lumi and Fürst, Matthias and Grasse, Anna V and Jurvansuu, Jaana and Oh, Jinook and Tolonen, Lassi and Eder, Thomas and Rattei, Thomas and Cremer, Sylvia}, issn = {1664-302X}, journal = {Frontiers in Microbiology}, publisher = {Frontiers}, title = {{Antiviral immune response reveals host-specific virus infections in natural ant populations}}, doi = {10.3389/fmicb.2023.1119002}, volume = {14}, year = {2023}, } @article{12287, abstract = {We present criteria for establishing a triangulation of a manifold. Given a manifold M, a simplicial complex A, and a map H from the underlying space of A to M, our criteria are presented in local coordinate charts for M, and ensure that H is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on M. No Delaunay property of A is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use.}, author = {Boissonnat, Jean-Daniel and Dyer, Ramsay and Ghosh, Arijit and Wintraecken, Mathijs}, issn = {1432-0444}, journal = {Discrete & Computational Geometry}, keywords = {Computational Theory and Mathematics, Discrete Mathematics and Combinatorics, Geometry and Topology, Theoretical Computer Science}, pages = {156--191}, publisher = {Springer Nature}, title = {{Local criteria for triangulating general manifolds}}, doi = {10.1007/s00454-022-00431-7}, volume = {69}, year = {2023}, } @article{12165, abstract = {It may come as a surprise that a phenomenon as ubiquitous and prominent as the transition from laminar to turbulent flow has resisted combined efforts by physicists, engineers and mathematicians, and remained unresolved for almost one and a half centuries. In recent years, various studies have proposed analogies to directed percolation, a well-known universality class in statistical mechanics, which describes a non-equilibrium phase transition from a fluctuating active phase into an absorbing state. It is this unlikely relation between the multiscale, high-dimensional dynamics that signify the transition process in virtually all flows of practical relevance, and the arguably most basic non-equilibrium phase transition, that so far has mainly been the subject of model studies, which I review in this Perspective.}, author = {Hof, Björn}, issn = {2522-5820}, journal = {Nature Reviews Physics}, keywords = {General Physics and Astronomy}, pages = {62--72}, publisher = {Springer Nature}, title = {{Directed percolation and the transition to turbulence}}, doi = {10.1038/s42254-022-00539-y}, volume = {5}, year = {2023}, } @article{12421, abstract = {The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions.}, author = {Fäßler, Florian and Javoor, Manjunath and Schur, Florian KM}, issn = {1470-8752}, journal = {Biochemical Society Transactions}, keywords = {Biochemistry}, number = {1}, pages = {87--99}, publisher = {Portland Press}, title = {{Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM}}, doi = {10.1042/bst20220221}, volume = {51}, year = {2023}, } @article{12105, abstract = {Data-driven dimensionality reduction methods such as proper orthogonal decomposition and dynamic mode decomposition have proven to be useful for exploring complex phenomena within fluid dynamics and beyond. A well-known challenge for these techniques is posed by the continuous symmetries, e.g. translations and rotations, of the system under consideration, as drifts in the data dominate the modal expansions without providing an insight into the dynamics of the problem. In the present study, we address this issue for fluid flows in rectangular channels by formulating a continuous symmetry reduction method that eliminates the translations in the streamwise and spanwise directions simultaneously. We demonstrate our method by computing the symmetry-reduced dynamic mode decomposition (SRDMD) of sliding windows of data obtained from the transitional plane-Couette and turbulent plane-Poiseuille flow simulations. In the former setting, SRDMD captures the dynamics in the vicinity of the invariant solutions with translation symmetries, i.e. travelling waves and relative periodic orbits, whereas in the latter, our calculations reveal episodes of turbulent time evolution that can be approximated by a low-dimensional linear expansion.}, author = {Marensi, Elena and Yalniz, Gökhan and Hof, Björn and Budanur, Nazmi B}, issn = {1469-7645}, journal = {Journal of Fluid Mechanics}, publisher = {Cambridge University Press}, title = {{Symmetry-reduced dynamic mode decomposition of near-wall turbulence}}, doi = {10.1017/jfm.2022.1001}, volume = {954}, year = {2023}, } @article{12514, abstract = {The concept of a “speciation continuum” has gained popularity in recent decades. It emphasizes speciation as a continuous process that may be studied by comparing contemporary population pairs that show differing levels of divergence. In their recent perspective article in Evolution, Stankowski and Ravinet provided a valuable service by formally defining the speciation continuum as a continuum of reproductive isolation, based on opinions gathered from a survey of speciation researchers. While we agree that the speciation continuum has been a useful concept to advance the understanding of the speciation process, some intrinsic limitations exist. Here, we advocate for a multivariate extension, the speciation hypercube, first proposed by Dieckmann et al. in 2004, but rarely used since. We extend the idea of the speciation cube and suggest it has strong conceptual and practical advantages over a one-dimensional model. We illustrate how the speciation hypercube can be used to visualize and compare different speciation trajectories, providing new insights into the processes and mechanisms of speciation. A key strength of the speciation hypercube is that it provides a unifying framework for speciation research, as it allows questions from apparently disparate subfields to be addressed in a single conceptual model.}, author = {Bolnick, Daniel I. and Hund, Amanda K. and Nosil, Patrik and Peng, Foen and Ravinet, Mark and Stankowski, Sean and Subramanian, Swapna and Wolf, Jochen B.W. and Yukilevich, Roman}, issn = {1558-5646}, journal = {Evolution: International journal of organic evolution}, number = {1}, pages = {318--328}, publisher = {Oxford University Press}, title = {{A multivariate view of the speciation continuum}}, doi = {10.1093/evolut/qpac004}, volume = {77}, year = {2023}, } @inproceedings{12548, abstract = {The limited exchange between human communities is a key factor in preventing the spread of COVID-19. This paper introduces a digital framework that combines an integration of real mobility data at the country scale with a series of modeling techniques and visual capabilities that highlight mobility patterns before and during the pandemic. The findings not only significantly exhibit mobility trends and different degrees of similarities at regional and local levels but also provide potential insight into the emergence of a pandemic on human behavior patterns and their likely socio-economic impacts.}, author = {Forghani, Mohammad and Claramunt, Christophe and Karimipour, Farid and Heiler, Georg}, booktitle = {2022 IEEE International Conference on Data Mining Workshops}, issn = {2375-9259}, location = {Orlando, FL, United States}, publisher = {Institute of Electrical and Electronics Engineers}, title = {{Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic}}, doi = {10.1109/icdmw58026.2022.00093}, year = {2023}, } @article{12563, abstract = {he approximate graph coloring problem, whose complexity is unresolved in most cases, concerns finding a c-coloring of a graph that is promised to be k-colorable, where c≥k. This problem naturally generalizes to promise graph homomorphism problems and further to promise constraint satisfaction problems. The complexity of these problems has recently been studied through an algebraic approach. In this paper, we introduce two new techniques to analyze the complexity of promise CSPs: one is based on topology and the other on adjunction. We apply these techniques, together with the previously introduced algebraic approach, to obtain new unconditional NP-hardness results for a significant class of approximate graph coloring and promise graph homomorphism problems.}, author = {Krokhin, Andrei and Opršal, Jakub and Wrochna, Marcin and Živný, Stanislav}, issn = {1095-7111}, journal = {SIAM Journal on Computing}, keywords = {General Mathematics, General Computer Science}, number = {1}, pages = {38--79}, publisher = {Society for Industrial & Applied Mathematics}, title = {{Topology and adjunction in promise constraint satisfaction}}, doi = {10.1137/20m1378223}, volume = {52}, year = {2023}, } @article{12545, abstract = {We study active surface wetting using a minimal model of bacteria that takes into account the intrinsic motility diversity of living matter. A mixture of “fast” and “slow” self-propelled Brownian particles is considered in the presence of a wall. The evolution of the wetting layer thickness shows an overshoot before stationarity and its composition evolves in two stages, equilibrating after a slow elimination of excess particles. Nonmonotonic evolutions are shown to arise from delayed avalanches towards the dilute phase combined with the emergence of a transient particle front.}, author = {Rojas Vega, Mauricio Nicolas and De Castro, Pablo and Soto, Rodrigo}, issn = {2470-0053}, journal = {Physical Review E}, number = {1}, publisher = {American Physical Society}, title = {{Wetting dynamics by mixtures of fast and slow self-propelled particles}}, doi = {10.1103/PhysRevE.107.014608}, volume = {107}, year = {2023}, } @article{12427, abstract = {Let k be a number field and X a smooth, geometrically integral quasi-projective variety over k. For any linear algebraic group G over k and any G-torsor g : Z → X, we observe that if the étale-Brauer obstruction is the only one for strong approximation off a finite set of places S for all twists of Z by elements in H^1(k, G), then the étale-Brauer obstruction is the only one for strong approximation off a finite set of places S for X. As an application, we show that any homogeneous space of the form G/H with G a connected linear algebraic group over k satisfies strong approximation off the infinite places with étale-Brauer obstruction, under some compactness assumptions when k is totally real. We also prove more refined strong approximation results for homogeneous spaces of the form G/H with G semisimple simply connected and H finite, using the theory of torsors and descent.}, author = {Balestrieri, Francesca}, issn = {1088-6826}, journal = {Proceedings of the American Mathematical Society}, number = {3}, pages = {907--914}, publisher = {American Mathematical Society}, title = {{Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups}}, doi = {10.1090/proc/15239}, volume = {151}, year = {2023}, } @article{12542, abstract = {In this issue of Neuron, Espinosa-Medina et al.1 present the TEMPO (Temporal Encoding and Manipulation in a Predefined Order) system, which enables the marking and genetic manipulation of sequentially generated cell lineages in vertebrate species in vivo.}, author = {Villalba Requena, Ana and Hippenmeyer, Simon}, issn = {1097-4199}, journal = {Neuron}, number = {3}, pages = {291--293}, publisher = {Elsevier}, title = {{Going back in time with TEMPO}}, doi = {10.1016/j.neuron.2023.01.006}, volume = {111}, year = {2023}, } @article{12567, abstract = {Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations.}, author = {Mrestani, Achmed and Lichter, Katharina and Sirén, Anna Leena and Heckmann, Manfred and Paul, Mila M. and Pauli, Martin}, issn = {1422-0067}, journal = {International Journal of Molecular Sciences}, number = {3}, publisher = {MDPI}, title = {{Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation}}, doi = {10.3390/ijms24032128}, volume = {24}, year = {2023}, } @article{12566, abstract = {Approximate agreement is one of the few variants of consensus that can be solved in a wait-free manner in asynchronous systems where processes communicate by reading and writing to shared memory. In this work, we consider a natural generalisation of approximate agreement on arbitrary undirected connected graphs. Each process is given a node of the graph as input and, if non-faulty, must output a node such that – all the outputs are within distance 1 of one another, and – each output value lies on a shortest path between two input values. From prior work, it is known that there is no wait-free algorithm among processes for this problem on any cycle of length , by reduction from 2-set agreement (Castañeda et al., 2018). In this work, we investigate the solvability of this task on general graphs. We give a new, direct proof of the impossibility of approximate agreement on cycles of length , via a generalisation of Sperner's Lemma to convex polygons. We also extend the reduction from 2-set agreement to a larger class of graphs, showing that approximate agreement on these graphs is unsolvable. On the positive side, we present a wait-free algorithm for a different class of graphs, which properly contains the class of chordal graphs.}, author = {Alistarh, Dan-Adrian and Ellen, Faith and Rybicki, Joel}, issn = {0304-3975}, journal = {Theoretical Computer Science}, number = {2}, publisher = {Elsevier}, title = {{Wait-free approximate agreement on graphs}}, doi = {10.1016/j.tcs.2023.113733}, volume = {948}, year = {2023}, } @article{12681, abstract = {The dissolution of minute concentration of polymers in wall-bounded flows is well-known for its unparalleled ability to reduce turbulent friction drag. Another phenomenon, elasto-inertial turbulence (EIT), has been far less studied even though elastic instabilities have already been observed in dilute polymer solutions before the discovery of polymer drag reduction. EIT is a chaotic state driven by polymer dynamics that is observed across many orders of magnitude in Reynolds number. It involves energy transfer from small elastic scales to large flow scales. The investigation of the mechanisms of EIT offers the possibility to better understand other complex phenomena such as elastic turbulence and maximum drag reduction. In this review, we survey recent research efforts that are advancing the understanding of the dynamics of EIT. We highlight the fundamental differences between EIT and Newtonian/inertial turbulence from the perspective of experiments, numerical simulations, instabilities, and coherent structures. Finally, we discuss the possible links between EIT and elastic turbulence and polymer drag reduction, as well as the remaining challenges in unraveling the self-sustaining mechanism of EIT.}, author = {Dubief, Yves and Terrapon, Vincent E. and Hof, Björn}, issn = {1545-4479}, journal = {Annual Review of Fluid Mechanics}, number = {1}, pages = {675--705}, publisher = {Annual Reviews}, title = {{Elasto-inertial turbulence}}, doi = {10.1146/annurev-fluid-032822-025933}, volume = {55}, year = {2023}, } @article{12682, abstract = {Since the seminal studies by Osborne Reynolds in the nineteenth century, pipe flow has served as a primary prototype for investigating the transition to turbulence in wall-bounded flows. Despite the apparent simplicity of this flow, various facets of this problem have occupied researchers for more than a century. Here we review insights from three distinct perspectives: (a) stability and susceptibility of laminar flow, (b) phase transition and spatiotemporal dynamics, and (c) dynamical systems analysis of the Navier—Stokes equations. We show how these perspectives have led to a profound understanding of the onset of turbulence in pipe flow. Outstanding open points, applications to flows of complex fluids, and similarities with other wall-bounded flows are discussed.}, author = {Avila, Marc and Barkley, Dwight and Hof, Björn}, issn = {0066-4189}, journal = {Annual Review of Fluid Mechanics}, pages = {575--602}, publisher = {Annual Reviews}, title = {{Transition to turbulence in pipe flow}}, doi = {10.1146/annurev-fluid-120720-025957}, volume = {55}, year = {2023}, } @article{12708, abstract = {Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units’ translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.}, author = {Araújo, Nuno A.M. and Janssen, Liesbeth M.C. and Barois, Thomas and Boffetta, Guido and Cohen, Itai and Corbetta, Alessandro and Dauchot, Olivier and Dijkstra, Marjolein and Durham, William M. and Dussutour, Audrey and Garnier, Simon and Gelderblom, Hanneke and Golestanian, Ramin and Isa, Lucio and Koenderink, Gijsje H. and Löwen, Hartmut and Metzler, Ralf and Polin, Marco and Royall, C. Patrick and Šarić, Anđela and Sengupta, Anupam and Sykes, Cécile and Trianni, Vito and Tuval, Idan and Vogel, Nicolas and Yeomans, Julia M. and Zuriguel, Iker and Marin, Alvaro and Volpe, Giorgio}, issn = {1744-6848}, journal = {Soft Matter}, pages = {1695--1704}, publisher = {Royal Society of Chemistry}, title = {{Steering self-organisation through confinement}}, doi = {10.1039/d2sm01562e}, volume = {19}, year = {2023}, }