@article{7949,
abstract = {Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-terminally encoded peptide 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.},
author = {Smith, S and Zhu, S and Joos, L and Roberts, I and Nikonorova, N and Vu, LD and Stes, E and Cho, H and Larrieu, A and Xuan, W and Goodall, B and van de Cotte, B and Waite, JM and Rigal, A and R Harborough, SR and Persiau, G and Vanneste, S and Kirschner, GK and Vandermarliere, E and Martens, L and Stahl, Y and Audenaert, D and Friml, Jiří and Felix, G and Simon, R and Bennett, M and Bishopp, A and De Jaeger, G and Ljung, K and Kepinski, S and Robert, S and Nemhauser, J and Hwang, I and Gevaert, K and Beeckman, T and De Smet, I},
issn = {1535-9476},
journal = {Molecular & Cellular Proteomics},
number = {8},
pages = {1248--1262},
publisher = {American Society for Biochemistry and Molecular Biology},
title = {{The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis}},
doi = {10.1074/mcp.ra119.001826},
volume = {19},
year = {2020},
}
@article{6184,
abstract = {We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models.},
author = {Alt, Johannes and Erdös, László and Krüger, Torben H and Schröder, Dominik J},
journal = {Annals of Probability},
number = {2},
pages = {963--1001},
publisher = {Project Euclid},
title = {{Correlated random matrices: Band rigidity and edge universality}},
volume = {48},
year = {2020},
}
@article{6563,
abstract = {This paper presents two algorithms. The first decides the existence of a pointed homotopy between given simplicial maps 𝑓,𝑔:𝑋→𝑌, and the second computes the group [𝛴𝑋,𝑌]∗ of pointed homotopy classes of maps from a suspension; in both cases, the target Y is assumed simply connected. More generally, these algorithms work relative to 𝐴⊆𝑋.},
author = {Filakovský, Marek and Vokřínek, Lukas},
issn = {16153383},
journal = {Foundations of Computational Mathematics},
pages = {311--330},
publisher = {Springer Nature},
title = {{Are two given maps homotopic? An algorithmic viewpoint}},
doi = {10.1007/s10208-019-09419-x},
volume = {20},
year = {2020},
}
@article{6593,
abstract = {We consider the monotone variational inequality problem in a Hilbert space and describe a projection-type method with inertial terms under the following properties: (a) The method generates a strongly convergent iteration sequence; (b) The method requires, at each iteration, only one projection onto the feasible set and two evaluations of the operator; (c) The method is designed for variational inequality for which the underline operator is monotone and uniformly continuous; (d) The method includes an inertial term. The latter is also shown to speed up the convergence in our numerical results. A comparison with some related methods is given and indicates that the new method is promising.},
author = {Shehu, Yekini and Li, Xiao-Huan and Dong, Qiao-Li},
issn = {1017-1398},
journal = {Numerical Algorithms},
pages = {365--388},
publisher = {Springer Nature},
title = {{An efficient projection-type method for monotone variational inequalities in Hilbert spaces}},
doi = {10.1007/s11075-019-00758-y},
volume = {84},
year = {2020},
}
@article{6649,
abstract = {While Hartree–Fock theory is well established as a fundamental approximation for interacting fermions, it has been unclear how to describe corrections to it due to many-body correlations. In this paper we start from the Hartree–Fock state given by plane waves and introduce collective particle–hole pair excitations. These pairs can be approximately described by a bosonic quadratic Hamiltonian. We use Bogoliubov theory to construct a trial state yielding a rigorous Gell-Mann–Brueckner–type upper bound to the ground state energy. Our result justifies the random-phase approximation in the mean-field scaling regime, for repulsive, regular interaction potentials.
},
author = {Benedikter, Niels P and Nam, Phan Thành and Porta, Marcello and Schlein, Benjamin and Seiringer, Robert},
issn = {1432-0916},
journal = {Communications in Mathematical Physics},
pages = {2097–2150},
publisher = {Springer Nature},
title = {{Optimal upper bound for the correlation energy of a Fermi gas in the mean-field regime}},
doi = {10.1007/s00220-019-03505-5},
volume = {374},
year = {2020},
}
@article{6796,
abstract = {Nearby grid cells have been observed to express a remarkable degree of long-rangeorder, which is often idealized as extending potentially to infinity. Yet their strict peri-odic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent grid maps inferred in the lab relevant to chart their way in their natural habitat? We consider spheres as simple models of curved environments and waiting for the appropriate experiments to be performed, we use our adaptation model to predict what grid maps would emerge in a network with the same type of recurrent connections, which on the plane produce coherence among the units. We find that on the sphere such connections distort the maps that single grid units would express on their own, and aggregate them into clusters. When remapping to a different spherical environment, units in each cluster maintain only partial coherence, similar to what is observed in disordered materials, such as spin glasses.},
author = {Stella, Federico and Urdapilleta, Eugenio and Luo, Yifan and Treves, Alessandro},
issn = {10981063},
journal = {Hippocampus},
number = {4},
pages = {302--313},
publisher = {Wiley},
title = {{Partial coherence and frustration in self-organizing spherical grids}},
doi = {10.1002/hipo.23144},
volume = {30},
year = {2020},
}
@article{6808,
abstract = {Super-resolution fluorescence microscopy has become an important catalyst for discovery in the life sciences. In STimulated Emission Depletion (STED) microscopy, a pattern of light drives fluorophores from a signal-emitting on-state to a non-signalling off-state. Only emitters residing in a sub-diffraction volume around an intensity minimum are allowed to fluoresce, rendering them distinguishable from the nearby, but dark fluorophores. STED routinely achieves resolution in the few tens of nanometers range in biological samples and is suitable for live imaging. Here, we review the working principle of STED and provide general guidelines for successful STED imaging. The strive for ever higher resolution comes at the cost of increased light burden. We discuss techniques to reduce light exposure and mitigate its detrimental effects on the specimen. These include specialized illumination strategies as well as protecting fluorophores from photobleaching mediated by high-intensity STED light. This opens up the prospect of volumetric imaging in living cells and tissues with diffraction-unlimited resolution in all three spatial dimensions.},
author = {Jahr, Wiebke and Velicky, Philipp and Danzl, Johann G},
issn = {1046-2023},
journal = {Methods},
number = {3},
pages = {27--41},
publisher = {Elsevier},
title = {{Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens}},
doi = {10.1016/j.ymeth.2019.07.019},
volume = {174},
year = {2020},
}
@article{6976,
abstract = {Origami is rapidly transforming the design of robots1,2, deployable structures3,4,5,6 and metamaterials7,8,9,10,11,12,13,14. However, as foldability requires a large number of complex compatibility conditions that are difficult to satisfy, the design of crease patterns is limited to heuristics and computer optimization. Here we introduce a systematic strategy that enables intuitive and effective design of complex crease patterns that are guaranteed to fold. First, we exploit symmetries to construct 140 distinct foldable motifs, and represent these as jigsaw puzzle pieces. We then show that when these pieces are fitted together they encode foldable crease patterns. This maps origami design to solving combinatorial problems, which allows us to systematically create, count and classify a vast number of crease patterns. We show that all of these crease patterns are pluripotent—capable of folding into multiple shapes—and solve exactly for the number of possible shapes for each pattern. Finally, we employ our framework to rationally design a crease pattern that folds into two independently defined target shapes, and fabricate such pluripotent origami. Our results provide physicists, mathematicians and engineers with a powerful new design strategy.},
author = {Dieleman, Peter and Vasmel, Niek and Waitukaitis, Scott R and van Hecke, Martin},
issn = {1745-2481},
journal = {Nature Physics},
number = {1},
pages = {63–68},
publisher = {Springer Nature},
title = {{Jigsaw puzzle design of pluripotent origami}},
doi = {10.1038/s41567-019-0677-3},
volume = {16},
year = {2020},
}
@article{7956,
abstract = {When short-range attractions are combined with long-range repulsions in colloidal particle systems, complex microphases can emerge. Here, we study a system of isotropic particles, which can form lamellar structures or a disordered fluid phase when temperature is varied. We show that, at equilibrium, the lamellar structure crystallizes, while out of equilibrium, the system forms a variety of structures at different shear rates and temperatures above melting. The shear-induced ordering is analyzed by means of principal component analysis and artificial neural networks, which are applied to data of reduced dimensionality. Our results reveal the possibility of inducing ordering by shear, potentially providing a feasible route to the fabrication of ordered lamellar structures from isotropic particles.},
author = {Pȩkalski, J. and Rzadkowski, Wojciech and Panagiotopoulos, A. Z.},
issn = {10897690},
journal = {The Journal of chemical physics},
number = {20},
publisher = {AIP},
title = {{Shear-induced ordering in systems with competing interactions: A machine learning study}},
doi = {10.1063/5.0005194},
volume = {152},
year = {2020},
}
@article{7962,
abstract = {A string graph is the intersection graph of a family of continuous arcs in the plane. The intersection graph of a family of plane convex sets is a string graph, but not all string graphs can be obtained in this way. We prove the following structure theorem conjectured by Janson and Uzzell: The vertex set of almost all string graphs on n vertices can be partitioned into five cliques such that some pair of them is not connected by any edge (n→∞). We also show that every graph with the above property is an intersection graph of plane convex sets. As a corollary, we obtain that almost all string graphs on n vertices are intersection graphs of plane convex sets.},
author = {Pach, János and Reed, Bruce and Yuditsky, Yelena},
issn = {14320444},
journal = {Discrete and Computational Geometry},
number = {4},
pages = {888--917},
publisher = {Springer Nature},
title = {{Almost all string graphs are intersection graphs of plane convex sets}},
doi = {10.1007/s00454-020-00213-z},
volume = {63},
year = {2020},
}
@inproceedings{7966,
abstract = {For 1≤m≤n, we consider a natural m-out-of-n multi-instance scenario for a public-key encryption (PKE) scheme. An adversary, given n independent instances of PKE, wins if he breaks at least m out of the n instances. In this work, we are interested in the scaling factor of PKE schemes, SF, which measures how well the difficulty of breaking m out of the n instances scales in m. That is, a scaling factor SF=ℓ indicates that breaking m out of n instances is at least ℓ times more difficult than breaking one single instance. A PKE scheme with small scaling factor hence provides an ideal target for mass surveillance. In fact, the Logjam attack (CCS 2015) implicitly exploited, among other things, an almost constant scaling factor of ElGamal over finite fields (with shared group parameters).
For Hashed ElGamal over elliptic curves, we use the generic group model to argue that the scaling factor depends on the scheme's granularity. In low granularity, meaning each public key contains its independent group parameter, the scheme has optimal scaling factor SF=m; In medium and high granularity, meaning all public keys share the same group parameter, the scheme still has a reasonable scaling factor SF=√m. Our findings underline that instantiating ElGamal over elliptic curves should be preferred to finite fields in a multi-instance scenario.
As our main technical contribution, we derive new generic-group lower bounds of Ω(√(mp)) on the difficulty of solving both the m-out-of-n Gap Discrete Logarithm and the m-out-of-n Gap Computational Diffie-Hellman problem over groups of prime order p, extending a recent result by Yun (EUROCRYPT 2015). We establish the lower bound by studying the hardness of a related computational problem which we call the search-by-hypersurface problem.},
author = {Auerbach, Benedikt and Giacon, Federico and Kiltz, Eike},
booktitle = {Advances in Cryptology – EUROCRYPT 2020},
isbn = {9783030457266},
issn = {0302-9743},
pages = {475--506},
publisher = {Springer Nature},
title = {{Everybody’s a target: Scalability in public-key encryption}},
doi = {10.1007/978-3-030-45727-3_16},
volume = {12107},
year = {2020},
}
@article{7971,
abstract = {Multilayer graphene lattices allow for an additional tunability of the band structure by the strong perpendicular electric field. In particular, the emergence of the new multiple Dirac points in ABA stacked trilayer graphene subject to strong transverse electric fields was proposed theoretically and confirmed experimentally. These new Dirac points dubbed “gullies” emerge from the interplay between strong electric field and trigonal warping. In this work, we first characterize the properties of new emergent Dirac points and show that the electric field can be used to tune the distance between gullies in the momentum space. We demonstrate that the band structure has multiple Lifshitz transitions and higher-order singularity of “monkey saddle” type. Following the characterization of the band structure, we consider the spectrum of Landau levels and structure of their wave functions. In the limit of strong electric fields when gullies are well separated in momentum space, they give rise to triply degenerate Landau levels. In the second part of this work, we investigate how degeneracy between three gully Landau levels is lifted in the presence of interactions. Within the Hartree-Fock approximation we show that the symmetry breaking state interpolates between the fully gully polarized state that breaks C3 symmetry at high displacement field and the gully symmetric state when the electric field is decreased. The discontinuous transition between these two states is driven by enhanced intergully tunneling and exchange. We conclude by outlining specific experimental predictions for the existence of such a symmetry-breaking state.},
author = {Rao, Peng and Serbyn, Maksym},
issn = {2469-9950},
journal = {Physical Review B},
number = {24},
publisher = {American Physical Society},
title = {{Gully quantum Hall ferromagnetism in biased trilayer graphene}},
doi = {10.1103/physrevb.101.245411},
volume = {101},
year = {2020},
}
@inproceedings{7990,
abstract = {Given a finite point set P in general position in the plane, a full triangulation is a maximal straight-line embedded plane graph on P. A partial triangulation on P is a full triangulation of some subset P' of P containing all extreme points in P. A bistellar flip on a partial triangulation either flips an edge, removes a non-extreme point of degree 3, or adds a point in P ⧵ P' as vertex of degree 3. The bistellar flip graph has all partial triangulations as vertices, and a pair of partial triangulations is adjacent if they can be obtained from one another by a bistellar flip. The goal of this paper is to investigate the structure of this graph, with emphasis on its connectivity. For sets P of n points in general position, we show that the bistellar flip graph is (n-3)-connected, thereby answering, for sets in general position, an open questions raised in a book (by De Loera, Rambau, and Santos) and a survey (by Lee and Santos) on triangulations. This matches the situation for the subfamily of regular triangulations (i.e., partial triangulations obtained by lifting the points and projecting the lower convex hull), where (n-3)-connectivity has been known since the late 1980s through the secondary polytope (Gelfand, Kapranov, Zelevinsky) and Balinski’s Theorem. Our methods also yield the following results (see the full version [Wagner and Welzl, 2020]): (i) The bistellar flip graph can be covered by graphs of polytopes of dimension n-3 (products of secondary polytopes). (ii) A partial triangulation is regular, if it has distance n-3 in the Hasse diagram of the partial order of partial subdivisions from the trivial subdivision. (iii) All partial triangulations are regular iff the trivial subdivision has height n-3 in the partial order of partial subdivisions. (iv) There are arbitrarily large sets P with non-regular partial triangulations, while every proper subset has only regular triangulations, i.e., there are no small certificates for the existence of non-regular partial triangulations (answering a question by F. Santos in the unexpected direction).},
author = {Wagner, Uli and Welzl, Emo},
booktitle = {36th International Symposium on Computational Geometry},
isbn = {9783959771436},
issn = {18688969},
location = {Zürich, Switzerland},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Connectivity of triangulation flip graphs in the plane (Part II: Bistellar flips)}},
doi = {10.4230/LIPIcs.SoCG.2020.67},
volume = {164},
year = {2020},
}
@inproceedings{7992,
abstract = {Let K be a convex body in ℝⁿ (i.e., a compact convex set with nonempty interior). Given a point p in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of K ∩ h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p through which there are at least n+1 distinct barycentric hyperplanes. Two years later, this was seemingly resolved affirmatively by showing that this is the case if p=p₀ is the point of maximal depth in K. However, while working on a related question, we noticed that one of the auxiliary claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s question. It follows from known results that for n ≥ 2, there are always at least three distinct barycentric cuts through the point p₀ ∈ K of maximal depth. Using tools related to Morse theory we are able to improve this bound: four distinct barycentric cuts through p₀ are guaranteed if n ≥ 3.},
author = {Patakova, Zuzana and Tancer, Martin and Wagner, Uli},
booktitle = {36th International Symposium on Computational Geometry},
isbn = {9783959771436},
issn = {18688969},
location = {Zürich, Switzerland},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Barycentric cuts through a convex body}},
doi = {10.4230/LIPIcs.SoCG.2020.62},
volume = {164},
year = {2020},
}
@article{8002,
abstract = {Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity.},
author = {Hörmayer, Lukas and Montesinos López, Juan C and Marhavá, Petra and Benková, Eva and Yoshida, Saiko and Friml, Jiří},
issn = {0027-8424},
journal = {Proceedings of the National Academy of Sciences},
number = {26},
publisher = {Proceedings of the National Academy of Sciences},
title = {{Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots}},
doi = {10.1073/pnas.2003346117},
volume = {117},
year = {2020},
}
@article{8011,
abstract = {Relaxation to a thermal state is the inevitable fate of nonequilibrium interacting quantum systems without special conservation laws. While thermalization in one-dimensional systems can often be suppressed by integrability mechanisms, in two spatial dimensions thermalization is expected to be far more effective due to the increased phase space. In this work we propose a general framework for escaping or delaying the emergence of the thermal state in two-dimensional arrays of Rydberg atoms via the mechanism of quantum scars, i.e., initial states that fail to thermalize. The suppression of thermalization is achieved in two complementary ways: by adding local perturbations or by adjusting the driving Rabi frequency according to the local connectivity of the lattice. We demonstrate that these mechanisms allow us to realize robust quantum scars in various two-dimensional lattices, including decorated lattices with nonconstant connectivity. In particular, we show that a small decrease of the Rabi frequency at the corners of the lattice is crucial for mitigating the strong boundary effects in two-dimensional systems. Our results identify synchronization as an important tool for future experiments on two-dimensional quantum scars.},
author = {Michailidis, Alexios and Turner, C. J. and Papić, Z. and Abanin, D. A. and Serbyn, Maksym},
issn = {2643-1564},
journal = {Physical Review Research},
number = {2},
publisher = {American Physical Society},
title = {{Stabilizing two-dimensional quantum scars by deformation and synchronization}},
doi = {10.1103/physrevresearch.2.022065},
volume = {2},
year = {2020},
}
@inproceedings{8012,
abstract = {Asynchronous programs are notoriously difficult to reason about because they spawn computation tasks which take effect asynchronously in a nondeterministic way. Devising inductive invariants for such programs requires understanding and stating complex relationships between an unbounded number of computation tasks in arbitrarily long executions. In this paper, we introduce inductive sequentialization, a new proof rule that sidesteps this complexity via a sequential reduction, a sequential program that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. We have implemented and integrated our proof rule in the CIVL verifier, allowing us to provably derive fine-grained implementations of asynchronous programs. We have successfully applied our proof rule to a diverse set of message-passing protocols, including leader election protocols, two-phase commit, and Paxos.},
author = {Kragl, Bernhard and Enea, Constantin and Henzinger, Thomas A and Mutluergil, Suha Orhun and Qadeer, Shaz},
booktitle = {Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation},
isbn = {9781450376136},
location = {London, United Kingdom},
pages = {227--242},
publisher = {Association for Computing Machinery},
title = {{Inductive sequentialization of asynchronous programs}},
doi = {10.1145/3385412.3385980},
year = {2020},
}
@article{8036,
abstract = {When tiny soft ferromagnetic particles are placed along a liquid interface and exposed to a vertical magnetic field, the balance between capillary attraction and magnetic repulsion leads to self-organization into well-defined patterns. Here, we demonstrate experimentally that precessing magnetic fields induce metachronal waves on the periphery of these assemblies, similar to the ones observed in ciliates and some arthropods. The outermost layer of particles behaves like an array of cilia or legs whose sequential movement causes a net and controllable locomotion. This bioinspired many-particle swimming strategy is effective even at low Reynolds number, using only spatially uniform fields to generate the waves.},
author = {Collard, Ylona and Grosjean, Galien M and Vandewalle, Nicolas},
issn = {23993650},
journal = {Communications Physics},
publisher = {Springer Nature},
title = {{Magnetically powered metachronal waves induce locomotion in self-assemblies}},
doi = {10.1038/s42005-020-0380-9},
volume = {3},
year = {2020},
}
@article{8037,
abstract = {Genetic perturbations that affect bacterial resistance to antibiotics have been characterized genome-wide, but how do such perturbations interact with subsequent evolutionary adaptation to the drug? Here, we show that strong epistasis between resistance mutations and systematically identified genes can be exploited to control spontaneous resistance evolution. We evolved hundreds of Escherichia coli K-12 mutant populations in parallel, using a robotic platform that tightly controls population size and selection pressure. We find a global diminishing-returns epistasis pattern: strains that are initially more sensitive generally undergo larger resistance gains. However, some gene deletion strains deviate from this general trend and curtail the evolvability of resistance, including deletions of genes for membrane transport, LPS biosynthesis, and chaperones. Deletions of efflux pump genes force evolution on inferior mutational paths, not explored in the wild type, and some of these essentially block resistance evolution. This effect is due to strong negative epistasis with resistance mutations. The identified genes and cellular functions provide potential targets for development of adjuvants that may block spontaneous resistance evolution when combined with antibiotics.},
author = {Lukacisinova, Marta and Fernando, Booshini and Bollenbach, Mark Tobias},
issn = {20411723},
journal = {Nature Communications},
publisher = {Springer Nature},
title = {{Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance}},
doi = {10.1038/s41467-020-16932-z},
volume = {11},
year = {2020},
}
@article{8039,
abstract = {In the present work, we report a solution-based strategy to produce crystallographically textured SnSe bulk nanomaterials and printed layers with optimized thermoelectric performance in the direction normal to the substrate. Our strategy is based on the formulation of a molecular precursor that can be continuously decomposed to produce a SnSe powder or printed into predefined patterns. The precursor formulation and decomposition conditions are optimized to produce pure phase 2D SnSe nanoplates. The printed layer and the bulk material obtained after hot press displays a clear preferential orientation of the crystallographic domains, resulting in an ultralow thermal conductivity of 0.55 W m–1 K–1 in the direction normal to the substrate. Such textured nanomaterials present highly anisotropic properties with the best thermoelectric performance in plane, i.e., in the directions parallel to the substrate, which coincide with the crystallographic bc plane of SnSe. This is an unfortunate characteristic because thermoelectric devices are designed to create/harvest temperature gradients in the direction normal to the substrate. We further demonstrate that this limitation can be overcome with the introduction of small amounts of tellurium in the precursor. The presence of tellurium allows one to reduce the band gap and increase both the charge carrier concentration and the mobility, especially the cross plane, with a minimal decrease of the Seebeck coefficient. These effects translate into record out of plane ZT values at 800 K.},
author = {Zhang, Yu and Liu, Yu and Xing, Congcong and Zhang, Ting and Li, Mengyao and Pacios, Mercè and Yu, Xiaoting and Arbiol, Jordi and Llorca, Jordi and Cadavid, Doris and Ibáñez, Maria and Cabot, Andreu},
issn = {19448252},
journal = {ACS Applied Materials and Interfaces},
number = {24},
pages = {27104--27111},
publisher = {American Chemical Society},
title = {{Tin selenide molecular precursor for the solution processing of thermoelectric materials and devices}},
doi = {10.1021/acsami.0c04331},
volume = {12},
year = {2020},
}