@article{3467,
abstract = {The effects of mast cell degranulating peptide (MCDP), a toxin from the honey bee, and of dendrotoxin (DTX), a toxin from the green mamba snake, were studied in voltage-clamped experiments with myelinated nerve fibres of Xenopus. MCDP and DTX blocked part of the K+ current. About 20% of the K+ current, however, was resistant to the toxins even in high concentrations. In Ringer solution half-maximal block was reached with concentrations of 33 nM MCDP and 11 nM DTX. In high-K+ solution the potency of both toxins was lower. β-Bungarotoxin (β-BuTX), another snake toxin, also blocked part of the K+ current, but was less potent than MCDP and DTX. Tail currents in high-K+ solution were analysed and three K+ current components were separated according to Dubois (1981b). Both MCDP and DTX selectively blocked a fast deactivating, slowly inactivating K+ current component which steeply activates between E = -60 mV and E = -40 mV (component f1). In concentrations around 100 nM, MCDP and DTX blocked neither the slow K+ current (component s) nor the fast deactivating, rapidly inactivating K+ current which activates between E = -40 mV and E = 20 mV (component f2). Similar results could be derived from K+ outward currents in Ringer solution. In high-K+, IC50 of MCDP for component f1 was 99 nM, whereas it was 7.6 μM for f2. Corresponding values for DTX are 68 nM and 1.8 μM. Binding studies with nerve fibre membranes of Xenopus reveal high-affinity binding sites for 125I-labelled DTX )K(D) = 22 pM in Ringer solution and 81 pM in high-K+ solution). 125I-labelled DTX can be displaced from its sites completely by unlabelled DTX, toxin I (black mamba toxin), MCDP, and partially by β-BuTX. Immunocytochemical staining demonstrates that binding sites for DTX are present in nodal and paranodal regions of the axonal membrane. The axonal membrane of motor and sensory nerve fibres is equipped with three types of well-characterized K+ channels and constitutes so far the best preparation to study MCDP- and DTX-sensitive K+ channels with electrophysiological and biochemical methods.},
author = {Bräu, Michael E and Dreyer, Florian W and Peter Jonas and Repp, Holger and Vogel, Werner},
journal = {Journal of Physiology},
pages = {365 -- 385},
publisher = {Wiley-Blackwell},
title = {{A K+ channel in Xenopus nerve fibres selectively blocked by bee and snake toxins: binding and voltage-clamp experiments}},
doi = {10.1113/jphysiol.1990.sp017918},
volume = {420},
year = {1990},
}
@inbook{3565,
author = {Dobkin, David P and Herbert Edelsbrunner and Yap, Chee K},
booktitle = {Autonomous Robot Vehicles},
editor = {Cox, Ingemar J and Wilfong, Gordon T},
pages = {328 -- 341},
publisher = {Springer},
title = {{Probing convex polytopes}},
doi = {10.1007/978-1-4613-8997-2_25},
year = {1990},
}
@article{3649,
abstract = {Selection on polygenic characters is generally analyzed by statistical methods that assume a Gaussian (normal) distribution of breeding values. We present an alternative analysis based on multilocus population genetics. We use a general representation of selection, recombination, and drift to analyze an idealized polygenic system in which all genetic effects are additive (i.e., both dominance and epistasis are absent), but no assumptions are made about the distribution of breeding values or the numbers of loci or alleles. Our analysis produces three results. First, our equations reproduce the standard recursions for the mean and additive variance if breeding values are Gaussian; but they also reveal how non-Gaussian distributions of breeding values will alter these dynamics. Second, an approximation valid for weak selection shows that even if genetic variance is attributable to an effectively infinite number of loci with only additive effects, selection will generally drive the distribution of breeding values away from a Gaussian distribution by creating multilocus linkage disequilibria. Long-term dynamics of means can depart substantially from the predictions of the standard selection recursions, but the discrepancy may often be negligible for short-term selection. Third, by including mutation, we show that, for realistic parameter values, linkage disequilibrium has little effect on the amount of additive variance maintained at an equilibrium between stabilizing selection and mutation. Each of these analytical results is supported by numerical calculations.},
author = {Turelli, Michael and Nicholas Barton},
journal = {Theoretical Population Biology},
number = {1},
pages = {1 -- 57},
publisher = {Academic Press},
title = {{Dynamics of polygenic characters under selection}},
doi = {10.1016/0040-5809(90)90002-D},
volume = {38},
year = {1990},
}
@article{3650,
abstract = {Hybrid zones can yield estimates of natural selection and gene flow. The width of a cline in gene frequency is approximately proportional to gene flow (σ) divided by the square root of per-locus selection ( &s). Gene flow also causes gametic correlations (linkage disequilibria) between genes that differ across hybrid zones. Correlations are stronger when the hybrid zone is narrow, and rise to a maximum roughly equal to s. Thus cline width and gametic correlations combine to give estimates of gene flow and selection. These indirect measures of σ and s are especially useful because they can be made from collections, and require no field experiments. The method was applied to hybrid zones between color pattern races in a pair of Peruvian Heliconius butterfly species. The species are Mullerian mimics of one another, and both show the same changes in warning color pattern across their respective hybrid zones. The expectations of cline width and gametic correlation were generated using simulations of clines stabilized by strong frequency-dependent selection. In the hybrid zone in Heliconius erato, clines at three major color pattern loci were between 8.5 and 10.2 km wide, and the pairwise gametic correlations peaked at R & 0.35. These measures suggest that s & 0.23 per locus, and that σ & 2.6 km. In erato, the shapes of the clines agreed with that expected on the basis of dominance. Heliconius melpomene has a nearly coincident hybrid zone. In this species, cline widths at four major color pattern loci varied between 11.7 and 13.4 km. Pairwise gametic correlations peaked near R & 1.00 for tightly linked genes, and at R & 0.40 for unlinked genes, giving s & 0.25 per locus and σ & 3.7 km. In melpomene, cline shapes did not perfectly fit theoretical shapes based on dominance; this deviation might be explained by long-distance migration and/or strong epistasis. Compared with erato, sample sizes in melpomene are lower and the genetics of its color patterns are less well understood. In spite of these problems, selection and gene flow are clearly of the same order of magnitude in the two species. The relatively high per locus selection coefficients agree with ``major gene'' theories for the evolution of Mullerian mimicry, but the genetic architecture of the color patterns does not. These results show that the genetics and evolution of mimicry are still only sketchily understood.},
author = {Mallet, James L and Nicholas Barton and Lamas,Gerado M and Santisteban, José C and Muedas, Manuel M and Eeley, Harriet},
journal = {Genetics},
number = {4},
pages = {921 -- 936},
publisher = {Genetics Society of America},
title = {{Estimates of selection and gene flow from measures of cline width and linkage disequilibrium in Heliconius hybrid zones}},
volume = {124},
year = {1990},
}
@article{3651,
abstract = {It is widely held that each gene typically affects many characters, and that each character is affected by many genes. Moreover, strong stabilizing selection cannot act on an indefinitely large number of independent traits. This makes it likely that heritable variation in any one trait is maintained as a side effect of polymorphisms which have nothing to do with selection on that trait. This paper examines the idea that variation is maintained as the pleiotropic side effect of either deleterious mutation, or balancing selection. If mutation is responsible, it must produce alleles which are only mildly deleterious (s & 10(-3)), but nevertheless have significant effects on the trait. Balancing selection can readily maintain high heritabilities; however, selection must be spread over many weakly selected polymorphisms if large responses to artificial selection are to be possible. In both classes of pleiotropic model, extreme phenotypes are less fit, giving the appearance of stabilizing selection on the trait. However, it is shown that this effect is weak (of the same order as the selection on each gene): the strong stabilizing selection which is often observed is likely to be caused by correlations with a limited number of directly selected traits. Possible experiments for distinguishing the alternatives are discussed.},
author = {Nicholas Barton},
journal = {Genetics},
number = {3},
pages = {773 -- 782},
publisher = {Genetics Society of America},
title = {{Pleiotropic models of quantitative variation}},
volume = {124},
year = {1990},
}
@article{4060,
abstract = {This paper offers combinatorial results on extremum problems concerning the number of tetrahedra in a tetrahedrization of n points in general position in three dimensions, i.e. such that no four points are co-planar, It also presents an algorithm that in O(n log n) time constructs a tetrahedrization of a set of n points consisting of at most 3n-11 tetrahedra.},
author = {Herbert Edelsbrunner and Preparata, Franco P and West, Douglas B},
journal = {Journal of Symbolic Computation},
number = {3-4},
pages = {335 -- 347},
publisher = {Elsevier},
title = {{Tetrahedrizing point sets in three dimensions}},
doi = {10.1016/S0747-7171(08)80068-5},
volume = {10},
year = {1990},
}
@article{4063,
abstract = {This paper describes a general-purpose programming technique, called Simulation of Simplicity, that can be used to cope with degenerate input data for geometric algorithms. It relieves the programmer from the task of providing a consistent treatment for every single special case that can occur. The programs that use the technique tend to be considerably smaller and more robust than those that do not use it. We believe that this technique will become a standard tool in writing geometric software.},
author = {Herbert Edelsbrunner and Mücke, Ernst P},
journal = {ACM Transactions on Graphics},
number = {1},
pages = {66 -- 104},
publisher = {ACM},
title = {{Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms}},
doi = {10.1145/77635.77639},
volume = {9},
year = {1990},
}
@article{4064,
abstract = {Given a set of data points pi = (xi, yi ) for 1 ≤ i ≤ n, the least median of squares regression line is a line y = ax + b for which the median of the squared residuals is a minimum over all choices of a and b. An algorithm is described that computes such a line in O(n 2) time and O(n) memory space, thus improving previous upper bounds on the problem. This algorithm is an application of a general method built on top of the topological sweep of line arrangements.},
author = {Herbert Edelsbrunner and Souvaine, Diane L},
journal = {Journal of the American Statistical Association},
number = {409},
pages = {115 -- 119},
publisher = {American Statistical Association},
title = {{Computing least median of squares regression lines and guided topological sweep}},
doi = {10.1080/01621459.1990.10475313},
volume = {85},
year = {1990},
}
@article{4065,
abstract = {We prove that given n⩾3 convex, compact, and pairwise disjoint sets in the plane, they may be covered with n non-overlapping convex polygons with a total of not more than 6n−9 sides, and with not more than 3n−6 distinct slopes. Furthermore, we construct sets that require 6n−9 sides and 3n−6 slopes for n⩾3. The upper bound on the number of slopes implies a new bound on a recently studied transversal problem.},
author = {Herbert Edelsbrunner and Robison, Arch D and Shen, Xiao-Jun},
journal = {Discrete Mathematics},
number = {2},
pages = {153 -- 164},
publisher = {Elsevier},
title = {{Covering convex sets with non-overlapping polygons}},
doi = {10.1016/0012-365X(90)90147-A},
volume = {81},
year = {1990},
}
@article{4066,
abstract = {We consider several problems involving points and planes in three dimensions. Our main results are: (i) The maximum number of faces boundingm distinct cells in an arrangement ofn planes isO(m 2/3 n logn +n 2); we can calculatem such cells specified by a point in each, in worst-case timeO(m 2/3 n log3 n+n 2 logn). (ii) The maximum number of incidences betweenn planes andm vertices of their arrangement isO(m 2/3 n logn+n 2), but this number is onlyO(m 3/5– n 4/5+2 +m+n logm), for any>0, for any collection of points no three of which are collinear. (iii) For an arbitrary collection ofm points, we can calculate the number of incidences between them andn planes by a randomized algorithm whose expected time complexity isO((m 3/4– n 3/4+3 +m) log2 n+n logn logm) for any>0. (iv) Givenm points andn planes, we can find the plane lying immediately below each point in randomized expected timeO([m 3/4– n 3/4+3 +m] log2 n+n logn logm) for any>0. (v) The maximum number of facets (i.e., (d–1)-dimensional faces) boundingm distinct cells in an arrangement ofn hyperplanes ind dimensions,d>3, isO(m 2/3 n d/3 logn+n d–1). This is also an upper bound for the number of incidences betweenn hyperplanes ind dimensions andm vertices of their arrangement. The combinatorial bounds in (i) and (v) and the general bound in (ii) are almost tight.},
author = {Herbert Edelsbrunner and Guibas, Leonidas and Sharir, Micha},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {197 -- 216},
publisher = {Springer},
title = {{The complexity of many cells in arrangements of planes and related problems}},
doi = {10.1007/BF02187785},
volume = {5},
year = {1990},
}
@inproceedings{4067,
abstract = {This paper proves an O(m 2/3 n 2/3+m+n) upper bound on the number of incidences between m points and n hyperplanes in four dimensions, assuming all points lie on one side of each hyperplane and the points and hyperplanes satisfy certain natural general position conditions. This result has application to various three-dimensional combinatorial distance problems. For example, it implies the same upper bound for the number of bichromatic minimum distance pairs in a set of m blue and n red points in three-dimensional space. This improves the best previous bound for this problem.},
author = {Herbert Edelsbrunner and Sharir, Micha},
pages = {419 -- 428},
publisher = {Springer},
title = {{A hyperplane Incidence problem with applications to counting distances}},
doi = {10.1007/3-540-52921-7_91},
volume = {450},
year = {1990},
}
@article{4068,
abstract = {LetS be a collection ofn convex, closed, and pairwise nonintersecting sets in the Euclidean plane labeled from 1 ton. A pair of permutations
(i1i2in−1in)(inin−1i2i1)
is called ageometric permutation of S if there is a line that intersects all sets ofS in this order. We prove thatS can realize at most 2n–2 geometric permutations. This upper bound is tight.},
author = {Herbert Edelsbrunner and Sharir, Micha},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {35 -- 42},
publisher = {Springer},
title = {{The maximum number of ways to stabn convex nonintersecting sets in the plane is 2n−2}},
doi = { 10.1007/BF02187778},
volume = {5},
year = {1990},
}
@article{4069,
abstract = {Let C be a cell complex in d-dimensional Euclidean space whose faces are obtained by orthogonal projection of the faces of a convex polytope in d + 1 dimensions. For example, the Delaunay triangulation of a finite point set is such a cell complex. This paper shows that the in front/behind relation defined for the faces of C with respect to any fixed viewpoint x is acyclic. This result has applications to hidden line/surface removal and other problems in computational geometry.},
author = {Herbert Edelsbrunner},
journal = {Combinatorica},
number = {3},
pages = {251 -- 260},
publisher = {Springer},
title = {{An acyclicity theorem for cell complexes in d dimension}},
doi = {10.1007/BF02122779},
volume = {10},
year = {1990},
}
@article{4070,
abstract = {Let S be a set of n closed intervals on the x-axis. A ranking assigns to each interval, s, a distinct rank, p(s) [1, 2,…,n]. We say that s can see t if p(s)<p(t) and there is a point ps∩t so that pu for all u with p(s)<p(u)<p(t). It is shown that a ranking can be found in time O(n log n) such that each interval sees at most three other intervals. It is also shown that a ranking that minimizes the average number of endpoints visible from an interval can be computed in time O(n 5/2). The results have applications to intersection problems for intervals, as well as to channel routing problems which arise in layouts of VLSI circuits.},
author = {Herbert Edelsbrunner and Overmars, Mark H and Welzl, Emo and Hartman, Irith Ben-Arroyo and Feldman,Jack A},
journal = {International Journal of Computer Mathematics},
number = {3-4},
pages = {129 -- 144},
publisher = {Taylor & Francis},
title = {{Ranking intervals under visibility constraints}},
doi = {10.1080/00207169008803871},
volume = {34},
year = {1990},
}
@inproceedings{4071,
abstract = {We show that a triangulation of a set of n points in the plane that minimizes the maximum angle can be computed in time O(n2 log n) and space O(n). In the same amount of time and space we can also handle the constrained case where edges are prescribed. The algorithm iteratively improves an arbitrary initial triangulation and is fairly easy to implement.},
author = {Herbert Edelsbrunner and Tan, Tiow Seng and Waupotitsch, Roman},
pages = {44 -- 52},
publisher = {ACM},
title = {{An O(n^2log n) time algorithm for the MinMax angle triangulation}},
doi = {10.1145/98524.98535},
year = {1990},
}
@article{4072,
abstract = {We show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m 2/3– n 2/3+2 +n) for any>0. The proof takes an algorithmic approach, that is, we describe an algorithm for the calculation of thesem faces and derive the upper bound from the analysis of the algorithm. The algorithm uses randomization and its expected time complexity isO(m 2/3– n 2/3+2 logn+n logn logm). If instead of lines we have an arrangement ofn line segments, then the maximum number of edges ofm faces isO(m 2/3– n 2/3+2 +n (n) logm) for any>0, where(n) is the functional inverse of Ackermann's function. We give a (randomized) algorithm that produces these faces and takes expected timeO(m 2/3– n 2/3+2 log+n(n) log2 n logm).},
author = {Herbert Edelsbrunner and Guibas, Leonidas J and Sharir, Micha},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {161 -- 196},
publisher = {Springer},
title = {{The complexity and construction of many faces in arrangements of lines and of segments}},
doi = { 10.1007/BF02187784},
volume = {5},
year = {1990},
}
@inproceedings{4073,
abstract = {A number of rendering algorithms in computer graphics sort three-dimensional objects by depth and assume that there is no cycle that makes the sorting impossible. One way to resolve the problem caused by cycles is to cut the objects into smaller pieces. The problem of estimating how many such cuts are always sufficient is addressed. A few related algorithmic and combinatorial geometry problems are considered},
author = {Chazelle, Bernard and Herbert Edelsbrunner and Guibas, Leonidas J and Pollack, Richard and Seidel, Raimund and Sharir, Micha and Snoeyink, Jack},
pages = {242 -- 251},
publisher = {IEEE},
title = {{Counting and cutting cycles of lines and rods in space}},
doi = {10.1109/FSCS.1990.89543},
year = {1990},
}
@article{4074,
author = {Clarkson, Kenneth L and Herbert Edelsbrunner and Guibas, Leonidas J and Sharir, Micha and Welzl, Emo},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {99 -- 160},
publisher = {Springer},
title = {{Combinatorial complexity bounds for arrangements of curves and spheres}},
doi = {10.1007/BF02187783},
volume = {5},
year = {1990},
}
@article{4075,
abstract = {A key problem in computational geometry is the identification of subsets of a point set having particular properties. We study this problem for the properties of convexity and emptiness. We show that finding empty triangles is related to the problem of determining pairs of vertices that see each other in a star-shaped polygon. A linear-time algorithm for this problem which is of independent interest yields an optimal algorithm for finding all empty triangles. This result is then extended to an algorithm for finding empty convex r-gons (r> 3) and for determining a largest empty convex subset. Finally, extensions to higher dimensions are mentioned.},
author = {Dobkin, David P and Herbert Edelsbrunner and Overmars, Mark H},
journal = {Algorithmica},
number = {4},
pages = {561 -- 571},
publisher = {Springer},
title = {{Searching for empty convex polygons}},
doi = {10.1007/BF01840404},
volume = {5},
year = {1990},
}
@inproceedings{4076,
abstract = {We present an algorithm to compute a Euclidean minimum spanning tree of a given set S of n points in Ed in time O(Td(N, N) logd N), where Td(n, m) is the time required to compute a bichromatic closest pair among n red and m blue points in Ed. If Td(N, N) = Ω(N1+ε), for some fixed ε > 0, then the running time improves to O(Td(N, N)). Furthermore, we describe a randomized algorithm to compute a bichromatic closets pair in expected time O((nm log n log m)2/3+m log2 n + n log2 m) in E3, which yields an O(N4/3log4/3 N) expected time algorithm for computing a Euclidean minimum spanning tree of N points in E3.},
author = {Agarwal, Pankaj K and Herbert Edelsbrunner and Schwarzkopf, Otfried and Welzl, Emo},
pages = {203 -- 210},
publisher = {ACM},
title = {{ Euclidean minimum spanning trees and bichromatic closest pairs}},
doi = {10.1145/98524.98567},
year = {1990},
}
@inproceedings{4077,
abstract = {We prove that for any set S of n points in the plane and n3-α triangles spanned by the points of S there exists a point (not necessarily of S) contained in at least n3-3α/(512 log25 n) of the triangles. This implies that any set of n points in three - dimensional space defines at most 6.4n8/3 log5/3 n halving planes.},
author = {Aronov, Boris and Chazelle, Bernard and Herbert Edelsbrunner and Guibas, Leonidas J and Sharir, Micha and Wenger, Rephael},
pages = {112 -- 115},
publisher = {ACM},
title = {{Points and triangles in the plane and halving planes in space}},
doi = {10.1145/98524.98548},
year = {1990},
}
@inproceedings{4078,
abstract = {In this paper we derived combinatorial point selection results for geometric objects defined by pairs of points. In a nutshell, the results say that if many pairs of a set of n points in some fixed dimension each define a geometric object of some type, then there is a point covered by many of these objects. Based on such a result for three-dimensional spheres we show that the combinatorial size of the Delaunay triangulation of a point set in space can be reduced by adding new points. We believe that from a practical point of view this is the most important result of this paper.},
author = {Chazelle, Bernard and Herbert Edelsbrunner and Guibas, Leonidas J and Hershberger, John E and Seidel, Raimund and Sharir, Micha},
pages = {116 -- 127},
publisher = {ACM},
title = {{Slimming down by adding; selecting heavily covered points}},
doi = {10.1145/98524.98551},
year = {1990},
}
@article{2479,
abstract = {Distribution of putative glutamatergic neurons in the lower brainstem and cerebellum of the rat was examined immunocytochemically by using a monoclonal antibody against phosphate-activated glutaminase, which has been proposed to be a major synthetic enzyme of transmitter glutamate and so may serve as a marker for glutamatergic neurons in the central nervous system. Intensely-immunolabeled neuronal cell bodies were densely distributed in the main precerebellar nuclei sending mossy fibers to the cerebellum; in the pontine nuclei, pontine tegmental reticular nucleus of Bechterew, external cuneate nucleus, and lateral reticular nucleus of the medulla oblongata. Phosphate-activated glutaminase-immunoreactive granular deposits were densely seen in the brachium pontis and restiform body, suggesting the immunolabeling of mossy fibers of passage. In the cerebellum, neuropil within the granule cell layer of the cerebellar cortex displayed intense phosphate-activated glutaminase-immunoreactivity, and that within the deep cerebellar nuclei showed moderate immunoreactivity. These results indicate that many mossy fiber terminals originate from phosphate-activated glutaminase-containing neurons and utilize phosphate-activated glutaminase for the synthesis of transmitter glutamate. Intensely-immunostained neuronal cell bodies were further observed in other regions which have been reported to contain neurons sending mossy fibers to the cerebellum; in the dorsal part of the principal sensory trigeminal nucleus, dorsomedial part of the oral subnucleus of the spinal trigeminal nucleus, interpolar subnucleus of the spinal trigeminal nucleus, paratrigeminal nucleus, supragenual nucleus, regions dorsal to the abducens nucleus and genu of the facial nerve, superior and medial vestibular nuclei, cell groups f, x and y, hypoglossal prepositus nucleus, intercalated nucleus, nucleus of Roller, reticular regions intercalated between the motor trigeminal and principal sensory trigeminal nuclei, linear nucleus, and gigantocellular and paramedian reticular formation. Neuronal cell bodies with intense phosphate-activated glutaminase-immunoreactivity were also found in other brainstem regions, such as the paracochlear glial substance, posterior ventral cochlear nucleus, and cell group e. Although it is still controversial whether all glutamatergic neurons use phosphate-activated glutaminase in a transmitter-related process and whether phosphate-activated glutaminase is involved in other metabolism-related processes, the neurons showing intense phosphate-activated glutaminase-immuno-reactivity in the present study were suggested to be putative glutamatergic neurons.},
author = {Kaneko, Takeshi and Itoh, Kazuo and Ryuichi Shigemoto and Mizuno, Noboru},
journal = {Neuroscience},
number = {1},
pages = {79 -- 98},
publisher = {Elsevier},
title = {{Glutaminase-like immunoreactivity in the lower brainstem and cerebellum of the adult rat}},
doi = {10.1016/0306-4522(89)90109-7},
volume = {32},
year = {1989},
}
@article{2525,
abstract = {This paper describes the amino acid sequence of the rat substance P receptor and its comparison with that of the rat substance K receptor on the basis of molecular cloning and sequence analysis. From a rat brain cDNA library constructed with an RNA expression vector, we identified a cDNA mixture containing a functional substance P receptor cDNA by examining electrophysiologically a receptor expression following injection of the mRNAs synthesized in vitro into Xenopus oocytes. A receptor cDNA clone was then isolated by cross-hybridization with the bovine substance K receptor DNA. The clone was confirmed by selective binding of substance P to the cloned receptor expressed in mammalian COS cells. The deduced amino acid sequence (407 amino acid residues) possesses seven putative membrane spanning domains and shows a sequence similarity to the members of G-protein-coupled receptors. The rat substance P and substance K receptor are very similar in both size and amino acid sequences, particularly in the putative transmembrane similarity is in marked contrast to the sequence divergence in the amino- and carboxyl-terminal regions and the third cytoplasmic loop. The observed sequence similarytity and divergence would thus contribute to the expression of similar but pharmacological regions and the first and second cytoplasmic loops. This distinguishable activities of the two tachykinin receptors.},
author = {Yokota, Yoshifumi and Sasai, Yoshiki and Tanaka, Kohichi and Fujiwara, Tsutomu and Tsuchida, Kunihiro and Ryuichi Shigemoto and Kakizuka, Akira and Ohkubo, Hiroaki and Nakanishi, Shigetada},
journal = {Journal of Biological Chemistry},
number = {30},
pages = {17649 -- 17652},
publisher = {American Society for Biochemistry and Molecular Biology},
title = {{Molecular characterization of a functional cDNA for rat substance P receptor}},
volume = {264},
year = {1989},
}
@article{2526,
abstract = {When WGA-HRP (wheat germ agglutinin-horseradish peroxidase conjugate) or HRP was injected into the regions around the superior central and/or the dorsal raphe nuclei in the cat, cell bodies of a number of non-pyramidal neurons were labeled in Ammon's horn. Thus the existence of direct projections from non-pyramidal neurons in Ammon's horn to the rostral raphe regions in the brainstem was suggested in the cat.},
author = {Ino, Tadashi and Itoh, Kazuo and Kamiya, Hiroto and Kaneko, Takeshi and Ryuichi Shigemoto and Akiguchi, Ichiro and Mizuno, Noboru},
journal = {Brain Research},
number = {1},
pages = {157 -- 161},
publisher = {Elsevier},
title = {{Direct projections from Ammon's horn to the rostral raphe regions in the brainstem of the cat}},
doi = {10.1016/0006-8993(89)91346-2},
volume = {479},
year = {1989},
}
@article{2527,
author = {Akimoto, Masumi and Ryuichi Shigemoto and Kawamura, Makiko and Yamagata, Hideharu and Kurihara, Takeshi and Takata, S and Miwa, Yoko and Akagami, N and Katsu, Kenichi and Yamauchi, D},
journal = {Japanese Journal of Gastroenterology},
number = {11},
publisher = {Japanese Society of Gastroenterology},
title = {{Effect of endothelin on gastric mucosal blood flow in rat}},
doi = {10.11405/nisshoshi1964.86.2627},
volume = {86},
year = {1989},
}
@article{4309,
abstract = {Three methods for estimating the average level of gene flow in natural population are discussed and compared. The three methods are FST, rare alleles, and maximum likelihood. All three methods yield estimates of the combination of parameters (the number of migrants [Nm] in a demic model or the neighborhood size [4πDσ2] in a continuum model) that determines the relative importance of gene flow and genetic drift. We review the theory underlying these methods and derive new analytic results for the expectation of FST in stepping-stone and continuum models when small sets of samples are taken. We also compare the effectiveness of the different methods using a variety of simulated data. We found that the FST and rare-alleles methods yield comparable estimates under a wide variety of conditions when the population being sampled is demographically stable. They are roughly equally sensitive to selection and to variation in population structure, and they approach their equilibrium values at approximately the same rate. We found that two different maximum-likelihood methods tend to yield biased estimates when relatively small numbers of locations are sampled but more accurate estimates when larger numbers are sampled. Our conclusion is that, although FST and rare-alleles methods are expected to be equally effective in analyzing ideal data, practical problems in estimating the frequencies of rare alleles in electrophoretic studies suggest that FST is likely to be more useful under realistic conditions.
},
author = {Slatkin, Montgomery and Nicholas Barton},
journal = {Evolution; International Journal of Organic Evolution},
number = {7},
pages = {1349 -- 1368},
publisher = {Wiley-Blackwell},
title = {{A comparison of three methods for estimating average levels of gene flow}},
volume = {43},
year = {1989},
}
@article{4312,
author = {Nicholas Barton and Turelli, Michael},
journal = {Annual Review of Genetics},
pages = {337 -- 370},
publisher = {Annual Reviews},
title = {{Evolutionary quantitative genetics: how little do we know ?}},
doi = {10.1146/annurev.ge.23.120189.002005},
volume = {23},
year = {1989},
}
@inbook{4313,
author = {Nicholas Barton},
booktitle = {Speciation and its consequences},
editor = {Otte, Daniel and Endler, John A},
publisher = {Sinauer Press},
title = {{Founder effect speciation}},
year = {1989},
}
@article{4314,
abstract = {Polygenic variation can be maintained by a balance between mutation and stabilizing selection. When the alleles responsible for variation are rare, many classes of equilibria may be stable. The rate at which drift causes shifts between equilibria is investigated by integrating the gene frequency distribution W2N II (pq)4N mu-1. This integral can be found exactly, by numerical integration, or can be approximated by assuming that the full distribution of allele frequencies is approximately Gaussian. These methods are checked against simulations. Over a wide range of population sizes, drift will keep the population near an equilibrium which minimizes the genetic variance and the deviation from the selective optimum. Shifts between equilibria in this class occur at an appreciable rate if the product of population size and selection on each locus is small (Ns alpha 2 less than 10). The Gaussian approximation is accurate even when the underlying distribution is strongly skewed. Reproductive isolation evolves as populations shift to new combinations of alleles: however, this process is slow, approaching the neutral rate (approximately mu) in small populations.},
author = {Nicholas Barton},
journal = {Genetical Research},
number = {1},
pages = {59 -- 77},
publisher = {Cambridge University Press},
title = {{The divergence of a polygenic system under stabilising selection, mutation and drift}},
doi = {10.1017/S0016672300028378},
volume = {54},
year = {1989},
}
@inproceedings{4596,
abstract = {A real-time temporal logic for the specification of reactive systems is introduced. The novel feature of the logic, TPTL, is the adoption of temporal operators as quantifiers over time variables; every modality binds a variable to the time(s) it refers to. TPTL is demonstrated to be both a natural specification language and a suitable formalism for verification and synthesis. A tableau-based decision procedure and model-checking algorithm for TPTL are presented. Several generalizations of TPTL are shown to be highly undecidable.},
author = {Alur, Rajeev and Thomas Henzinger},
pages = {164 -- 169},
publisher = {IEEE},
title = {{A really temporal logic}},
doi = {10.1109/SFCS.1989.63473},
year = {1989},
}
@article{3465,
abstract = {Asymmetrical displacement currents and Na currents of single myelinated nerve fibers of Xenopus laevis were studied in the temperature range from 5 to 24 degrees C. The time constant of the on-response at E = 4 mV, tau on, was strongly temperature dependent, whereas the amount of displaced charge at E = 39 mV, Qon, was only slightly temperature dependent. The mean Q10 for tau on-1 was 2.54, the mean Q10 for Qon was 1.07. The time constant of charge immobilization, tau i, at E = 4 mV varied significantly (alpha = 0.001) with temperature. The mean Q10 for tau i-1 was 2.71 +/- 0.38. The time constants of immobilization of gating charge and of fast inactivation of Na permeability were similar in the temperature range from 6 to 22 degrees C. The Qoff/Qon ratio for E = 4 mV pulses of 0.5 msec duration decreased with increasing temperature. The temperature dependence of the time constant of the off-response could not be described by a single Q10 value, since the Q10 depended on the duration of the test pulse. Increasing temperature shifted Qon (E) curves to more negative potentials by 0.51 mV K-1, but shifted PNa (E) curves and h infinity (E) curves to more positive potentials by 0.43 and 0.57 mV K-1, respectively. h infinity (E = -70 mV) increased monotonously with increasing temperature. The present data indicate that considerable entropy changes may occur when the Na channel molecule passes from closed through open to inactivated states.},
author = {Peter Jonas},
journal = {Journal of Membrane Biology},
number = {3},
pages = {277 -- 289},
publisher = {Springer},
title = {{Temperature dependence of gating current in myelinated nerve fibers}},
doi = {10.1007/BF01870958},
volume = {112},
year = {1989},
}
@article{3466,
abstract = {Amphibian myelinated nerve fibers were treated with collagenase and protease. Axons with retraction of the myelin sheath were patch-clamped in the nodal and paranodal region. One type of Na channel was found. It has a single-channel conductance of 11 pS (15 degrees C) and is blocked by tetrodotoxin. Averaged events show the typical activation and inactivation kinetics of macroscopic Na current. Three potential-dependent K channels were identified (I, F, and S channel). The I channel, being the most frequent type, has a single-channel conductance of 23 pS (inward current, 105 mM K on both sides of the membrane), activates between -60 and -30 mV, deactivates with intermediate kinetics, and is sensitive to dendrotoxin. The F channel has a conductance of 30 pS, activates between -40 and 60 mV, and deactivates with fast kinetics. The former inactivates within tens of seconds; the latter inactivates within seconds. The third type, the S channel, has a conductance of 7 pS and deactivates slowly. All three channels can be blocked by external tetraethylammonium chloride. We suggest that these distinct K channel types form the basis for the different components of macroscopic K current described previously.},
author = {Peter Jonas and Bräu, Michael E and Hermsteiner, Markus and Vogel, Werner},
journal = {PNAS},
number = {18},
pages = {7238 -- 7242},
publisher = {National Academy of Sciences},
title = {{Single-channel recording in myelinated nerve fibers reveals one type of Na channel but different K channels}},
volume = {86},
year = {1989},
}
@inproceedings{3549,
author = {Herbert Edelsbrunner},
pages = {83 -- 89},
publisher = {Institute of the Electronics, Information and Communication Enginneers},
title = {{Spatial triangulations with dihedral angle conditions}},
year = {1989},
}
@article{3652,
abstract = {Frequency-dependent selection against rare forms can maintain clines. For weak selection, s, in simple linear models of frequency-dependence, single locus clines are stabilized with a maximum slope of between {complex}s/{complex}8 {sigma} and {complex}s/{complex}12 {delta}, where {sigma} is the dispersal distance. These clines are similar to those maintained by heterozygote disadvantage. Using computer simulations, the weak-selection analytical results are extended to higher selection pressures with up to three unlinked genes. Graphs are used to display the effect of selection, migration, dominance, and number of loci on cline widths, speeds of cline movements, two-way gametic correlations (``linkage disequilibria''), and heterozygote deficits. The effects of changing the order of reproduction, migration, and selection, are also briefly explored. Epistasis can also maintain tension zones. We show that epistatic selection is similar in its effects to frequency-dependent selection, except that the disequilibria produced in the zone will be higher for a given level of selection. If selection consists of a mixture of frequency-dependence and epistasis, as is likely in nature, the error made in estimating selection is usually less than twofold. From the graphs, selection and migration can be estimated using knowledge of the dominance and number of genes, of gene frequences and of gametic correlations from a hybrid zone.},
author = {Mallet, James L and Nicholas Barton},
journal = {Genetics},
number = {4},
pages = {967 -- 976},
publisher = {Genetics Society of America},
title = {{Inference from clines stabilized by frequency-dependent selection}},
volume = {122},
year = {1989},
}
@article{3653,
abstract = {Frequency-dependent selection on warning color can maintain narrow hybrid zones between unpalatable prey taxa. To measure such selection, we transferred marked Heliconius erato (Lepidoptera: Nymphalidae) in both directions across a 10-km-wide hybrid zone between Peruvian races differing in color pattern. These experimental H. erato were released at four sites, along with control H. erato of the phenotype native to each site. Survival of experimental butterflies was significantly lower than that of controls at two sites and overall. Most selection, measured as differences in survival, occurred soon after release. Selection against foreign morphs was 52% (confidence limits: 25-71%) and was probably due to bird attacks on unusual warning-color morphs (more than 10% of the recaptures had beak marks). Since only three major loci determine the color-pattern differences, this suggests an average selection coefficient of 0.17 per locus, sufficient to maintain the narrow clines in H. erato.
},
author = {Mallet, James L and Nicholas Barton},
journal = {Evolution},
pages = {421 -- 431},
publisher = {Wiley-Blackwell},
title = {{Strong natural selection in a warning color hybrid zone}},
doi = {10.2307/2409217 },
volume = {43},
year = {1989},
}
@article{3654,
abstract = {Many species are divided into a mosaic of genetically distinct populations, separated by narrow zones of hybridization. Studies of hybrid zones allow us to quantify the genetic differences responsible for speciation, to measure the diffusion of genes between diverging taxa, and to understand the spread of alternative adaptations.},
author = {Nicholas Barton and Hewitt, Godfrey M},
journal = {Nature},
pages = {497 -- 503},
publisher = {Nature Publishing Group},
title = {{Adaptation, speciation and hybrid zones}},
doi = {10.1038/341497a0},
volume = {341},
year = {1989},
}
@article{4079,
author = {Herbert Edelsbrunner and Skiena, Steven Sol},
journal = {American Mathematical Monthly},
number = {7},
pages = {614 -- 618},
publisher = {Mathematical Association of America},
title = {{On the number of furthest neighbor pairs in a point set}},
volume = {96},
year = {1989},
}
@article{4080,
abstract = {This paper proves that any set of n points in the plane contains two points such that any circle through those two points encloses at least n12−112+O(1)n47 points of the set. The main ingredients used in the proof of this result are edge counting formulas for k-order Voronoi diagrams and a lower bound on the minimum number of semispaces of size at most k.},
author = {Herbert Edelsbrunner and Hasan, Nany and Seidel, Raimund and Shen, Xiao-Jun},
journal = {Geometriae Dedicata},
number = {1},
pages = {1 -- 12},
publisher = {Kluwer},
title = {{Circles through two points that always enclose many points}},
doi = {10.1007/BF00181432},
volume = {32},
year = {1989},
}
@article{4081,
abstract = {This paper studies applications of envelopes of piecewise linear functions to problems in computational geometry. Among these applications we find problems involving hidden line/surface elimination, motion planning, transversals of polytopes, and a new type of Voronoi diagram for clusters of points. All results are either combinatorial or computational in nature. They are based on the combinatorial analysis in two companion papers [PS] and [E2] and a divide-and-conquer algorithm for computing envelopes described in this paper.},
author = {Herbert Edelsbrunner and Guibas, Leonidas J and Sharir, Micha},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {311 -- 336},
publisher = {Springer},
title = {{The upper envelope of piecewise linear functions: Algorithms and applications}},
doi = {10.1007/BF02187733},
volume = {4},
year = {1989},
}
@article{4082,
abstract = {Sweeping a collection of figures in the Euclidean plane with a straight line is one of the novel algorithmic paradigms that have emerged in the field of computational geometry. In this paper we demonstrate the advantages of sweeping with a topological line that is not necessarily straight. We show how an arrangement of n lines in the plane can be swept over in O(n2) time and O(n) space by a such a line. In the process each element, i.e., vertex, edge, or region, is visited once in a consistent ordering. Our technique makes use of novel data structures which exhibit interesting amortized complexity behavior; the result is an algorithm that improves upon all its predecessors either in the space or the time bounds, as well as being eminently practical. Numerous applications of the technique to problems in computational geometry are given—many through the use of duality transforms. Examples include solving visibility problems, detecting degeneracies in configurations, computing the extremal shadows of convex polytopes, and others. Even though our basic technique solves a planar problem, its applications include several problems in higher dimensions.},
author = {Herbert Edelsbrunner and Guibas, Leonidas J},
journal = {Journal of Computer and System Sciences},
number = {1},
pages = {165 -- 194},
publisher = {Elsevier},
title = {{Topologically sweeping an arrangement}},
doi = {10.1016/0022-0000(89)90038-X},
volume = {38},
year = {1989},
}
@article{4083,
abstract = {It is shown that, given a set S of n points in $R^3 $, one can always find three planes that form an eight-partition of S, that is, a partition where at most ${n / 8}$ points of S lie in each of the eight open regions. This theorem is used to define a data structure, called an octant tree, for representing any point set in $R^3 $. An octant tree for n points occupies $O(n)$ space and can be constructed in polynomial time. With this data structure and its refinements, efficient solutions to various range query problems in two and three dimensions can be obtained, including (1) half-space queries: find all points of S that lie to one side of any given plane; (2) polyhedron queries: find all points that lie inside (outside) any given polyhedron; and (3) circle queries in $R^2 $: for a planar set S, find all points that lie inside (outside) any given circle. The retrieval time for all these queries is $T(n) = O(n^\alpha + m)$, where $\alpha = 0.8988$ (or 0.8471 in case (3)), and m is the size of the output. This performance is the best currently known for linear-space data structures that can be deterministically constructed in polynomial time.},
author = {Yao, F. Frances and Dobkin, David P and Herbert Edelsbrunner and Paterson,Michael S},
journal = {SIAM Journal on Computing},
number = {2},
pages = {371 -- 384},
publisher = {SIAM},
title = {{Partitioning space for range queries}},
doi = {10.1137/0218025},
volume = {18},
year = {1989},
}
@article{4084,
abstract = {A tour of a finite set P of points is a necklace-tour if there are disks with the points in P as centers such that two disks intersect if and only if their centers are adjacent in . It has been observed by Sanders that a necklace-tour is an optimal traveling salesman tour.
In this paper, we present an algorithm that either reports that no necklace-tour exists or outputs a necklace-tour of a given set of n points in O(n2 log n) time. If a tour is given, then we can test in O(n2) time whether or not this tour is a necklace-tour. Both algorithms can be generalized to ƒ-factors of point sets in the plane. The complexity results rely on a combinatorial analysis of certain intersection graphs of disks defined for finite sets of points in the plane.},
author = {Herbert Edelsbrunner and Rote,Günter and Welzl, Emo},
journal = {Theoretical Computer Science},
number = {2},
pages = {157 -- 180},
publisher = {Elsevier},
title = {{Testing the necklace condition for shortest tours and optimal factors in the plane}},
doi = {10.1016/0304-3975(89)90133-3},
volume = {66},
year = {1989},
}
@inproceedings{4085,
abstract = {Let C be a cell complex in d-dimensional Euclidean space whose faces are obtained by orthogonal projection of the faces of a convex polytope in d + 1 dimensions. For example, the Delaunay triangulation of a finite point set is such a cell complex. This paper shows that the in_front/behind relation defined for the faces of C with respect to any fixed viewpoint x is acyclic. This result has applications to hidden line/surface removal and other problems in computational geometry.},
author = {Herbert Edelsbrunner},
pages = {145 -- 151},
publisher = {ACM},
title = {{An acyclicity theorem for cell complexes in d dimension}},
doi = {10.1145/73833.73850},
year = {1989},
}
@article{4086,
abstract = {This note proves that the maximum number of faces (of any dimension) of the upper envelope of a set ofn possibly intersectingd-simplices ind+1 dimensions is (n d (n)). This is an extension of a result of Pach and Sharir [PS] who prove the same bound for the number ofd-dimensional faces of the upper envelope.},
author = {Herbert Edelsbrunner},
journal = {Discrete & Computational Geometry},
number = {4},
pages = {337 -- 343},
publisher = {Springer},
title = {{The upper envelope of piecewise linear functions: Tight bounds on the number of faces }},
doi = {10.1007/BF02187734},
volume = {4},
year = {1989},
}
@inproceedings{4087,
abstract = {This paper offers combinatorial results on extremum problems concerning the number of tetrahedra in a tetrahedrization of n points in general position in three dimensions, i.e. such that no four points are coplanar. It also presents an algorithm that in O(nlog n) time constructs a tetrahedrization of a set of n points consisting of at most 3n–11 tetrahedra.},
author = {Herbert Edelsbrunner and Preparata, Franco P and West, Douglas B},
pages = {315 -- 331},
publisher = {Springer},
title = {{Tetrahedrizing point sets in three dimensions}},
doi = {10.1007/3-540-51084-2_31},
volume = {358},
year = {1989},
}
@article{4088,
abstract = {Anarrangement ofn lines (or line segments) in the plane is the partition of the plane defined by these objects. Such an arrangement consists ofO(n 2) regions, calledfaces. In this paper we study the problem of calculating and storing arrangementsimplicitly, using subquadratic space and preprocessing, so that, given any query pointp, we can calculate efficiently the face containingp. First, we consider the case of lines and show that with (n) space1 and (n 3/2) preprocessing time, we can answer face queries in (n)+O(K) time, whereK is the output size. (The query time is achieved with high probability.) In the process, we solve three interesting subproblems: (1) given a set ofn points, find a straight-edge spanning tree of these points such that any line intersects only a few edges of the tree, (2) given a simple polygonal path , form a data structure from which we can find the convex hull of any subpath of quickly, and (3) given a set of points, organize them so that the convex hull of their subset lying above a query line can be found quickly. Second, using random sampling, we give a tradeoff between increasing space and decreasing query time. Third, we extend our structure to report faces in an arrangement of line segments in (n 1/3)+O(K) time, given(n 4/3) space and (n 5/3) preprocessing time. Lastly, we note that our techniques allow us to computem faces in an arrangement ofn lines in time (m 2/3 n 2/3+n), which is nearly optimal.},
author = {Herbert Edelsbrunner and Guibas, Leonidas and Hershberger, John and Seidel, Raimund and Sharir, Micha and Snoeyink, Jack and Welzl, Emo},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {433 -- 466},
publisher = {Springer},
title = {{Implicitly representing arrangements of lines or segments}},
doi = {10.1007/BF02187742},
volume = {4},
year = {1989},
}
@article{4089,
abstract = {Motivated by a number of motion-planning questions, we investigate in this paper some general topological and combinatorial properties of the boundary of the union ofn regions bounded by Jordan curves in the plane. We show that, under some fairly weak conditions, a simply connected surface can be constructed that exactly covers this union and whose boundary has combinatorial complexity that is nearly linear, even though the covered region can have quadratic complexity. In the case where our regions are delimited by Jordan acrs in the upper halfplane starting and ending on thex-axis such that any pair of arcs intersect in at most three points, we prove that the total number of subarcs that appear on the boundary of the union is only (n(n)), where(n) is the extremely slowly growing functional inverse of Ackermann's function.},
author = {Herbert Edelsbrunner and Guibas, Leonidas and Hershberger, John and Pach, János and Pollack, Richard and Seidel, Raimund and Sharir, Micha and Snoeyink, Jack},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {523 -- 539},
publisher = {Springer},
title = {{On arrangements of Jordan arcs with three intersections per pair}},
doi = {10.1007/BF02187745},
volume = {4},
year = {1989},
}
@inproceedings{4092,
author = {Chazelle, Bernard and Herbert Edelsbrunner and Guibas, Leonidas J and Sharir, Micha},
pages = {179 -- 193},
publisher = {Springer},
title = {{A singly exponential stratification scheme for real semi-algebraic varieties and its applications}},
doi = {10.1007/BFb0035760},
volume = {372},
year = {1989},
}
@article{4093,
abstract = {This paper investigates the combinatorial and computational aspects of certain extremal geometric problems in two and three dimensions. Specifically, we examine the problem of intersecting a convex subdivision with a line in order to maximize the number of intersections. A similar problem is to maximize the number of intersected facets in a cross-section of a three-dimensional convex polytope. Related problems concern maximum chains in certain families of posets defined over the regions of a convex subdivision. In most cases we are able to prove sharp bounds on the asymptotic behavior of the corresponding extremal functions. We also describe polynomial algorithms for all the problems discussed.},
author = {Chazelle, Bernard and Herbert Edelsbrunner and Guibas, Leonidas J},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {139 -- 181},
publisher = {Springer},
title = {{The complexity of cutting complexes}},
doi = {10.1007/BF02187720},
volume = {4},
year = {1989},
}